Stereolithographic(STL)files have been extensively used in rapid prototyping industries as well as many other fields as watermarking algorithms to secure intellectual property and protect three-dimensional models from...Stereolithographic(STL)files have been extensively used in rapid prototyping industries as well as many other fields as watermarking algorithms to secure intellectual property and protect three-dimensional models from theft.However,to the best of our knowledge,few studies have looked at how watermarking can resist attacks that involve vertex-reordering.Here,we present a lossless and robust watermarking scheme for STL files to protect against vertexreordering attacks.Specifically,we designed a novel error-correcting code(ECC)that can correct the error of any one-bit in a bitstream by inserting several check digits.In addition,ECC is designed to make use of redundant information according to the characteristics of STL files,which introduces further robustness for defense against attacks.No modifications are made to the geometric information of the three-dimensional model,which respects the requirements of a highprecision model.The experimental results show that the proposed watermarking scheme can survive numerous kinds of attack,including rotation,scaling and translation(RST),facet reordering,and vertex-reordering attacks.展开更多
This paper proved the statement that a good linear block encoder is in fact a good local-random sequence generator. Furthermore, this statement discovers the deep relationship between the error-correcting coding theor...This paper proved the statement that a good linear block encoder is in fact a good local-random sequence generator. Furthermore, this statement discovers the deep relationship between the error-correcting coding theory and the modern cryptography.展开更多
Quantum secret sharing(QSS) is a procedure of sharing classical information or quantum information by using quantum states. This paper presents how to use a [2k- 1, 1, k] quantum error-correcting code (QECC) to im...Quantum secret sharing(QSS) is a procedure of sharing classical information or quantum information by using quantum states. This paper presents how to use a [2k- 1, 1, k] quantum error-correcting code (QECC) to implement a quantum (k, 2k-1) threshold scheme. It also takes advantage of classical enhancement of the [2k-1, 1, k] QECC to establish a QSS scheme which can share classical information and quantum information simultaneously. Because information is encoded into QECC, these schemes can prevent intercept-resend attacks and be implemented on some noisy channels.展开更多
This paper demonstrates how channel coding can improve the robustness of spatial image watermarks against signal distortion caused by lossy data compression such as the JPEG scheme by taking advantage of the propertie...This paper demonstrates how channel coding can improve the robustness of spatial image watermarks against signal distortion caused by lossy data compression such as the JPEG scheme by taking advantage of the properties of Gray code. Two error-correction coding (ECC) schemes are used here: One scheme, referred to as the vertical ECC (VECC), is to encode information bits in a pixel by error-correction coding where the Gray code is used to improve the performance. The other scheme, referred to as the horizontal ECC (HECC), is to encode information bits in an image plane. In watermarking, HECC generates a codeword representing watermark bits, and each bit of the codeword is encoded by VECC. Simple single-error-correcting block codes are used in VECC and HECC. Several experiments of these schemes were conducted on test images. The result demonstrates that the error-correcting performance of HECC just depends on that of VECC, and accordingly, HECC enhances the capability of VECC. Consequently, HECC with appropriate codes can achieve stronger robustness to JPEG—caused distortions than non-channel-coding watermarking schemes.展开更多
In this paper, error-correction coding (ECC) in Gray codes is considered and its performance in the protecting of spatial image watermarks against lossy data compression is demonstrated. For this purpose, the differen...In this paper, error-correction coding (ECC) in Gray codes is considered and its performance in the protecting of spatial image watermarks against lossy data compression is demonstrated. For this purpose, the differences between bit patterns of two Gray codewords are analyzed in detail. On the basis of the properties, a method for encoding watermark bits in the Gray codewords that represent signal levels by a single-error-correcting (SEC) code is developed, which is referred to as the Gray-ECC method in this paper. The two codewords of the SEC code corresponding to respective watermark bits are determined so as to minimize the expected amount of distortion caused by the watermark embedding. The stochastic analyses show that an error-correcting capacity of the Gray-ECC method is superior to that of the ECC in natural binary codes for changes in signal codewords. Experiments of the Gray-ECC method were conducted on 8-bit monochrome images to evaluate both the features of watermarked images and the performance of robustness for image distortion resulting from the JPEG DCT-baseline coding scheme. The results demonstrate that, compared with a conventional averaging-based method, the Gray-ECC method yields watermarked images with less amount of signal distortion and also makes the watermark comparably robust for lossy data compression.展开更多
This paper proposes a modification of the soft output Viterbi decoding algorithm (SOVA) which combines convolution code with Huffman coding. The idea is to extract the bit probability information from the Huffman codi...This paper proposes a modification of the soft output Viterbi decoding algorithm (SOVA) which combines convolution code with Huffman coding. The idea is to extract the bit probability information from the Huffman coding and use it to compute the a priori source information which can be used when the channel environment is bad. The suggested scheme does not require changes on the transmitter side. Compared with separate decoding systems, the gain in signal to noise ratio is about 0 5-1.0 dB with a limi...展开更多
Exploiting the encoding process of the stabilizer quantum code [[n, k, d]], a deterministic quantum communication scheme, in which n - 1 photons are distributed forward and backward in two-way channel, is proposed to ...Exploiting the encoding process of the stabilizer quantum code [[n, k, d]], a deterministic quantum communication scheme, in which n - 1 photons are distributed forward and backward in two-way channel, is proposed to transmit the secret messages with unconditional security. The present scheme can be implemented to distribute the secret quantum (or classical) messages with great capacity in imperfect quantum channel since the utilized code encodes k-qubit messages for each scheme run.展开更多
It is a regular way of constructing quantum error-correcting codes via codes with self-orthogonal property, and whether a classical Bose-Chaudhuri-Hocquenghem (BCH) code is self-orthogonal can be determined by its des...It is a regular way of constructing quantum error-correcting codes via codes with self-orthogonal property, and whether a classical Bose-Chaudhuri-Hocquenghem (BCH) code is self-orthogonal can be determined by its designed distance. In this paper, we give the sufficient and necessary condition for arbitrary classical BCH codes with self-orthogonal property through algorithms. We also give a better upper bound of the designed distance of a classical narrow-sense BCH code which contains its Euclidean dual. Besides these, we also give one algorithm to compute the dimension of these codes. The complexity of all algorithms is analyzed. Then the results can be applied to construct a series of quantum BCH codes via the famous CSS constructions.展开更多
We developed a novel absolute multi-pole encoder structure to improve the resolution of the multi-pole encoder, realize absolute output and reduce the manufacturing cost of the encoder. The structure includes two ring...We developed a novel absolute multi-pole encoder structure to improve the resolution of the multi-pole encoder, realize absolute output and reduce the manufacturing cost of the encoder. The structure includes two ring alnicos defined as index track and sub-division track, respectively. The index track is magnetized based on the improved gray code, with linear halls placed around the track evenly. The outputs of linear halls show the region the rotor belongs to. The sub-division track is magnetized to N-S-N-S (north-south-north-south), and the number of N-S pole pairs is determined by the index track. Three linear hall sensors with an air-gap of 2 mm are used to translate the magnetic filed to voltage signals. The relative offset in a single N-S is obtained through look-up. The magnetic encoder is calibrated using a higher-resolution incremental optical encoder. The pulse output from the optical encoder and hall signals from the magnetic encoder are sampled at the same time and transmitted to a computer, and the relation between them is calculated, and stored in the FLASH of MCU (micro controller unit) for look-up. In the working state, the absolute angle is derived by looking-up with hall signals. The structure is simple and the manufacturing cost is very low and suitable for mass production.展开更多
Digital Communications, in relation to wireless networks, have taken off in recent years due to the expanding need to communicate faster and more efficiently. A popular way to achieve this is by using wireless Multipl...Digital Communications, in relation to wireless networks, have taken off in recent years due to the expanding need to communicate faster and more efficiently. A popular way to achieve this is by using wireless Multiple Input Multiple Output (MIMO) communication systems. MIMO systems utilize Space Time Block Codes (STBC) as one of the leading ways to obtain higher data rates with limited bandwidth and power. With several STBC methods currently available, this paper analyzes simulations using Orthogonal Space Time Block Codes (OSTBC) in Rayleigh fading channels to evaluate the performance of MIMO systems. The selection to use a Rayleigh fading channel as a model for a non-line-of-sight (nLOS) environment is selected to mimic installations where a large number of signal paths and reflections are expected. All simulations are coded, generated and plotted using MATLAB resulting in graphical data representing the bit-error rate (BER) to signal-to-noise ratio (Eb/N<sub>0</sub>) or SNR. Each simulation captures how different configurations of key variables including code rate, diversity and antenna count can impact system performance. Four modulation schemes (BPSK, QPSK, 16-QAM and 64-QAM) are included in each simulation. Conclusive evidence based upon these simulations suggests higher diversity gains were achieved with a greater number of antennas. The most significant factor for increasing system performance was using a lower count of transmit antennas with a higher count of receive antennas.展开更多
A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population...A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population size compared with the standard particle swarm optimization that uses a larger population size.This new method is guided by an elite archive to finish the multi-objective optimization.The orthogonal polyphase coded signal(OPCS) can fundamentally improve the multiple input multiple output(MIMO) radar system performance,with which the radar system has high resolution and abundant signal channels.Simulation results on the polyphase coded signal design show that the MO-MicPSO can perform quite well for this high-dimensional multi-objective optimized problem.Compared with particle swarm optimization or genetic algorithm,the proposed MO-MicPSO has a better optimized efficiency and less time consumption.展开更多
A definition of a self-dual code on graph and a procedure based on factor graphs to judge a self-dual code were presented. Three contributions of this paper were described as follows. To begin with, transform T_ R→L ...A definition of a self-dual code on graph and a procedure based on factor graphs to judge a self-dual code were presented. Three contributions of this paper were described as follows. To begin with, transform T_ R→L were defined, which was the basis of self-dual codes defined on graphs and played a key role in the paper. The second were that a self-dual code could be defined on factor graph, which was much different from conventional algebraic method. The third was that a factor graph approach to judge a self-dual code was illustrated, which took advantage of duality properties of factor graphs and our proposed transform T_ R→L to offer a convenient and geometrically intuitive process to judge a self-dual code.展开更多
When the time variable in quantum signal processing is discrete, the Fourier transform exists on the vector space of n-tuples over the Galois field F2, which plays an important role in the investigation of quantum sig...When the time variable in quantum signal processing is discrete, the Fourier transform exists on the vector space of n-tuples over the Galois field F2, which plays an important role in the investigation of quantum signals. By using Fourier transforms, the idea of quantum coding theory can be described in a setting that is much different from that seen that far. Quantum BCH codes can be defined as codes whose quantum states have certain specified consecutive spectral components equal to zero and the error-correcting ability is also described by the number of the consecutive zeros. Moreover, the decoding of quantum codes can be described spectrally with more efficiency.展开更多
基金This work was supported in part by the National Science Foundation of China(No.61772539,6187212,61972405),STITSX(No.201705D131025),1331KITSX,and CiCi3D.
文摘Stereolithographic(STL)files have been extensively used in rapid prototyping industries as well as many other fields as watermarking algorithms to secure intellectual property and protect three-dimensional models from theft.However,to the best of our knowledge,few studies have looked at how watermarking can resist attacks that involve vertex-reordering.Here,we present a lossless and robust watermarking scheme for STL files to protect against vertexreordering attacks.Specifically,we designed a novel error-correcting code(ECC)that can correct the error of any one-bit in a bitstream by inserting several check digits.In addition,ECC is designed to make use of redundant information according to the characteristics of STL files,which introduces further robustness for defense against attacks.No modifications are made to the geometric information of the three-dimensional model,which respects the requirements of a highprecision model.The experimental results show that the proposed watermarking scheme can survive numerous kinds of attack,including rotation,scaling and translation(RST),facet reordering,and vertex-reordering attacks.
基金Supported by Trans-century Training Program Foundation for the Talents by the State Education Commission
文摘This paper proved the statement that a good linear block encoder is in fact a good local-random sequence generator. Furthermore, this statement discovers the deep relationship between the error-correcting coding theory and the modern cryptography.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61072071)
文摘Quantum secret sharing(QSS) is a procedure of sharing classical information or quantum information by using quantum states. This paper presents how to use a [2k- 1, 1, k] quantum error-correcting code (QECC) to implement a quantum (k, 2k-1) threshold scheme. It also takes advantage of classical enhancement of the [2k-1, 1, k] QECC to establish a QSS scheme which can share classical information and quantum information simultaneously. Because information is encoded into QECC, these schemes can prevent intercept-resend attacks and be implemented on some noisy channels.
文摘This paper demonstrates how channel coding can improve the robustness of spatial image watermarks against signal distortion caused by lossy data compression such as the JPEG scheme by taking advantage of the properties of Gray code. Two error-correction coding (ECC) schemes are used here: One scheme, referred to as the vertical ECC (VECC), is to encode information bits in a pixel by error-correction coding where the Gray code is used to improve the performance. The other scheme, referred to as the horizontal ECC (HECC), is to encode information bits in an image plane. In watermarking, HECC generates a codeword representing watermark bits, and each bit of the codeword is encoded by VECC. Simple single-error-correcting block codes are used in VECC and HECC. Several experiments of these schemes were conducted on test images. The result demonstrates that the error-correcting performance of HECC just depends on that of VECC, and accordingly, HECC enhances the capability of VECC. Consequently, HECC with appropriate codes can achieve stronger robustness to JPEG—caused distortions than non-channel-coding watermarking schemes.
文摘In this paper, error-correction coding (ECC) in Gray codes is considered and its performance in the protecting of spatial image watermarks against lossy data compression is demonstrated. For this purpose, the differences between bit patterns of two Gray codewords are analyzed in detail. On the basis of the properties, a method for encoding watermark bits in the Gray codewords that represent signal levels by a single-error-correcting (SEC) code is developed, which is referred to as the Gray-ECC method in this paper. The two codewords of the SEC code corresponding to respective watermark bits are determined so as to minimize the expected amount of distortion caused by the watermark embedding. The stochastic analyses show that an error-correcting capacity of the Gray-ECC method is superior to that of the ECC in natural binary codes for changes in signal codewords. Experiments of the Gray-ECC method were conducted on 8-bit monochrome images to evaluate both the features of watermarked images and the performance of robustness for image distortion resulting from the JPEG DCT-baseline coding scheme. The results demonstrate that, compared with a conventional averaging-based method, the Gray-ECC method yields watermarked images with less amount of signal distortion and also makes the watermark comparably robust for lossy data compression.
文摘This paper proposes a modification of the soft output Viterbi decoding algorithm (SOVA) which combines convolution code with Huffman coding. The idea is to extract the bit probability information from the Huffman coding and use it to compute the a priori source information which can be used when the channel environment is bad. The suggested scheme does not require changes on the transmitter side. Compared with separate decoding systems, the gain in signal to noise ratio is about 0 5-1.0 dB with a limi...
基金The project supported by National Natural Science Foundation of China under Grant Nos.60472018 and 60573127partly supported by the Postdoctoral Science Foundation of Central South University
文摘Exploiting the encoding process of the stabilizer quantum code [[n, k, d]], a deterministic quantum communication scheme, in which n - 1 photons are distributed forward and backward in two-way channel, is proposed to transmit the secret messages with unconditional security. The present scheme can be implemented to distribute the secret quantum (or classical) messages with great capacity in imperfect quantum channel since the utilized code encodes k-qubit messages for each scheme run.
基金Supported by the National Natural Science Foundation of China (No.60403004)the Outstanding Youth Foundation of China (No.0612000500)
文摘It is a regular way of constructing quantum error-correcting codes via codes with self-orthogonal property, and whether a classical Bose-Chaudhuri-Hocquenghem (BCH) code is self-orthogonal can be determined by its designed distance. In this paper, we give the sufficient and necessary condition for arbitrary classical BCH codes with self-orthogonal property through algorithms. We also give a better upper bound of the designed distance of a classical narrow-sense BCH code which contains its Euclidean dual. Besides these, we also give one algorithm to compute the dimension of these codes. The complexity of all algorithms is analyzed. Then the results can be applied to construct a series of quantum BCH codes via the famous CSS constructions.
基金Funded partly by Heilongjiang Province Financial Fund for Researchers Returning from Abroad
文摘We developed a novel absolute multi-pole encoder structure to improve the resolution of the multi-pole encoder, realize absolute output and reduce the manufacturing cost of the encoder. The structure includes two ring alnicos defined as index track and sub-division track, respectively. The index track is magnetized based on the improved gray code, with linear halls placed around the track evenly. The outputs of linear halls show the region the rotor belongs to. The sub-division track is magnetized to N-S-N-S (north-south-north-south), and the number of N-S pole pairs is determined by the index track. Three linear hall sensors with an air-gap of 2 mm are used to translate the magnetic filed to voltage signals. The relative offset in a single N-S is obtained through look-up. The magnetic encoder is calibrated using a higher-resolution incremental optical encoder. The pulse output from the optical encoder and hall signals from the magnetic encoder are sampled at the same time and transmitted to a computer, and the relation between them is calculated, and stored in the FLASH of MCU (micro controller unit) for look-up. In the working state, the absolute angle is derived by looking-up with hall signals. The structure is simple and the manufacturing cost is very low and suitable for mass production.
文摘Digital Communications, in relation to wireless networks, have taken off in recent years due to the expanding need to communicate faster and more efficiently. A popular way to achieve this is by using wireless Multiple Input Multiple Output (MIMO) communication systems. MIMO systems utilize Space Time Block Codes (STBC) as one of the leading ways to obtain higher data rates with limited bandwidth and power. With several STBC methods currently available, this paper analyzes simulations using Orthogonal Space Time Block Codes (OSTBC) in Rayleigh fading channels to evaluate the performance of MIMO systems. The selection to use a Rayleigh fading channel as a model for a non-line-of-sight (nLOS) environment is selected to mimic installations where a large number of signal paths and reflections are expected. All simulations are coded, generated and plotted using MATLAB resulting in graphical data representing the bit-error rate (BER) to signal-to-noise ratio (Eb/N<sub>0</sub>) or SNR. Each simulation captures how different configurations of key variables including code rate, diversity and antenna count can impact system performance. Four modulation schemes (BPSK, QPSK, 16-QAM and 64-QAM) are included in each simulation. Conclusive evidence based upon these simulations suggests higher diversity gains were achieved with a greater number of antennas. The most significant factor for increasing system performance was using a lower count of transmit antennas with a higher count of receive antennas.
基金supported by the National Natural Science Foundation of China (60601016)
文摘A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population size compared with the standard particle swarm optimization that uses a larger population size.This new method is guided by an elite archive to finish the multi-objective optimization.The orthogonal polyphase coded signal(OPCS) can fundamentally improve the multiple input multiple output(MIMO) radar system performance,with which the radar system has high resolution and abundant signal channels.Simulation results on the polyphase coded signal design show that the MO-MicPSO can perform quite well for this high-dimensional multi-objective optimized problem.Compared with particle swarm optimization or genetic algorithm,the proposed MO-MicPSO has a better optimized efficiency and less time consumption.
基金The National Natural Science Foundation of China (No60472018)
文摘A definition of a self-dual code on graph and a procedure based on factor graphs to judge a self-dual code were presented. Three contributions of this paper were described as follows. To begin with, transform T_ R→L were defined, which was the basis of self-dual codes defined on graphs and played a key role in the paper. The second were that a self-dual code could be defined on factor graph, which was much different from conventional algebraic method. The third was that a factor graph approach to judge a self-dual code was illustrated, which took advantage of duality properties of factor graphs and our proposed transform T_ R→L to offer a convenient and geometrically intuitive process to judge a self-dual code.
基金The project supported by National Natural Science Foundation of China under Grant No. 60472018, and the Foundation of National Laboratory for Modern Communications
文摘When the time variable in quantum signal processing is discrete, the Fourier transform exists on the vector space of n-tuples over the Galois field F2, which plays an important role in the investigation of quantum signals. By using Fourier transforms, the idea of quantum coding theory can be described in a setting that is much different from that seen that far. Quantum BCH codes can be defined as codes whose quantum states have certain specified consecutive spectral components equal to zero and the error-correcting ability is also described by the number of the consecutive zeros. Moreover, the decoding of quantum codes can be described spectrally with more efficiency.