期刊文献+
共找到107,007篇文章
< 1 2 250 >
每页显示 20 50 100
Electrochemical Separation of Metal Silver from Industrial Wastewater
1
作者 M. A. Olutoye J. A. Alhamdu 《Advances in Chemical Engineering and Science》 2014年第4期396-400,共5页
Investigation into the separation of metal silver from industrial wastewater using electrochemical cell was carried out. Wastewater from photo laboratories was collected and treated batch wise using electrolytic equip... Investigation into the separation of metal silver from industrial wastewater using electrochemical cell was carried out. Wastewater from photo laboratories was collected and treated batch wise using electrolytic equipment. A constant voltage of 2.0 V and variable current in the range of 0.3 - 0.6 A at normal temperature were passed through the electrolyte for a period from 0.25 - 1.0 h. The results showed that increase in current yield an increase in the amount of metallic silver recovered with highest values of 2.3 g and 2.8 g at 0.6 A for the tested samples 1 and 2, respectively. The electrochemical separation method proved to be more reliable and economical when compared to other methods and also, reduction in environmental pollution of industrial wastewater containing high concentration of silver metal is achieved. 展开更多
关键词 SILVER METAL electrochemical separation WASTEWATER Environment
下载PDF
Electrochemical Analysis of Zirconiumin Aqueous and Organic Media
2
作者 Paul Mendy Démo Koita +2 位作者 Theodore Tzedakis Cheikhou Kane Codou Guèye Mar-Diop 《American Journal of Analytical Chemistry》 CAS 2024年第2期99-118,共20页
For the challenging nature of the zirconium environment analysis, this study consists to analyze the electrochemical behavior of Zirconium in both aqueous and organic media. To that end first the electrolytic media wa... For the challenging nature of the zirconium environment analysis, this study consists to analyze the electrochemical behavior of Zirconium in both aqueous and organic media. To that end first the electrolytic media was selected on the basis of the Pourbaix potential-pH diagram, which provides informations on the predominance of Zr<sup>(IV) </sup> ion and Zr in aqueous media. In aqueous media, analyzes were first carried out in acidic media then in basic media. Studies have thus revealed that the acidic environment is not favourable for the electrochemical analysis of zirconium. Voltammograms obtained in an acidic environment show no zirconium detection signal;this is due to the strong presence of H<sup>+</sup> ions in the solution. We have also observed in acidic media the phenomenon of passivation of the electrode surface. In aqueous alkaline media (pH = 13), we have drawn in reduction several Intensity-Potential curves by fixingsome technical parameterslike scanning speed, rotation speed of the electrode. The obtained voltammograms show cathodic waves, starting from -1.5 V/DHW and attributed to the reduction of Zr<sup> (IV) </sup> to Zr (0). The last phase of this study focused on the electrochemical analysis of zirconium in an organic media. In this media, several intensity-potential curves were plotted in reduction and in cyclic voltammetry with various parameters. Through several reduction analysis, the Zr<sup> (IV) </sup> was reduced to Zr (0) to the potential of -1.5 V/DHW. The electrochemical analysis of zirconium in organic media seems globally easier to achieve thanks to its large solvent window (i.e. dimethylformamide (DMF) solvent window > 6 V). 展开更多
关键词 ZIRCONIUM electrochemical REDUCTION Cyclic Voltammetry VOLTAMMOGRAM Dymethylformamide
下载PDF
Direct capture and separation of CO_(2) from air
3
作者 Siew Ping Teong Yugen Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期413-416,共4页
Direct air capture(DAC)has attracted increasing interest and investment over the past few years.There are a fast-growing number of companies that entered the field and demonstrated DAC carbon removal setups and potent... Direct air capture(DAC)has attracted increasing interest and investment over the past few years.There are a fast-growing number of companies that entered the field and demonstrated DAC carbon removal setups and potential.However,current DAC methods are still based on solid absorbents or alkali solutions approaches which have low capture efficiency and low energy efficiency.This highlight proposed a promising CO_(2) capture technology,an electric energy driven closed-loop system for the direct removal of CO_(2) from ambient air which are based on two individual technologies:Polyam-N-Cu hybrid system promoted CO_(2) capture with ocean as anthropogenic CO_(2) sink and a chloride-mediated electrochemical pH swing system to remove CO_(2) from oceanwater. 展开更多
关键词 SYSTEM separation COMPANIES
下载PDF
The flow behavior of droplet adsorption on a liquid-liquid interface accompanied by cross-linking reaction and phase separation in a microchannel
4
作者 Haozhe Yi Taotao Fu +1 位作者 Chunying Zhu Youguang Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期60-70,共11页
The adsorption process of droplets on the liquid-liquid interface and phase separation process can regulate the spatial distribution of the fluid system,which are crucial for chemical engineering.However,the cross-lin... The adsorption process of droplets on the liquid-liquid interface and phase separation process can regulate the spatial distribution of the fluid system,which are crucial for chemical engineering.However,the cross-linking reaction,which is widely used in the field of polymers,can change the physical properties of the fluids and affect the flow behavior accordingly.A configuration of microchannels is designed to conveniently generate uniform droplets in one phase of the parallel flow.The flow behavior of the adsorption process of sodium alginate droplets on the liquid-liquid interface is investigated,and the subsequent process of phase separation is studied.In the process of droplet adsorption,the crosslinking reaction occurs synchronously,which makes the droplet viscosity and the elasticity modules of the droplet surface increase,thus affecting the dynamics of the adsorption process and the equilibrium shape of the droplet.The variation of the adsorption length with time is divided into three stages,which all conform to power law relationship.The exponents of the second and third stages deviate from the results of the Tanner's law.The flow pattern maps of droplet adsorption and phase separation are drawn,and the operating ranges of complete adsorption and complete separation are provided.This study provides a theoretical basis for further studying the flow behavior of droplets with cross-linking reaction in a microchannel. 展开更多
关键词 MICROFLUIDICS DROPLET Dynamics CROSSLINK ADSORPTION separation
下载PDF
Environmental,economic and exergy analysis of separation of ternary azeotrope by variable pressure extractive distillation based on multi-objective optimization
5
作者 Peizhe Cui Jiafu Xing +5 位作者 Chen Li Mengjin Zhou Jifu Zhang Yasen Dai Limei Zhong Yinglong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期145-157,共13页
In this work,the ternary azeotrope of tert-butyl alcohol/ethyl acetate/water is separated by extractive distillation(ED)to recover the available constituents and protect the environment.Based on the conductor like shi... In this work,the ternary azeotrope of tert-butyl alcohol/ethyl acetate/water is separated by extractive distillation(ED)to recover the available constituents and protect the environment.Based on the conductor like shielding model and relative volatility method,ethylene glycol was selected as the extractant in the separation process.In addition,in view of the characteristic that the relative volatility between components changes with pressure,the multi-objective optimization method based on nondominated sorting genetic algorithm II optimizes the pressure and the amount of solvent cooperatively to avoid falling into the optimal local solution.Based on the optimal process parameters,the proposed heat-integrated process can reduce the gas emissions by 29.30%.The heat-integrated ED,further coupled with the pervaporation process,can reduce gas emission by 42.36%and has the highest exergy efficiency of 47.56%.In addition,based on the heat-integrated process,the proposed two heat pump assisted heat-integrated ED processes show good economic and environmental performance.The double heat pump assisted heat-integrated ED can reduce the total annual cost by 28.78%and the gas emissions by 55.83%compared with the basis process,which has a good application prospect.This work provides a feasible approach for the separation of ternary azeotropes. 展开更多
关键词 Extractive distillation Optimization MIXTURES separation
下载PDF
Flotation separation of scheelite from calcite using luteolin as a novel depressant
6
作者 Xiaokang Li Ying Zhang +3 位作者 Haiyang He Yu Wu Danyu Wu Zhenhao Guan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期462-472,共11页
This paper proposes luteolin(LUT)as a novel depressant for the flotation-based separation of scheelite and calcite in a sodium oleate(NaOL)system.The suitability of LUT as a calcite depressant is confirmed through mic... This paper proposes luteolin(LUT)as a novel depressant for the flotation-based separation of scheelite and calcite in a sodium oleate(NaOL)system.The suitability of LUT as a calcite depressant is confirmed through micro-flotation testing.At pH=9,with LUT concentration of 50 mg·L^(-1) and NaOL concentration of 50 mg·L^(-1),scheelite recovery reaches 80.3%.Calcite,on the other hand,exhibits a recovery rate of 17.6%,indicating a significant difference in floatability between the two minerals.Subsequently,the surface modifica-tions of scheelite and calcite following LUT treatment are characterized using adsorption capacity testing,Zeta potential analysis,Fourier transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),and atomic force microscopy(AFM).The study in-vestigates the selective depressant mechanism of LUT on calcite.Adsorption capacity testing and Zeta potential analysis demonstrate sub-stantial absorption of LUT on the surface of calcite,impeding the further adsorption of sodium oleate,while its impact on scheelite is min-imal.FT-IR and XPS analyses reveal the selective adsorption of LUT onto the surface of calcite,forming strong chemisorption bonds between the hydroxyl group and calcium ions present.AFM directly illustrates the distinct adsorption densities of LUT on the two miner-al types.Consequently,LUT can effectively serve as a depressant for calcite,enabling the successful separation of scheelite and calcite. 展开更多
关键词 SCHEELITE CALCITE LUTEOLIN FLOTATION depressant separation
下载PDF
Comment on:Recurrence after spontaneous separation of epiretinal membrane in a young woman:a case report
7
作者 Yusuke Kameda Yutaka Kaneko +1 位作者 Karin Ishinabe Nichika Fukuoka 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第4期783-784,共2页
Dear Editor,Herein,we provide a commentary on the recently published article by Zeng QZ and Yu WZ[1].This case report provides interesting novel insights into the recurrence of epiretinal membrane(ERM)following self-s... Dear Editor,Herein,we provide a commentary on the recently published article by Zeng QZ and Yu WZ[1].This case report provides interesting novel insights into the recurrence of epiretinal membrane(ERM)following self-separation in a young patient.In addition to the study,we have been investigating spontaneous ERM release for many years and have recently published a related paper[2]. 展开更多
关键词 separation YOUNG RELEASE
原文传递
Recent advances in electrochemical performance of Mg-based electrochemical energy storage materials in supercapacitors:Enhancement and mechanism
8
作者 Yuntao Xiao Xinfang Zhang +2 位作者 Can Wang Jinsong Rao Yuxin Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期35-58,共24页
The application of Mg-based electrochemical energy storage materials in high performance supercapacitors is an essential step to promote the exploitation and utilization of magnesium resources in the field of energy s... The application of Mg-based electrochemical energy storage materials in high performance supercapacitors is an essential step to promote the exploitation and utilization of magnesium resources in the field of energy storage.Unfortunately,the inherent chemical properties of magnesium lead to poor cycling stability and electrochemical reactivity,which seriously limit the application of Mg-based materials in supercapacitors.Herein,in this review,more than 70 research papers published in recent 10 years were collected and analyzed.Some representative research works were selected,and the results of various regulative strategies to improve the electrochemical performance of Mg-based materials were discussed.The effects of various regulative strategies(such as constructing nanostructures,synthesizing composites,defect engineering,and binder-free synthesis,etc.)on the electrochemical performance and their mechanism are demonstrated using spinelstructured MgX_(2)O_(4) and layered structured Mg-X-LDHs as examples.In addition,the application of magnesium oxide and magnesium hydroxide in electrode materials,MXene's solid spacers and hard templates are introduced.Finally,the challenges and outlooks of Mg-based electrochemical energy storage materials in high performance supercapacitors are also discussed. 展开更多
关键词 SUPERCAPACITOR electrochemical energy storage Mg-based materials
下载PDF
Role of tannin pretreatment in flotation separation of magnesite and dolomite
9
作者 Xiufeng Gong Jin Yao +5 位作者 Jun Guo Bin Yang Haoran Sun Wanzhong Yin Yulian Wang Yafeng Fu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期452-461,共10页
Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulator... Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulators such as tannin,water glass,sodium carbon-ate,and sodium hexametaphosphate are more widely used in industry.However,they are rarely used as the main regulators in research because they perform poorly in magnesite and dolomite single-mineral flotation tests.Inspired by the limonite presedimentation method and the addition of a regulator to magnesite slurry mixing,we used a tannin pretreatment method for separating magnesite and dolomite.Microflotation experiments confirmed that the tannin pretreatment method selectively and largely reduces the flotation recovery rate of dolomite without affecting the flotation recovery rate of magnesite.Moreover,the contact angles of the tannin-pretreated magnesite and dolomite increased and decreased,respectively,in the presence of NaOl.Zeta potential and Fourier transform infrared analyses showed that the tannin pretreatment method efficiently hinders NaOl adsorption on the dolomite surface but does not affect NaOl adsorption on the magnesite surface.X-ray photoelectron spectroscopy and density functional theory calculations confirmed that tannin interacts more strongly with dolomite than with magnesite. 展开更多
关键词 tannin pretreatment selective inhibition flotation separation MAGNESITE DOLOMITE
下载PDF
Ferric ion-triggered surface oxidation of galena for efficient chalcopyrite-galena separation
10
作者 Qiancheng Zhang Limin Zhang +3 位作者 Feng Jiang Honghu Tang Li Wang Wei Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期261-267,共7页
The efficient separation of chalcopyrite(CuFeS2)and galena(PbS)is essential for optimal resource utilization.However,find-ing a selective depressant that is environmentally friendly and cost effective remains a challe... The efficient separation of chalcopyrite(CuFeS2)and galena(PbS)is essential for optimal resource utilization.However,find-ing a selective depressant that is environmentally friendly and cost effective remains a challenge.Through various techniques,such as mi-croflotation tests,Fourier transform infrared spectroscopy,scanning electron microscopy(SEM)observation,X-ray photoelectron spec-troscopy(XPS),and Raman spectroscopy measurements,this study explored the use of ferric ions(Fe^(3+))as a selective depressant for ga-lena.The results of flotation tests revealed the impressive selective inhibition capabilities of Fe^(3+)when used alone.Surface analysis showed that Fe^(3+)significantly reduced the adsorption of isopropyl ethyl thionocarbamate(IPETC)on the galena surface while having a minimal impact on chalcopyrite.Further analysis using SEM,XPS,and Raman spectra revealed that Fe^(3+)can oxidize lead sulfide to form compact lead sulfate nanoparticles on the galena surface,effectively depressing IPETC adsorption and increasing surface hydrophilicity.These findings provide a promising solution for the efficient and environmentally responsible separation of chalcopyrite and galena. 展开更多
关键词 GALENA CHALCOPYRITE ferric ions flotation separation surface oxidation
下载PDF
Implantable Electrochemical Microsensors for In Vivo Monitoring of Animal Physiological Information
11
作者 Jin Zhou Shenghan Zhou +4 位作者 Peidi Fan Xunjia Li Yibin Ying Jianfeng Ping Yuxiang Pan 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期183-211,共29页
In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases.Currently,... In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases.Currently,implantable electrochemical microsensors have emerged as a prominent area of research.These microsensors not only fulfill the technical requirements for monitoring animal physiological information but also offer an ideal platform for integration.They have been extensively studied for their ability to monitor animal physiological information in a minimally invasive manner,characterized by their bloodless,painless features,and exceptional performance.The development of implantable electrochemical microsensors for in vivo monitoring of animal physiological information has witnessed significant scientific and technological advancements through dedicated efforts.This review commenced with a comprehensive discussion of the construction of microsensors,including the materials utilized and the methods employed for fabrication.Following this,we proceeded to explore the various implantation technologies employed for electrochemical microsensors.In addition,a comprehensive overview was provided of the various applications of implantable electrochemical microsensors,specifically in the monitoring of diseases and the investigation of disease mechanisms.Lastly,a concise conclusion was conducted on the recent advancements and significant obstacles pertaining to the practical implementation of implantable electrochemical microsensors. 展开更多
关键词 electrochemical microsensors Implantable sensors In vivo monitoring Animal physiological information
下载PDF
Anti-abrasion collagen fiber-based membrane functionalized by UiO-66-NH_(2)with ultra-high efficiency and stability for oil-in-water emulsions separation
12
作者 Xiaoxia Ye Rixin Huang +3 位作者 Zhihong Zheng Juan Liu Jie Chen Yuancai Lv 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期285-297,共13页
Membrane separation strategies offer promising platform for the emulsion separation.However,the low mechanical strength of membrane separation layers and the trade-off between separation flux and efficiency present si... Membrane separation strategies offer promising platform for the emulsion separation.However,the low mechanical strength of membrane separation layers and the trade-off between separation flux and efficiency present significant challenges.In this study,we report a CFM@UiO-66-NH_(2)membrane with high separation flux,efficiency and stability,through utilizing a robust anti-abrasion collagen fiber membrane(CFM)as the multifunctional support and UiO-66-NH_(2)by an in-situ growth as the separation layer.The high mechanical strength of the CFM compensated for the weakness of the separation layer,while the charge-breaking effect of UiO-66-NH_(2),along with the size sieving of its constituent separating layers and the capillary effect of the collagen fibers,contributed to the potential for efficient separation.Additionally,the CFM@UiO-66-NH_(2)membrane exhibited superhydrophilic properties,making it suitable for separating oil-in-water microemulsions and nanoemulsions stabilized by anionic surfactants.The membrane demonstrated remarkable separation efficiencies of up to 99.960%and a separation flux of370.05 L·m^(-2)·h^(-1).Moreover,it exhibits stability,durability,and abrasion resistance,maintaining excellent separation performance even when exposed to strong acids and alkalis without any damage to its structure and performance.After six cycles of reuse,it achieved a separation flux of 417.97 L·m^(-2)·h^(-1)and a separation efficiency of 99.747%.Furthermore,after undergoing 500 cycles of strong abrasion,the separation flux remained at 124.39 L·m^(-2)·h^(-1),with a separation efficiency of 99.992%.These properties make it suitable for the long-term use in harsh operating environments.We attribute these properties to the electrostatic effect resulting from the amino group on UiO-66-NH_(2)and its in-situ growth on the CFM,which forms a size-screening separation layer.Our work highlights the potential of the CFM@UiO-66-NH_(2)membrane as an environmentally friendly size-screening material for the efficient emulsion wastewater separation. 展开更多
关键词 Collagen fibers Metal-organic frameworks Oil-in-water emulsion separation Size sieving
下载PDF
A review of understanding electrocatalytic reactions in energy conversion and energy storage systems via scanning electrochemical microscopy
13
作者 Jihye Park Jong Hwan Lim +4 位作者 Jin-Hyuk Kang Jiheon Lim Ho Won Jang Hosun Shin Sun Hwa Park 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期155-177,共23页
To address climate change and promote environmental sustainability,electrochemical energy conversion and storage systems emerge as promising alternative to fossil fuels,catering to the escalating demand for energy.Ach... To address climate change and promote environmental sustainability,electrochemical energy conversion and storage systems emerge as promising alternative to fossil fuels,catering to the escalating demand for energy.Achieving optimal energy efficiency and cost competitiveness in these systems requires the strategic design of electrocatalysts,coupled with a thorough comprehension of the underlying mechanisms and degradation behavior occurring during the electrocatalysis processes.Scanning electrochemical microscopy(SECM),an analytical technique for studying surface electrochemically,stands out as a powerful tool offering electrochemical insights.It possesses remarkable spatiotemporal resolution,enabling the visualization of the localized electrochemical activity and surface topography.This review compiles crucial research findings and recent breakthroughs in electrocatalytic processes utilizing the SECM methodology,specifically focusing on applications in electrolysis,fuel cells,and metal–oxygen batteries within the realm of energy conversion and storage systems.Commencing with an overview of each energy system,the review introduces the fundamental principles of SECM,and aiming to provide new perspectives and broadening the scope of applied research by describing the major research categories within SECM. 展开更多
关键词 Scanning electrochemical microscopy ELECTROCATALYST ELECTROCATALYSIS Water splitting Fuel cell Metal-oxygen battery
下载PDF
New process for treating boron-bearing iron ore by flash reduction coupled with magnetic separation
14
作者 Qipeng Bao Lei Guo +4 位作者 Hong Yong Sohn Haibin Zuo Feng Liu Yongliang Gao Zhancheng Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期473-484,共12页
Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.Th... Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.This study proposed a new treatment called flash reduction-melting separation(FRMS)for boron-bearing iron concentrates.In this method,the concentrates were first flash-reduced at the temperature under which the particles melt,and the slag and the reduced iron phases disengaged at the particle scale.Good reduc-tion and melting effects were achieved above 1550℃.The B_(2)O_(3) content in the separated slag was over 18wt%,and the B content in the iron was less than 0.03wt%.The proposed FRMS method was tested to investigate the effects of factors such as ore particle size and tem-perature on the reduction and melting steps with and without pre-reducing the raw concentrate.The mineral phase transformation and morphology evolution in the ore particles during FRMS were also comprehensively analyzed. 展开更多
关键词 LUDWIGITE boron-bearing iron concentrate flash reduction melting separation BORON
下载PDF
Boosting kinetic separation of ethylene and ethane on microporous materials via crystal size control
15
作者 Yixuan Ma Cong Yu +5 位作者 Lifeng Yang Rimin You Yawen Bo Qihan Gong Huabin Xing Xili Cui 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期85-91,共7页
The adsorptive separation of C_(2)H_(4)and C_(2)H_(6),as an alternative to distillation units consuming high energy,is a promising yet challenging research.The great similarity in the molecular size of C_(2)H_(4)and C... The adsorptive separation of C_(2)H_(4)and C_(2)H_(6),as an alternative to distillation units consuming high energy,is a promising yet challenging research.The great similarity in the molecular size of C_(2)H_(4)and C_(2)H_(6)brings challenges to the regulation of adsorbents to realize efficient dynamic separation.Herein,we reported the enhancement of the kinetic separation of C_(2)H_(4)/C_(2)H_(6)by controlling the crystal size of ZnAtzPO_(4)(Atz=3-amino-1,2,4-triazole)to amplify the diffusion difference of C_(2)H_(4)and C_(2)H_(6).Through adjusting the synthesis temperature,reactant concentration,and ligands/metal ions molar ratio,ZnAtzPO4 crystals with different sizes were obtained.Both single-component kinetic adsorption tests and binary-component dynamic breakthrough experiments confirmed the enhancement of the dynamic separation of C_(2)H_(4)/C_(2)H_(6)with the increase in the crystal size of ZnAtzPO_(4).The separation selectivity of C_(2)H_(4)/C_(2)H_(6)increased from 1.3 to 98.5 with the increase in the crystal size of ZnAtzPO_(4).This work demonstrated the role of morphology and size control of adsorbent crystals in the improvement of the C_(2)H_(4)/C_(2)H_(6)kinetic separation performance. 展开更多
关键词 ADSORPTION ADSORBENT ETHYLENE Binary mixture Crystal size control Kinetic separation
下载PDF
Single-atom catalysts for the electrochemical reduction of carbon dioxide into hydrocarbons and oxygenates
16
作者 Karl Adrian Gandionco Juwon Kim +2 位作者 Lieven Bekaert Annick Hubin Jongwoo Lim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期64-117,共54页
The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic ... The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels. 展开更多
关键词 ELECTROCATALYSIS electrochemical CO_(2)reduction hydrocarbons OXYGENATES single-atom catalysts
下载PDF
Aqueous electrochemical delithiation of cathode materials as a strategy to selectively recover lithium from waste lithium-ion batteries
17
作者 Pier Giorgio Schiavi Andrea Giacomo Marrani +4 位作者 Olga Russina Ludovica D’Annibale Francesco Amato Francesca Pagnanelli Pietro Altimari 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期144-153,I0004,共11页
Lithium recovery from end-of-life Li-ion batteries(LIBs)through pyro-and hydrometallurgical recycling processes involves several refining stages,with high consumption of reagents and energy.A competitive technological... Lithium recovery from end-of-life Li-ion batteries(LIBs)through pyro-and hydrometallurgical recycling processes involves several refining stages,with high consumption of reagents and energy.A competitive technological alternative is the electrochemical oxidation of the cathode materials,whereby lithium can be deintercalated and transferred to an electrolyte solution without the aid of chemical extracting compounds.This article investigates the potential to selectively recover Li from LIB cathode materials by direct electrochemical extraction in aqueous solutions.The process allowed to recovering up to 98%of Li from high-purity commercial cathode materials(LiMn_(2)O_(4),LiCoO_(2),and Li Ni_(1/3)Mn_(1/3)Co_(1/3)O_(2))with a faradaic efficiency of 98%and negligible co-extraction of Co,Ni,and Mn.The process was then applied to recover Li from the real waste LIBs black mass obtained by the physical treatment of electric vehicle battery packs.This black mass contained graphite,conductive carbon,and metal impurities from current collectors and steel cases,which significantly influenced the evolution and performances of Li electrochemical extraction.Particularly,due to concomitant oxidation of impurities,lithium extraction yields and faradaic efficiencies were lower than those obtained with high-purity cathode materials.Copper oxidation was found to occur within the voltage range investigated,but it could not quantitatively explain the reduced Li extraction performances.In fact,a detailed investigation revealed that above 1.3 V vs.Ag/Ag Cl,conductive carbon can be oxidized,contributing to the decreased Li extraction.Based on the reported experimental results,guidelines were provided that quantitatively enable the extraction of Li from the black mass,while preventing the simultaneous oxidation of impurities and,consequently,reducing the energy consumption of the proposed Li recovery method. 展开更多
关键词 Lithium recovery Lithium-ion batteries recycling electrochemical lithium extraction Lithium selective EXTRACTION
下载PDF
Vertical plane depth-resolved surface potential and carrier separation characteristics in flexible CZTSSe solar cells with over 12% efficiency
18
作者 Dae-Ho Son Ha Kyung Park +11 位作者 Dae-Hwan Kim Jin-Kyu Kang Shi-Joon Sung Dae-Kue Hwang Jaebaek Lee Dong-Hwan Jeon Yunae Cho William Jo Taeseon Lee JunHo Kim Sang-Hoon Nam Kee-Jeong Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期36-52,共17页
Cu2ZnSn(S,Se)4(CZTSSe)solar cells have resource distribution and economic advantages.The main cause of their low efficiency is carrier loss resulting from recombination of photo-generated electron and hole.To overcome... Cu2ZnSn(S,Se)4(CZTSSe)solar cells have resource distribution and economic advantages.The main cause of their low efficiency is carrier loss resulting from recombination of photo-generated electron and hole.To overcome this,it is important to understand their electron-hole behavior characteristics.To determine the carrier separation characteristics,we measured the surface potential and the local current in terms of the absorber depth.The elemental variation in the intragrains(IGs)and at the grain boundaries(GBs)caused a band edge shift and bandgap(Eg)change.At the absorber surface and subsurface,an upward Ec and Ev band bending structure was observed at the GBs,and the carrier separation was improved.At the absorber center,both upward Ec and Ev and downward Ec-upward Ev band bending structures were observed at the GBs,and the carrier separation was degraded.To improve the carrier separation and suppress carrier recombination,an upward Ec and Ev band bending structure at the GBs is desirable. 展开更多
关键词 carrier separation CZTSSe flexible solar cell local current surface potential
下载PDF
Ionic liquid derived electrocatalysts for electrochemical water splitting
19
作者 Tianhao Li Weihua Hu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期604-622,共19页
Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and ... Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction(HER and OER).Ionic liquids(ILs)or poly(ionic liquids)(PILs),containing heteroatoms,metal-based anions,and various structures,have been frequently involved as precursors to prepare electrocatalysts for water splitting.Moreover,ILs/PILs possess high conductivity,wide electrochemical windows,and high thermal and chemical stability,which can be directly applied in the electrocatalysis process with high durability.In this review,we focus on the studies of ILs/PILs-derived electrocatalysts for HER and OER,where ILs/PILs are applied as heteroatom dopants and metal precursors to prepare catalysts or are directly utilized as the electrocatalysts.Due to those attractive properties,IL/PIL-derived electrocatalysts exhibit excellent performance for electrochemical water splitting.All these accomplishments and developments are systematically summarized and thoughtfully discussed.Then,the overall perspectives for the current challenges and future developments of ILs/PILs-derived electrocatalysts are provided. 展开更多
关键词 Ionic liquid electrochemical water splitting Hydrogen evolution reaction Oxygen evolution reaction
下载PDF
Research on Preparation and Electrochemical Performance of the High Compacted Density Ni-Co-Mn Ternary Cathode Materials
20
作者 Fupeng Zhi Juanhui Wang +1 位作者 Xiaomin Zhang Jun Zhang 《Advances in Materials Physics and Chemistry》 CAS 2024年第3期47-53,共7页
The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn... The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance. 展开更多
关键词 High Compacted Density Ternary Cathode Materials electrochemical Performance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部