Studies on the spatial variability of the soil cation exchange capacity (CEC) were made to provide a theoretical basis for an ecological tea plantation and management of soil fertilizer in the tea plantation. Geosta...Studies on the spatial variability of the soil cation exchange capacity (CEC) were made to provide a theoretical basis for an ecological tea plantation and management of soil fertilizer in the tea plantation. Geostatistics were used to analyze the spatial variability of soil CEC in the tea plantation site on Mengding Mountain in Sichuan Province of China on two sampling scales. It was found that, (1) on the small scale, the soil CEC was intensively spatially correlative, the rate of nugget to sill was 18.84% and the spatially dependent range was 1 818 m, and structural factors were the main factors that affected the spatial variability of the soil CEC; (2) on the microscale, the soil CEC was also consumingly spatially dependent, and the rate of nugget to sill was 16.52%, the spatially dependent range was 311 m, and the main factors affecting the spatial variability were just the same as mentioned earlier. On the small scale, soil CEC had a stronger anisotropic structure on the slope aspect, and a weaker one on the lateral side. According to the ordinary Kriging method, the equivalence of soil CEC distributed along the lateral aspect of the slope from northeast to southwest, and the soil CEC reduced as the elevation went down. On the microscale, the anisotropic structure was different from that measured on the small scale. It had a stronger anisotropic structure on the aspect that was near the aspect of the slope, and a weaker one near the lateral aspect of the slope. The soil CEC distributed along the lateral aspect of the slope and some distributed in the form of plots. From the top to the bottom of the slope, the soil CEC increased initially, and then reduced, and finally increased.展开更多
As soil cation exchange capacity (CEC) is a vital indicator of soil quality and pollutant sequestration capacity,a study was conducted to evaluate cokriging of CEC with the principal components derived from soil phy...As soil cation exchange capacity (CEC) is a vital indicator of soil quality and pollutant sequestration capacity,a study was conducted to evaluate cokriging of CEC with the principal components derived from soil physico-chemical properties.In Qingdao,China,107 soil samples were collected.Soil CEC was estimated by using 86 soil samples for prediction and 21 soil samples for test.The first two principal components (PC1 and PC2) together explained 60.2% of the total variance of soil physico-chemical properties.The PC1 was highly correlated with CEC (r=0.76,P0.01),whereas there was no significant correlation between CEC and PC2 (r=0.03).The PC1 was then used as an auxiliary variable for the prediction of soil CEC.Mean error (ME) and root mean square error (RMSE) of kriging for the test dataset were-1.76 and 3.67 cmolc kg-1,and ME and RMSE of cokriging for the test dataset were-1.47 and 2.95 cmolc kg-1,respectively.The cross-validation R2 for the prediction dataset was 0.24 for kriging and 0.39 for cokriging.The results show that cokriging with PC1 is more reliable than kriging for spatial interpolation.In addition,principal components have the highest potential for cokriging predictions when the principal components have good correlations with the primary variables.展开更多
More than 500 datasets from the literature have been used to evaluate the relationships of specific surface area (SSA),cation exchange capacity (CEC) and activity versus the liquid limit (LL).The correlations gave R^2...More than 500 datasets from the literature have been used to evaluate the relationships of specific surface area (SSA),cation exchange capacity (CEC) and activity versus the liquid limit (LL).The correlations gave R^2 values ranging between 0.71 and 0.92.Independent data were also used to validate the correlations.Estimated SSA values slightly overestimate the measured SSA up to 100 m^2/g.Regarding the estimated CEC values,they overestimated the measured CEC values up to 20 meq/(100 g).A probabilistic approach was performed for the correlations of SSA,CEC and activity versus LL.The analysis shows that the relations of SSA,CEC and activity with LL are robust.Using the LL values,it is possible to assess other basic engineering properties of clays.展开更多
Current researches on the nutritive characteristics of fibrous feedstuff through determining the feedstuff cation exchange capacity (CEC) to evaluate its nutritive value at home and abroad were comprehensively discrib...Current researches on the nutritive characteristics of fibrous feedstuff through determining the feedstuff cation exchange capacity (CEC) to evaluate its nutritive value at home and abroad were comprehensively discribed. and the methods of determining CEC value and the correlation between CEC value and chemical compositions, pH value, and the effect of CEC value on the digestion kinetics in ruminants were also emphatically introduced. The results of research showed that the CEC values of different feedstuff are different, closely correlated with nitrogen and acid detergent fibre (ADF) and lignin (LIG) content of the feedstuff. At the same time, there are markedly effect of CEC value in diet on the nutrients flow of digesta in the digestive tract of ruminants, the degradation rate and digestibility of nutrients in the rumen.展开更多
As a pioneer leguminous shrub species for vegetation re-establishment, Caragana microphylla is widely distributed in the semi-fixed and fixed sandy lands of the Horqin region, North China. C. microphylla planta- tions...As a pioneer leguminous shrub species for vegetation re-establishment, Caragana microphylla is widely distributed in the semi-fixed and fixed sandy lands of the Horqin region, North China. C. microphylla planta- tions modify organic carbon (SOC), nitrogen (N) and phosphorus dynamics, bulk density and water-holding capacity and biological activities in soils, but little is known with regard to soil exchange properties. Variation in soil ex- changeable base cations was examined under C. microphylla plantations with an age sequence of 0, 5, 10, and 22 years in the Horqin Sandy Land, and at the depth of 0-10, 10-20, and 20-30 cm, respectively. C. microphylla has been planted on the non-vegetated sand dunes with similar physical-chemical soil properties. The results showed that exchangeable calcium (Ca), magnesium (Mg), and potassium (K), and cation exchange capacity (CEC) were significantly increased, and Ca saturation tended to decrease, while Mg and K saturations were increased with the plantation years. No difference was observed for exchangeable sodium (Na) neither with plantation years nor at soil depths. Of all the base cations and soil layers, exchangeable K at the depth of 0-10 cm accumulated most quickly, and it increased by 1.76, 3.16, and 4.25 times, respectively after C. microphylla was planted for 5, 10, and 22 years. Exchangeable Ca, Mg, and K, and CEC were significantly (P〈0.001) and positively correlated with SOC, total N, pH and electrical conductivity (EC). Soil pH and SOC are regarded as the main factors influencing the variation in ex- changeable cations, and the preferential absorption of cations by plants and different leaching rates of base cations that modify cation saturations under C. microphylla plantation. It is concluded that as a nitrogen-fixation species, C. microphylla plantation is beneficial to increasing exchangeable base cations and CEC in soils, and therefore can improve soil fertility and create favorable microenvironments for plants and creatures in the semi-arid sandy land ecosystems.展开更多
This study is to determine the activities and correlations in the fundamental properties of the termite mounds soils Cubitermes spp and Macrotermes sp. The Intrinsic properties depend on the mineralogy, organic compos...This study is to determine the activities and correlations in the fundamental properties of the termite mounds soils Cubitermes spp and Macrotermes sp. The Intrinsic properties depend on the mineralogy, organic composition and texture of soil. Grain size, Atterberg limits and soil blue values are geotechnical properties that were used to characterize the two soils. On the basis of the geotechnical properties, specific surface area, cation exchange capacity, relative activity, surface activity and soil activity were determined. The correlations obtained in the intrinsic soil properties are linear and polynomial fits. Indeed, the relationship between the plasticity index and the blue value of a soil on the one hand and between the specific surface area and the cation exchange capacity on the other hand, is a linear fit for all soils in general. The relationship between plasticity index and specific surface area is a linear fit for the soils (C, M). Correlations in intrinsic soil properties that have a coefficient of determination close to 1 can be used in geotechnical engineering to predict one of the two desired parameters.展开更多
The mineralogical and engineering characteristics of Cretaceous and Tertiary shales in the lower Benue Trough were determined with a view to establishing how they affect civil engineering construction, with emphasis o...The mineralogical and engineering characteristics of Cretaceous and Tertiary shales in the lower Benue Trough were determined with a view to establishing how they affect civil engineering construction, with emphasis on road pavements in the area. Shale samples from the geologic formations of Imo, Enugu and Awgu shales were subjected to the following laboratory tests: clay mineral content, organic matter content, Cation Exchange Capacity and Plasticity according to methods specified by the British Standard Institute. The shales were classified based on Plasticity Index, liquid limit and Cation Exchange Capacity. The class of shales ranged from non-plastic to extremely plastic and low to high reactivity. The moisture content and plasticity values are related to the degree of weathering. The higher the weathering grade, the higher the moisture content and plasticity values. The organic matter content of the shales is generally low (0.2% to 1 !.2%) and influences the durability of the shales in an inverse manner. The clay mineral composition from x-ray diffraction consists of lllite-montmorillonite mixed layers, illite, and kaolinite. The iUite-montmorillonite mixed layer clays are most prominent in road sections with most severe pavement failures. In contrast, sections with kaolinite as the dominant clay mineral experienced less severe and limited pavement failure. The contrasting engineering behaviour of these clay minerals is due to their structures. The study showed that the presence of clay minerals derived from underlying shales is a major contributory factor to the behaviour and performance of roads built over shale subgrades, that any effective remediation work must take cognizance of the amount and type of clay minerals present.展开更多
This work evaluated the complexation capacity, exchange constants and availability of micronutrients for plants and humic substances extracted from peat samples. Samples of humic substances extracted from two tropical...This work evaluated the complexation capacity, exchange constants and availability of micronutrients for plants and humic substances extracted from peat samples. Samples of humic substances extracted from two tropical peats (HS-P1 and HS-P2) were enriched with the micronutrients Cu(II), Co(II), Fe(II), Mn(II), Ni(II) and Zn(II) and the parameters for formation of the complexes (HS-N) were evaluated at different pH. The Scatchard model was used to calculate the maximum complexation capacity and the nutrient availability was studied using exchange capacity experiments based on ultrafiltration procedure. The optimum pH for complexation was 4.5 and the order of affinity was: Fe(II) 〉 Cu(II) 〉 Co(II) 〉 Mn(II) = Ni(II) 〉 Zn(II). The maximum complexation capacity reached 56.8 mg·g-1 Fe of HS-P1 (the highest) and 1.7 mg.g1 Zn of HS-P2 (the slightest). The exchange experiments showed that HS-P-Fe complexes were formed preferentially. The least stable complex was formed with Zn, which was therefore, more easily available. The results contribute to understand the behavior and availability of some nutrients in soils.展开更多
Ginger (<i><span>Zingiber officinale</span></i><span>) is an important spice and medicinal plant used in different parts of the world. The objective of current study was to determine the ...Ginger (<i><span>Zingiber officinale</span></i><span>) is an important spice and medicinal plant used in different parts of the world. The objective of current study was to determine the level of essential and non-essential metals in ginger and its correlation with concentration of metals in the supporting soil. The level of K, Na, Ca, Mg, Mn, Fe, Zn, Cu, Co, Cd and Pb in soil and ginger cultivated in the selected districts of Wolaita zone, Southern Ethiopia were determined using flame atomic absorption spectrometry. A 0.5 g ginger sample was digested using a mixture of 4 ml HNO</span><sub><span style="vertical-align:sub;">3</span></sub><span> and 1.5 ml HClO</span><sub><span style="vertical-align:sub;">4</span></sub><span> at 210°</span><span>C</span><span> for 150 min</span><span>utes, and a 0.5 g soil sample was digested employing a mixture of 6 ml aqua-regia and 1 ml H</span><sub><span style="vertical-align:sub;">2</span></sub><span>O</span><sub><span style="vertical-align:sub;">2</span></sub><span> at 280°</span><span>C</span><span> for 150 minutes. The metal</span><span> concentrations range in dry weight basis for ginger samples is decreasing in the order: K (1691 </span><span>-</span><span> 3487 mg/kg) > Mg (701 </span><span>-</span><span> 1583 mg/kg) > Ca (862 </span><span>-</span><span> 1476 mg/kg) > Na (398 </span><span>-</span><span> 776 mg/kg) > Mn (325 </span><span>-</span><span> 672 mg/kg) > Fe (6.14 </span><span>-</span><span> 11.92 mg/kg) > Zn (5.30 </span><span>-</span><span> 10.09 mg/kg) > (0.12 </span><span>-</span><span> 0.23 mg/kg) for Pb. The concentration of Cd, Cu and Co in ginger samples were below the limit of detection. The results revealed that ginger has the ability to accumulate relatively higher amounts of K and Mg among the determined essential metals. The soil samples have been found to be acidic pH, sandy clay loam in texture, a very low electrical conductivity and moderate level of (CEC, organic carbon, available phosphorus and total nitrogen). Although, a positive correlation between the levels of K, Mg, Zn, Mn in ginger and soil samples were observed. All the non-essential metals analyzed in this study were below the permissible ranges set by FAO/WHO.</span>展开更多
The activity is related to the mineralogy and geological history of clays. Soils with the same value of the liquidity limit or plasticity index can have very different characteristics depending on the amount and type ...The activity is related to the mineralogy and geological history of clays. Soils with the same value of the liquidity limit or plasticity index can have very different characteristics depending on the amount and type of clay minerals. The methylene blue value characterizes the activity of the clays and reflects the surface activity. Ten inactive soils contain minerals (kaolinite, illite), these soils absorb little water. Two swelling soils have normal activity and are composed of minerals (kaolinite, illite, Montmorillonite). The relationships between clayey soils properties, their activities and between the activity and the liquidity limit are defined. The correlations obtained are linear fit and exponential and sigmoidal fits. The correlations obtained with a coefficient of determination of R<sup>2</sup> (0.859 - 0.999) can be used to characterize and predict certain parameters of fine-grained soils as a function of clay content.展开更多
In air-cooled condenser, high temperature condensing water m summer which approaching and exceed 60* C, which may result in filter materials degradation and release impurities. This paper discusses an influencing fac...In air-cooled condenser, high temperature condensing water m summer which approaching and exceed 60* C, which may result in filter materials degradation and release impurities. This paper discusses an influencing factor, water-filter ratio (soaking solution and filter quality ratio), on leachable dissolution rate and filter material degradation rate m high temperature water. The UV absorption at 254nm (A254) and the exchange capacity ware measured after heat test as composite indicators. In addition, the Wends of A254 variation with heating time were measured in different water-filter ratio. The stability is probably due to the effect of water-filter ratio. This has been further borne out that, water-filter ratio increases, leachable concentration decreases exponentially and tends to a fLxed value.展开更多
This is the first study to report the co-occurrence of per-and polyfluoroalkyl substances(PFASs),heavy metals,and polycyclic aromatic hydrocarbons(PAHs)and their impacts on the native microbial consortium in soil due ...This is the first study to report the co-occurrence of per-and polyfluoroalkyl substances(PFASs),heavy metals,and polycyclic aromatic hydrocarbons(PAHs)and their impacts on the native microbial consortium in soil due to the long-term exposure.The PFASs,heavy metals,and PAHs were detected in soil samples collected at 2–6 m below the ground surface at different sampling locations in a steel-making factory.The total concentrations of PFASs varied from 6.55 to 19.79 ng g^(-1),with perfluorooctane sulfonate(PFOS),perfluorobutane sulfonate,and 6:2 chlorinated polyfluorinated ether sulfonate(alternative of PFOS)being the predominant PFASs.The concentrations of arsenic,cadmium,and lead were detected in the ranges of 4.40–1270.00,0.01–8.67,and 18.00–647.00 mg kg^(-1),respectively,and the concentration of total PAHs was detected in the range of 1.02–131.60 mg kg^(-1).The long-term exposure to mixed contaminants of PFASs,heavy metals,and PAHs led to lower richness and diversity of microbial communities in soil.The soil bacterial communities were mainly composed of Pseudomonas,norank_p_GAL15,Leptothrix,norank_o_Rokubacteriales,and Acinetobacter.Correlations between soil environmental factors and microbial communities indicated that cation exchange capacity and total phosphorus were two key factors in shaping the composition of native microbial communities.Furthermore,Arthrobacter,Leptothrix,and Sphingobium were found to be significantly positively correlated with PFAS concentrations,indicating that these genera could tolerate the stress exerted by PFASs,along with the stress imposed due to the presence of heavy metals or/and PAHs.展开更多
Rapid expansion of cultivated bamboo negatively impacts on biodiversity and soil microbial community.As such,it is important to properly manage and use bamboo to prevent and control such issues.This study focuses on o...Rapid expansion of cultivated bamboo negatively impacts on biodiversity and soil microbial community.As such,it is important to properly manage and use bamboo to prevent and control such issues.This study focuses on optimizing pyrolysis conditions to produce bamboo biochar for agricultural soil amendment,particularly soil potassium(K)and water holding capacity.Bamboo chips were pyrolyzed under nitrogen gas at 400,600,and 800℃ for 1 and 2 h of retention.A total of six biochar products were created:400-1(i.e.,400℃ in 1 h),400-2,600-1,600-2,800-1,and 800-2.The 600℃ bamboo biochar products were observed to have the greatest potential in increasing soil K and water holding capacity.The 600-1 product had the highest potassium content(4.87%),with a water holding capacity of 3.73 g g^(−1),while the 600-2 product had the second-highest potassium content(4.13%)and the highest water holding capacity(4.21 g g^(−1))and cation exchange capacity.The K release in 600℃ products was larger and slower than that of the 400℃ and 800℃ products,respectively.The results also indicated that the physicochemical characteristics of bamboo biochar,such as yield,pH,surface area,water holding capacity,and K content,were significantly impacted by temperature,retention time,or a combination of these parameters.The outcomes from this study are a valuable reference for bamboo biochar production targeting agricultural soil amendment,particularly when it is directed at increasing soil K and water holding capacity.展开更多
Biochar,possessing electron exchange capacities(EEC),is generally involved in environmental redox reactions due to the presence of redox-active moieties(RAMs).The phenomenon that chars containing comparable RAMs posse...Biochar,possessing electron exchange capacities(EEC),is generally involved in environmental redox reactions due to the presence of redox-active moieties(RAMs).The phenomenon that chars containing comparable RAMs possess differential EEC revealed that the accessibility of RAMs is important to the redox properties.However,many studies have focused on the type of RAMs,whereas the distribution has been insufficiently investigated.Herein,we achieved nanoscale observation of electroactive moieties on the surface of six chars using a conductive atomic force microscope.For the two specific kinds of chars with submicron particles and opposite current distributions,the submicron particles took up only 1-4‰wt of biochar accounting for approximately 30-50%of electron-donating capacity(EDC),and electron-accepting capacity(EAC)became 87%and 1.40 times as before after removing submicron particles,respectively.Meanwhile,the combined impact of RAMs and surface topography(that uneven distribution of RAMs resulted in outstanding EEC by enhancing accessibility)was clarified.Furthermore,direct evidence of the link between char structure and EEC(that condensed aromatic structures were indispensable to EAC while both heteroatoms and amorphous aromatics contributed to EDC)was established.These findings can aid in understanding the functions of biochar in biotic and abiotic redox processes.展开更多
New siloxane and sulfone containing poly(benzimidazole/sulfone/siloxane/amide) (PBSSA) has been prepared for the formation of hybrid membranes (PBSSA/PS-S/SiNPs) with sulfonated polystyrene (PS-S) and 0.1 wt%-...New siloxane and sulfone containing poly(benzimidazole/sulfone/siloxane/amide) (PBSSA) has been prepared for the formation of hybrid membranes (PBSSA/PS-S/SiNPs) with sulfonated polystyrene (PS-S) and 0.1 wt%-2 wt% silica nanoparticles (SiNPs). Field emission scanning electron micrographs showed good dispersion of filler, formation of dense nanoporous honeycomb like structure and uniform ionic pathway in these hybrids. The porous membrane structure was responsible for the fine water retention capability and higher proton conductivity of the new hybrids. Increasing the amount of nanoparticles from 0.1 wt% to 2 wt% increased the tensile stress of acid doped PBSSA/PS-S/SiNPs nanocomposites from 65.7 MPa to 68.5 MPa. A relationship between nanofiller loading and thermal stability of the membranes was also experientially studied, as the glass transition temperature of phosphoric acid doped PBSSAJPS-S/SiNPs nanocomposites increased from 207℃ to 215 ℃. The membranes also had higher ion exchange capacity (IEC) around 2.01 mmol/g to 3.01 mmol/g. The novel membranes with high IEC value achieved high proton conductivity of 1.10-2.34 S/cm in a wide range of humidity values at 80 ~C which was higher than that of perfluorinated Nafion 117 membrane (1.1 × 10^-1 S/cm) at 80 ~C (94% RH). A H2/O2 fuel cell using the PBSSA/PS-S/SiNP 2 (IEC 3.01 retool/g) showed better performance than that of Nation 117 at 40 ℃ and 30% RH.展开更多
Paraquat and copper (Cu) are commonly used and detected in soil.Therefore,it is important to understand their mobility in the environment.In this study,the competitive effects of paraquat and Cu on their adsorption in...Paraquat and copper (Cu) are commonly used and detected in soil.Therefore,it is important to understand their mobility in the environment.In this study,the competitive effects of paraquat and Cu on their adsorption in five representative Chinese soils were investigated using batch adsorption equilibrium experiments and spectroscopic analysis.The results showed that the adsorption of paraquat in soil varied with soil type and was positively correlated with both soil cation exchange capacity and organic matter content.Paraquat exerted a more remarkable suppression effect on the adsorption of Cu than Cu on the adsorption of paraquat.In the presence of 0.12 and 0.19 mmol L-1paraquat,Cu adsorption decreased by 16%and 22%in Heilongjiang soil and by 24%and37%in Jiangxi soil,respectively.In the presence of 0.1 and 0.2 mmol L-1Cu,paraquat adsorption decreased by 4%and 8%in Heilongjiang soil and by15%and 19%in Jiangxi soil,respectively.Exchange selectivity involving symmetric cation (paraquat2+and Cu2+) exchange is the probable basis for the suppression effect.The ultraviolet-visible absorption experiments suggested that the formation of Cu-paraquat complexes was unlikely to happen in a solution or at the soil surface.Copper K-edge X-ray absorption spectroscopy indicated that Cu in soil may have some water as hydration layers as the nearest neighbors,and each Cu atom was coordinated with five oxygen atoms.These findings greatly improve our knowledge of the molecular-scale adsorption mechanisms of paraquat and Cu in soil and can be used to predict the behavior,transport,and fate of paraquat and Cu in agricultural soils.展开更多
Soil acidification is an important process in land degradation around the world as well as in China.Acidification of Alfisols was investigated in the tea gardens with various years of tea cultivation in the eastern Ch...Soil acidification is an important process in land degradation around the world as well as in China.Acidification of Alfisols was investigated in the tea gardens with various years of tea cultivation in the eastern China.Cultivation of tea plants caused soil acidification and soil acidity increased with the increase of tea cultivation period.Soil pH of composite samples from cultivated layers decreased by 1.37,1.62 and 1.85,respectively,after 13,34 and 54 years of tea plantation,as compared to the surface soil obtained from the unused land.Soil acidification rates at early stages of tea cultivation were found to be higher than those at the later stages.The acidification rate for the period of 0-13 years was as high as 4.40 kmol H + ha ?1 year ?1 for the cultivated layer samples.Soil acidification induced the decrease of soil exchangeable base cations and base cation saturation and thus increased the soil exchangeable acidity.Soil acidification also caused the decrease of soil cation exchange capacity,especially for the 54-year-old tea garden.Soil acidification induced by tea plantation also led to the increase of soil exchangeable Al and soluble Al,which was responsible for the Al toxicity to plants.展开更多
Nitrogen (N) cycling in boreal peatland ecosystems may be influenced in important ways by freeze-thaw cycles (FTCs). Adsorption and desorption of ammonium ions (NH4+) were examined in a controlled laboratory ex...Nitrogen (N) cycling in boreal peatland ecosystems may be influenced in important ways by freeze-thaw cycles (FTCs). Adsorption and desorption of ammonium ions (NH4+) were examined in a controlled laboratory experiment for soils sampled from palustrine wetland, riverine wetland, and farmland reclaimed from natural wetland in response to the number of FTCs. The results indicate that freeze-thaw significantly increased the adsorption capacity of NH: and reduced the desorption potential of NH4+ in the wetland soils. There were significant differences in the NH4+ adsorption amount between the soils with and without freeze-thaw treatment. The adsorption amount of NH4+ increased with increasing FTCs. The palustrine wetland soil had a greater adsorption capacity and a weaker desorption potential of NH4+ than the riverine wetland soil because of the significantly higher clay content and cation exchange capacity (CEC) of the riverine wetland soil. Because of the altered soil physical and chemical properties and hydroperiods, the adsorption capacity of NH4+ was smaller in the farmland soil than in the wetland soils, while the desorption potential of the farmland soil was higher than that of the wetland soils. Thus, wetland reclamation would decrease adsorption capacity and increase desorption potential of NH4+, which could result in N loss from the farmland soil. FTCs might mitigate N loss from soils and reduce the risk of water pollution in downstream ecosystems.展开更多
Soil samples were collected from the areas surrounding Wuliangsuhai Lake in China. Dissolved organic matter (DOM) was extracted from the samples and characterized by fluorescence and UV-Vis spectra. Spectral propert...Soil samples were collected from the areas surrounding Wuliangsuhai Lake in China. Dissolved organic matter (DOM) was extracted from the samples and characterized by fluorescence and UV-Vis spectra. Spectral properties and humification degree of DOM were studied. The results indicated that both humic- and protein- like fluorophores were present in the DOM spectra, and the former was the dominant component. The analysis of humification (HIX) and r (A, C) indices revealed that the maximum humification degree in three agricultural soils (AAF, ASC, and ASW) was presented in the second soil layer (20-40 cm). However, the humification degree of the two Halophytes soils (SSE and GKF) decreased with increasing depth. One index, I344/270, showed that humification degree increased gradually with an increasing proportion of humic-like acid. There was a significant positive correlation between humification degree (HIX) and aromaticity (SUVA254), indicating that a higher aromaticity corresponded to a higher humification degree. Land use was an important factor responsible for the major difference of cation exchange capacity (CEC) in different soils, which led to a higher CEC value in the second soil layer for the three agricultural soils. CEC values and humification degree had the same trend for all five soils. The correlation analysis showed that there was a significant positive correlation between HIX and CEC,and a negative correlation between the r (A, C) index and CEC, indicating that humification degree increases gradually with increasing CEC values.展开更多
Clay-rich subsoils are added to sandy soils to improve crop yield and increase organic carbon (C) sequestration; however, little is known about the influence of clay subsoil properties on organic C sorption and deso...Clay-rich subsoils are added to sandy soils to improve crop yield and increase organic carbon (C) sequestration; however, little is known about the influence of clay subsoil properties on organic C sorption and desorption. Batch sorption experiments were conducted with nine clay subsoils with a range of properties. The clay subsoils were shaken for 16 h at 4 ℃with water-extractable organic C (WEOC, 1 224 g C L-1) from mature wheat residue at a soil to extract ratio of 1:10. After removal of the supernatant, the residual pellet was shaken with deionised water to determine organic C desorption. The WEOC sorption was positively correlated with smectite and illite contents, cation exchange capacity (CEC) and total organic C, but negatively correlated with kaolinite content. Desorption of WEOC expressed as a percentage of WEOC sorbed was negatively correlated with smectite and illite contents, CEC, total and exchangeable calcium (Ca) concentrations and clay content, but positively correlated with kaolinite content. The relative importance of these properties varied among soil types. The soils with a high WEOC sorption capacity had medium CEC and their dominant clay minerals were smectite and illite. In contrast, kaolinite was the dominant clay mineral in the soils with a low WEOC sorption capacity and low-to-medium CEC. However, most soils had properties which could increase WEOC sorption as well as those that could decrease WEOC sorption. The relative importance of properties increasing or decreasing WEOC sorption varied with soils. The soils with high desorption had a low total Ca concentration, low-to-medium CEC and low clay content, whereas the soils with low desorption were characterised by medium-to-high CEC and smectite and illite were the dominant clay minerals. We conclude that WEOC sorption and desorption depend not on a single property but rather a combination of several properties of the subsoils in this study.展开更多
文摘Studies on the spatial variability of the soil cation exchange capacity (CEC) were made to provide a theoretical basis for an ecological tea plantation and management of soil fertilizer in the tea plantation. Geostatistics were used to analyze the spatial variability of soil CEC in the tea plantation site on Mengding Mountain in Sichuan Province of China on two sampling scales. It was found that, (1) on the small scale, the soil CEC was intensively spatially correlative, the rate of nugget to sill was 18.84% and the spatially dependent range was 1 818 m, and structural factors were the main factors that affected the spatial variability of the soil CEC; (2) on the microscale, the soil CEC was also consumingly spatially dependent, and the rate of nugget to sill was 16.52%, the spatially dependent range was 311 m, and the main factors affecting the spatial variability were just the same as mentioned earlier. On the small scale, soil CEC had a stronger anisotropic structure on the slope aspect, and a weaker one on the lateral side. According to the ordinary Kriging method, the equivalence of soil CEC distributed along the lateral aspect of the slope from northeast to southwest, and the soil CEC reduced as the elevation went down. On the microscale, the anisotropic structure was different from that measured on the small scale. It had a stronger anisotropic structure on the aspect that was near the aspect of the slope, and a weaker one near the lateral aspect of the slope. The soil CEC distributed along the lateral aspect of the slope and some distributed in the form of plots. From the top to the bottom of the slope, the soil CEC increased initially, and then reduced, and finally increased.
基金funded by the National Natural Science Foundation of China (40771095,40725010 and 41030746)the Water Conservancy Science and Technology Foundation of Qingdao City,China (2006003)
文摘As soil cation exchange capacity (CEC) is a vital indicator of soil quality and pollutant sequestration capacity,a study was conducted to evaluate cokriging of CEC with the principal components derived from soil physico-chemical properties.In Qingdao,China,107 soil samples were collected.Soil CEC was estimated by using 86 soil samples for prediction and 21 soil samples for test.The first two principal components (PC1 and PC2) together explained 60.2% of the total variance of soil physico-chemical properties.The PC1 was highly correlated with CEC (r=0.76,P0.01),whereas there was no significant correlation between CEC and PC2 (r=0.03).The PC1 was then used as an auxiliary variable for the prediction of soil CEC.Mean error (ME) and root mean square error (RMSE) of kriging for the test dataset were-1.76 and 3.67 cmolc kg-1,and ME and RMSE of cokriging for the test dataset were-1.47 and 2.95 cmolc kg-1,respectively.The cross-validation R2 for the prediction dataset was 0.24 for kriging and 0.39 for cokriging.The results show that cokriging with PC1 is more reliable than kriging for spatial interpolation.In addition,principal components have the highest potential for cokriging predictions when the principal components have good correlations with the primary variables.
文摘More than 500 datasets from the literature have been used to evaluate the relationships of specific surface area (SSA),cation exchange capacity (CEC) and activity versus the liquid limit (LL).The correlations gave R^2 values ranging between 0.71 and 0.92.Independent data were also used to validate the correlations.Estimated SSA values slightly overestimate the measured SSA up to 100 m^2/g.Regarding the estimated CEC values,they overestimated the measured CEC values up to 20 meq/(100 g).A probabilistic approach was performed for the correlations of SSA,CEC and activity versus LL.The analysis shows that the relations of SSA,CEC and activity with LL are robust.Using the LL values,it is possible to assess other basic engineering properties of clays.
文摘Current researches on the nutritive characteristics of fibrous feedstuff through determining the feedstuff cation exchange capacity (CEC) to evaluate its nutritive value at home and abroad were comprehensively discribed. and the methods of determining CEC value and the correlation between CEC value and chemical compositions, pH value, and the effect of CEC value on the digestion kinetics in ruminants were also emphatically introduced. The results of research showed that the CEC values of different feedstuff are different, closely correlated with nitrogen and acid detergent fibre (ADF) and lignin (LIG) content of the feedstuff. At the same time, there are markedly effect of CEC value in diet on the nutrients flow of digesta in the digestive tract of ruminants, the degradation rate and digestibility of nutrients in the rumen.
基金supported by the National Key Basic Research Program of China (2011CB403204)the Natural Science Foundation of China (31000200)
文摘As a pioneer leguminous shrub species for vegetation re-establishment, Caragana microphylla is widely distributed in the semi-fixed and fixed sandy lands of the Horqin region, North China. C. microphylla planta- tions modify organic carbon (SOC), nitrogen (N) and phosphorus dynamics, bulk density and water-holding capacity and biological activities in soils, but little is known with regard to soil exchange properties. Variation in soil ex- changeable base cations was examined under C. microphylla plantations with an age sequence of 0, 5, 10, and 22 years in the Horqin Sandy Land, and at the depth of 0-10, 10-20, and 20-30 cm, respectively. C. microphylla has been planted on the non-vegetated sand dunes with similar physical-chemical soil properties. The results showed that exchangeable calcium (Ca), magnesium (Mg), and potassium (K), and cation exchange capacity (CEC) were significantly increased, and Ca saturation tended to decrease, while Mg and K saturations were increased with the plantation years. No difference was observed for exchangeable sodium (Na) neither with plantation years nor at soil depths. Of all the base cations and soil layers, exchangeable K at the depth of 0-10 cm accumulated most quickly, and it increased by 1.76, 3.16, and 4.25 times, respectively after C. microphylla was planted for 5, 10, and 22 years. Exchangeable Ca, Mg, and K, and CEC were significantly (P〈0.001) and positively correlated with SOC, total N, pH and electrical conductivity (EC). Soil pH and SOC are regarded as the main factors influencing the variation in ex- changeable cations, and the preferential absorption of cations by plants and different leaching rates of base cations that modify cation saturations under C. microphylla plantation. It is concluded that as a nitrogen-fixation species, C. microphylla plantation is beneficial to increasing exchangeable base cations and CEC in soils, and therefore can improve soil fertility and create favorable microenvironments for plants and creatures in the semi-arid sandy land ecosystems.
文摘This study is to determine the activities and correlations in the fundamental properties of the termite mounds soils Cubitermes spp and Macrotermes sp. The Intrinsic properties depend on the mineralogy, organic composition and texture of soil. Grain size, Atterberg limits and soil blue values are geotechnical properties that were used to characterize the two soils. On the basis of the geotechnical properties, specific surface area, cation exchange capacity, relative activity, surface activity and soil activity were determined. The correlations obtained in the intrinsic soil properties are linear and polynomial fits. Indeed, the relationship between the plasticity index and the blue value of a soil on the one hand and between the specific surface area and the cation exchange capacity on the other hand, is a linear fit for all soils in general. The relationship between plasticity index and specific surface area is a linear fit for the soils (C, M). Correlations in intrinsic soil properties that have a coefficient of determination close to 1 can be used in geotechnical engineering to predict one of the two desired parameters.
文摘The mineralogical and engineering characteristics of Cretaceous and Tertiary shales in the lower Benue Trough were determined with a view to establishing how they affect civil engineering construction, with emphasis on road pavements in the area. Shale samples from the geologic formations of Imo, Enugu and Awgu shales were subjected to the following laboratory tests: clay mineral content, organic matter content, Cation Exchange Capacity and Plasticity according to methods specified by the British Standard Institute. The shales were classified based on Plasticity Index, liquid limit and Cation Exchange Capacity. The class of shales ranged from non-plastic to extremely plastic and low to high reactivity. The moisture content and plasticity values are related to the degree of weathering. The higher the weathering grade, the higher the moisture content and plasticity values. The organic matter content of the shales is generally low (0.2% to 1 !.2%) and influences the durability of the shales in an inverse manner. The clay mineral composition from x-ray diffraction consists of lllite-montmorillonite mixed layers, illite, and kaolinite. The iUite-montmorillonite mixed layer clays are most prominent in road sections with most severe pavement failures. In contrast, sections with kaolinite as the dominant clay mineral experienced less severe and limited pavement failure. The contrasting engineering behaviour of these clay minerals is due to their structures. The study showed that the presence of clay minerals derived from underlying shales is a major contributory factor to the behaviour and performance of roads built over shale subgrades, that any effective remediation work must take cognizance of the amount and type of clay minerals present.
文摘This work evaluated the complexation capacity, exchange constants and availability of micronutrients for plants and humic substances extracted from peat samples. Samples of humic substances extracted from two tropical peats (HS-P1 and HS-P2) were enriched with the micronutrients Cu(II), Co(II), Fe(II), Mn(II), Ni(II) and Zn(II) and the parameters for formation of the complexes (HS-N) were evaluated at different pH. The Scatchard model was used to calculate the maximum complexation capacity and the nutrient availability was studied using exchange capacity experiments based on ultrafiltration procedure. The optimum pH for complexation was 4.5 and the order of affinity was: Fe(II) 〉 Cu(II) 〉 Co(II) 〉 Mn(II) = Ni(II) 〉 Zn(II). The maximum complexation capacity reached 56.8 mg·g-1 Fe of HS-P1 (the highest) and 1.7 mg.g1 Zn of HS-P2 (the slightest). The exchange experiments showed that HS-P-Fe complexes were formed preferentially. The least stable complex was formed with Zn, which was therefore, more easily available. The results contribute to understand the behavior and availability of some nutrients in soils.
文摘Ginger (<i><span>Zingiber officinale</span></i><span>) is an important spice and medicinal plant used in different parts of the world. The objective of current study was to determine the level of essential and non-essential metals in ginger and its correlation with concentration of metals in the supporting soil. The level of K, Na, Ca, Mg, Mn, Fe, Zn, Cu, Co, Cd and Pb in soil and ginger cultivated in the selected districts of Wolaita zone, Southern Ethiopia were determined using flame atomic absorption spectrometry. A 0.5 g ginger sample was digested using a mixture of 4 ml HNO</span><sub><span style="vertical-align:sub;">3</span></sub><span> and 1.5 ml HClO</span><sub><span style="vertical-align:sub;">4</span></sub><span> at 210°</span><span>C</span><span> for 150 min</span><span>utes, and a 0.5 g soil sample was digested employing a mixture of 6 ml aqua-regia and 1 ml H</span><sub><span style="vertical-align:sub;">2</span></sub><span>O</span><sub><span style="vertical-align:sub;">2</span></sub><span> at 280°</span><span>C</span><span> for 150 minutes. The metal</span><span> concentrations range in dry weight basis for ginger samples is decreasing in the order: K (1691 </span><span>-</span><span> 3487 mg/kg) > Mg (701 </span><span>-</span><span> 1583 mg/kg) > Ca (862 </span><span>-</span><span> 1476 mg/kg) > Na (398 </span><span>-</span><span> 776 mg/kg) > Mn (325 </span><span>-</span><span> 672 mg/kg) > Fe (6.14 </span><span>-</span><span> 11.92 mg/kg) > Zn (5.30 </span><span>-</span><span> 10.09 mg/kg) > (0.12 </span><span>-</span><span> 0.23 mg/kg) for Pb. The concentration of Cd, Cu and Co in ginger samples were below the limit of detection. The results revealed that ginger has the ability to accumulate relatively higher amounts of K and Mg among the determined essential metals. The soil samples have been found to be acidic pH, sandy clay loam in texture, a very low electrical conductivity and moderate level of (CEC, organic carbon, available phosphorus and total nitrogen). Although, a positive correlation between the levels of K, Mg, Zn, Mn in ginger and soil samples were observed. All the non-essential metals analyzed in this study were below the permissible ranges set by FAO/WHO.</span>
文摘The activity is related to the mineralogy and geological history of clays. Soils with the same value of the liquidity limit or plasticity index can have very different characteristics depending on the amount and type of clay minerals. The methylene blue value characterizes the activity of the clays and reflects the surface activity. Ten inactive soils contain minerals (kaolinite, illite), these soils absorb little water. Two swelling soils have normal activity and are composed of minerals (kaolinite, illite, Montmorillonite). The relationships between clayey soils properties, their activities and between the activity and the liquidity limit are defined. The correlations obtained are linear fit and exponential and sigmoidal fits. The correlations obtained with a coefficient of determination of R<sup>2</sup> (0.859 - 0.999) can be used to characterize and predict certain parameters of fine-grained soils as a function of clay content.
文摘In air-cooled condenser, high temperature condensing water m summer which approaching and exceed 60* C, which may result in filter materials degradation and release impurities. This paper discusses an influencing factor, water-filter ratio (soaking solution and filter quality ratio), on leachable dissolution rate and filter material degradation rate m high temperature water. The UV absorption at 254nm (A254) and the exchange capacity ware measured after heat test as composite indicators. In addition, the Wends of A254 variation with heating time were measured in different water-filter ratio. The stability is probably due to the effect of water-filter ratio. This has been further borne out that, water-filter ratio increases, leachable concentration decreases exponentially and tends to a fLxed value.
基金supported by the National Natural Science Foundation of China(Nos.41991335 and 42277029)the Eco-Environmental Engineering Research Center,China State Construction Engineering Corp.Ltd.(CSCEC)(Soil Remediation Technology and Equipment)(No.CSCEC-PT-009).
文摘This is the first study to report the co-occurrence of per-and polyfluoroalkyl substances(PFASs),heavy metals,and polycyclic aromatic hydrocarbons(PAHs)and their impacts on the native microbial consortium in soil due to the long-term exposure.The PFASs,heavy metals,and PAHs were detected in soil samples collected at 2–6 m below the ground surface at different sampling locations in a steel-making factory.The total concentrations of PFASs varied from 6.55 to 19.79 ng g^(-1),with perfluorooctane sulfonate(PFOS),perfluorobutane sulfonate,and 6:2 chlorinated polyfluorinated ether sulfonate(alternative of PFOS)being the predominant PFASs.The concentrations of arsenic,cadmium,and lead were detected in the ranges of 4.40–1270.00,0.01–8.67,and 18.00–647.00 mg kg^(-1),respectively,and the concentration of total PAHs was detected in the range of 1.02–131.60 mg kg^(-1).The long-term exposure to mixed contaminants of PFASs,heavy metals,and PAHs led to lower richness and diversity of microbial communities in soil.The soil bacterial communities were mainly composed of Pseudomonas,norank_p_GAL15,Leptothrix,norank_o_Rokubacteriales,and Acinetobacter.Correlations between soil environmental factors and microbial communities indicated that cation exchange capacity and total phosphorus were two key factors in shaping the composition of native microbial communities.Furthermore,Arthrobacter,Leptothrix,and Sphingobium were found to be significantly positively correlated with PFAS concentrations,indicating that these genera could tolerate the stress exerted by PFASs,along with the stress imposed due to the presence of heavy metals or/and PAHs.
文摘Rapid expansion of cultivated bamboo negatively impacts on biodiversity and soil microbial community.As such,it is important to properly manage and use bamboo to prevent and control such issues.This study focuses on optimizing pyrolysis conditions to produce bamboo biochar for agricultural soil amendment,particularly soil potassium(K)and water holding capacity.Bamboo chips were pyrolyzed under nitrogen gas at 400,600,and 800℃ for 1 and 2 h of retention.A total of six biochar products were created:400-1(i.e.,400℃ in 1 h),400-2,600-1,600-2,800-1,and 800-2.The 600℃ bamboo biochar products were observed to have the greatest potential in increasing soil K and water holding capacity.The 600-1 product had the highest potassium content(4.87%),with a water holding capacity of 3.73 g g^(−1),while the 600-2 product had the second-highest potassium content(4.13%)and the highest water holding capacity(4.21 g g^(−1))and cation exchange capacity.The K release in 600℃ products was larger and slower than that of the 400℃ and 800℃ products,respectively.The results also indicated that the physicochemical characteristics of bamboo biochar,such as yield,pH,surface area,water holding capacity,and K content,were significantly impacted by temperature,retention time,or a combination of these parameters.The outcomes from this study are a valuable reference for bamboo biochar production targeting agricultural soil amendment,particularly when it is directed at increasing soil K and water holding capacity.
基金the National Key Research&Development Program from Ministry of Science and Technology of China[Grant Number 2018YFD1100600]the Key Research&Development Program from Science Technology Department of Zhejiang Province[2021C03024].
文摘Biochar,possessing electron exchange capacities(EEC),is generally involved in environmental redox reactions due to the presence of redox-active moieties(RAMs).The phenomenon that chars containing comparable RAMs possess differential EEC revealed that the accessibility of RAMs is important to the redox properties.However,many studies have focused on the type of RAMs,whereas the distribution has been insufficiently investigated.Herein,we achieved nanoscale observation of electroactive moieties on the surface of six chars using a conductive atomic force microscope.For the two specific kinds of chars with submicron particles and opposite current distributions,the submicron particles took up only 1-4‰wt of biochar accounting for approximately 30-50%of electron-donating capacity(EDC),and electron-accepting capacity(EAC)became 87%and 1.40 times as before after removing submicron particles,respectively.Meanwhile,the combined impact of RAMs and surface topography(that uneven distribution of RAMs resulted in outstanding EEC by enhancing accessibility)was clarified.Furthermore,direct evidence of the link between char structure and EEC(that condensed aromatic structures were indispensable to EAC while both heteroatoms and amorphous aromatics contributed to EDC)was established.These findings can aid in understanding the functions of biochar in biotic and abiotic redox processes.
文摘New siloxane and sulfone containing poly(benzimidazole/sulfone/siloxane/amide) (PBSSA) has been prepared for the formation of hybrid membranes (PBSSA/PS-S/SiNPs) with sulfonated polystyrene (PS-S) and 0.1 wt%-2 wt% silica nanoparticles (SiNPs). Field emission scanning electron micrographs showed good dispersion of filler, formation of dense nanoporous honeycomb like structure and uniform ionic pathway in these hybrids. The porous membrane structure was responsible for the fine water retention capability and higher proton conductivity of the new hybrids. Increasing the amount of nanoparticles from 0.1 wt% to 2 wt% increased the tensile stress of acid doped PBSSA/PS-S/SiNPs nanocomposites from 65.7 MPa to 68.5 MPa. A relationship between nanofiller loading and thermal stability of the membranes was also experientially studied, as the glass transition temperature of phosphoric acid doped PBSSAJPS-S/SiNPs nanocomposites increased from 207℃ to 215 ℃. The membranes also had higher ion exchange capacity (IEC) around 2.01 mmol/g to 3.01 mmol/g. The novel membranes with high IEC value achieved high proton conductivity of 1.10-2.34 S/cm in a wide range of humidity values at 80 ~C which was higher than that of perfluorinated Nafion 117 membrane (1.1 × 10^-1 S/cm) at 80 ~C (94% RH). A H2/O2 fuel cell using the PBSSA/PS-S/SiNP 2 (IEC 3.01 retool/g) showed better performance than that of Nation 117 at 40 ℃ and 30% RH.
文摘Paraquat and copper (Cu) are commonly used and detected in soil.Therefore,it is important to understand their mobility in the environment.In this study,the competitive effects of paraquat and Cu on their adsorption in five representative Chinese soils were investigated using batch adsorption equilibrium experiments and spectroscopic analysis.The results showed that the adsorption of paraquat in soil varied with soil type and was positively correlated with both soil cation exchange capacity and organic matter content.Paraquat exerted a more remarkable suppression effect on the adsorption of Cu than Cu on the adsorption of paraquat.In the presence of 0.12 and 0.19 mmol L-1paraquat,Cu adsorption decreased by 16%and 22%in Heilongjiang soil and by 24%and37%in Jiangxi soil,respectively.In the presence of 0.1 and 0.2 mmol L-1Cu,paraquat adsorption decreased by 4%and 8%in Heilongjiang soil and by15%and 19%in Jiangxi soil,respectively.Exchange selectivity involving symmetric cation (paraquat2+and Cu2+) exchange is the probable basis for the suppression effect.The ultraviolet-visible absorption experiments suggested that the formation of Cu-paraquat complexes was unlikely to happen in a solution or at the soil surface.Copper K-edge X-ray absorption spectroscopy indicated that Cu in soil may have some water as hydration layers as the nearest neighbors,and each Cu atom was coordinated with five oxygen atoms.These findings greatly improve our knowledge of the molecular-scale adsorption mechanisms of paraquat and Cu in soil and can be used to predict the behavior,transport,and fate of paraquat and Cu in agricultural soils.
基金Supported by the National Nature Science Foundation of China (No. 30872009)the Earmarked Fund for Modern Agro-Industry Technology Research System of China (No. nycytx-23)
文摘Soil acidification is an important process in land degradation around the world as well as in China.Acidification of Alfisols was investigated in the tea gardens with various years of tea cultivation in the eastern China.Cultivation of tea plants caused soil acidification and soil acidity increased with the increase of tea cultivation period.Soil pH of composite samples from cultivated layers decreased by 1.37,1.62 and 1.85,respectively,after 13,34 and 54 years of tea plantation,as compared to the surface soil obtained from the unused land.Soil acidification rates at early stages of tea cultivation were found to be higher than those at the later stages.The acidification rate for the period of 0-13 years was as high as 4.40 kmol H + ha ?1 year ?1 for the cultivated layer samples.Soil acidification induced the decrease of soil exchangeable base cations and base cation saturation and thus increased the soil exchangeable acidity.Soil acidification also caused the decrease of soil cation exchange capacity,especially for the 54-year-old tea garden.Soil acidification induced by tea plantation also led to the increase of soil exchangeable Al and soluble Al,which was responsible for the Al toxicity to plants.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-309)the National Natural Science Foundation of China (Nos. 40830535 and 40871089)
文摘Nitrogen (N) cycling in boreal peatland ecosystems may be influenced in important ways by freeze-thaw cycles (FTCs). Adsorption and desorption of ammonium ions (NH4+) were examined in a controlled laboratory experiment for soils sampled from palustrine wetland, riverine wetland, and farmland reclaimed from natural wetland in response to the number of FTCs. The results indicate that freeze-thaw significantly increased the adsorption capacity of NH: and reduced the desorption potential of NH4+ in the wetland soils. There were significant differences in the NH4+ adsorption amount between the soils with and without freeze-thaw treatment. The adsorption amount of NH4+ increased with increasing FTCs. The palustrine wetland soil had a greater adsorption capacity and a weaker desorption potential of NH4+ than the riverine wetland soil because of the significantly higher clay content and cation exchange capacity (CEC) of the riverine wetland soil. Because of the altered soil physical and chemical properties and hydroperiods, the adsorption capacity of NH4+ was smaller in the farmland soil than in the wetland soils, while the desorption potential of the farmland soil was higher than that of the wetland soils. Thus, wetland reclamation would decrease adsorption capacity and increase desorption potential of NH4+, which could result in N loss from the farmland soil. FTCs might mitigate N loss from soils and reduce the risk of water pollution in downstream ecosystems.
基金Acknowledgements This work was financially supported by the National Social Science Fund (12CGLI 18), the National Natural Science Foundation of China (Grant Nos. 41503110 and 51208020) and the Open Foundation of Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University (JSBEET1309).
文摘Soil samples were collected from the areas surrounding Wuliangsuhai Lake in China. Dissolved organic matter (DOM) was extracted from the samples and characterized by fluorescence and UV-Vis spectra. Spectral properties and humification degree of DOM were studied. The results indicated that both humic- and protein- like fluorophores were present in the DOM spectra, and the former was the dominant component. The analysis of humification (HIX) and r (A, C) indices revealed that the maximum humification degree in three agricultural soils (AAF, ASC, and ASW) was presented in the second soil layer (20-40 cm). However, the humification degree of the two Halophytes soils (SSE and GKF) decreased with increasing depth. One index, I344/270, showed that humification degree increased gradually with an increasing proportion of humic-like acid. There was a significant positive correlation between humification degree (HIX) and aromaticity (SUVA254), indicating that a higher aromaticity corresponded to a higher humification degree. Land use was an important factor responsible for the major difference of cation exchange capacity (CEC) in different soils, which led to a higher CEC value in the second soil layer for the three agricultural soils. CEC values and humification degree had the same trend for all five soils. The correlation analysis showed that there was a significant positive correlation between HIX and CEC,and a negative correlation between the r (A, C) index and CEC, indicating that humification degree increases gradually with increasing CEC values.
文摘Clay-rich subsoils are added to sandy soils to improve crop yield and increase organic carbon (C) sequestration; however, little is known about the influence of clay subsoil properties on organic C sorption and desorption. Batch sorption experiments were conducted with nine clay subsoils with a range of properties. The clay subsoils were shaken for 16 h at 4 ℃with water-extractable organic C (WEOC, 1 224 g C L-1) from mature wheat residue at a soil to extract ratio of 1:10. After removal of the supernatant, the residual pellet was shaken with deionised water to determine organic C desorption. The WEOC sorption was positively correlated with smectite and illite contents, cation exchange capacity (CEC) and total organic C, but negatively correlated with kaolinite content. Desorption of WEOC expressed as a percentage of WEOC sorbed was negatively correlated with smectite and illite contents, CEC, total and exchangeable calcium (Ca) concentrations and clay content, but positively correlated with kaolinite content. The relative importance of these properties varied among soil types. The soils with a high WEOC sorption capacity had medium CEC and their dominant clay minerals were smectite and illite. In contrast, kaolinite was the dominant clay mineral in the soils with a low WEOC sorption capacity and low-to-medium CEC. However, most soils had properties which could increase WEOC sorption as well as those that could decrease WEOC sorption. The relative importance of properties increasing or decreasing WEOC sorption varied with soils. The soils with high desorption had a low total Ca concentration, low-to-medium CEC and low clay content, whereas the soils with low desorption were characterised by medium-to-high CEC and smectite and illite were the dominant clay minerals. We conclude that WEOC sorption and desorption depend not on a single property but rather a combination of several properties of the subsoils in this study.