This paper is concerned with the following logarithmic Schrodinger system:{-Δu_(1)+ω_(1)u_(1)=u_(1)u_(1)logu_(1)^(2)+2p/p+q|u_(2)|^(q)|u_(1)|^(p-2)u_(1),-Δu_(2)+ω_(2)u_(2)=u_(2)u_(2)log u_(2)^(2)+2q/p+q|u_(1)|^(p)...This paper is concerned with the following logarithmic Schrodinger system:{-Δu_(1)+ω_(1)u_(1)=u_(1)u_(1)logu_(1)^(2)+2p/p+q|u_(2)|^(q)|u_(1)|^(p-2)u_(1),-Δu_(2)+ω_(2)u_(2)=u_(2)u_(2)log u_(2)^(2)+2q/p+q|u_(1)|^(p)|u_(2)|^(q-2)u_(2),∫_(Ω)|u_(i)|^(2)dx=ρ_(i),i=1,2,(u_(1),u_(2))∈H_(0)^(1)(Ω;R^(2)),where Ω=R^(N)or Ω■R^(N)(N≥3)is a bounded smooth domain,andω_(i)R,μ_(i),ρ_(i)>0 for i=1,2.Moreover,p,q≥1,and 2≤p+q≤2^(*),where 2^(*):=2N/N-2.By using a Gagliardo-Nirenberg inequality and a careful estimation of u log u^(2),firstly,we provide a unified proof of the existence of the normalized ground state solution for all 2≤p+q≤2^(*).Secondly,we consider the stability of normalized ground state solutions.Finally,we analyze the behavior of solutions for the Sobolev-subcritical case and pass to the limit as the exponent p+q approaches 2^(*).Notably,the uncertainty of the sign of u log u^(2)in(0,+∞)is one of the difficulties of this paper,and also one of the motivations we are interested in.In particular,we can establish the existence of positive normalized ground state solutions for the Brézis-Nirenberg type problem with logarithmic perturbations(i.e.,p+q=2^(*)).In addition,our study includes proving the existence of solutions to the logarithmic type Bréis-Nirenberg problem with and without the L^(2)-mass.constraint ∫_(Ω)|u_(i)|^(2)dx=ρ_(i)(i=1,2)by two different methods,respectively.Our results seem to be the first result of the normalized solution of the coupled nonlinear Schrodinger system with logarithmic perturbations.展开更多
Periodic solutions of Hopf type and other dynamical behaviors for a four-order differential equation which occurs in the model of infections disease are investigated. The extended theorem about the conditions for the ...Periodic solutions of Hopf type and other dynamical behaviors for a four-order differential equation which occurs in the model of infections disease are investigated. The extended theorem about the conditions for the existence of Hopf bifurcation is proved in higher-order differential equations with several parameters. The Hopf bifurcation value is given through the medium of the corresponding coordinate at the Hopf bifurcation point, and depends on one parameter.The paper reveals that the model of Holt and Picker has periodic solutions, and proves the reliability of the numerical solution which is given by Liu Winmin.展开更多
In this paper, by Schauder’s fxed point theorem and the contraction mapping principle, we consider the existence and stability of T-anti-periodic solutions to fractional diferential equations of order α∈(0,1). An e...In this paper, by Schauder’s fxed point theorem and the contraction mapping principle, we consider the existence and stability of T-anti-periodic solutions to fractional diferential equations of order α∈(0,1). An example is given to illustrate the main results.展开更多
文摘This paper is concerned with the following logarithmic Schrodinger system:{-Δu_(1)+ω_(1)u_(1)=u_(1)u_(1)logu_(1)^(2)+2p/p+q|u_(2)|^(q)|u_(1)|^(p-2)u_(1),-Δu_(2)+ω_(2)u_(2)=u_(2)u_(2)log u_(2)^(2)+2q/p+q|u_(1)|^(p)|u_(2)|^(q-2)u_(2),∫_(Ω)|u_(i)|^(2)dx=ρ_(i),i=1,2,(u_(1),u_(2))∈H_(0)^(1)(Ω;R^(2)),where Ω=R^(N)or Ω■R^(N)(N≥3)is a bounded smooth domain,andω_(i)R,μ_(i),ρ_(i)>0 for i=1,2.Moreover,p,q≥1,and 2≤p+q≤2^(*),where 2^(*):=2N/N-2.By using a Gagliardo-Nirenberg inequality and a careful estimation of u log u^(2),firstly,we provide a unified proof of the existence of the normalized ground state solution for all 2≤p+q≤2^(*).Secondly,we consider the stability of normalized ground state solutions.Finally,we analyze the behavior of solutions for the Sobolev-subcritical case and pass to the limit as the exponent p+q approaches 2^(*).Notably,the uncertainty of the sign of u log u^(2)in(0,+∞)is one of the difficulties of this paper,and also one of the motivations we are interested in.In particular,we can establish the existence of positive normalized ground state solutions for the Brézis-Nirenberg type problem with logarithmic perturbations(i.e.,p+q=2^(*)).In addition,our study includes proving the existence of solutions to the logarithmic type Bréis-Nirenberg problem with and without the L^(2)-mass.constraint ∫_(Ω)|u_(i)|^(2)dx=ρ_(i)(i=1,2)by two different methods,respectively.Our results seem to be the first result of the normalized solution of the coupled nonlinear Schrodinger system with logarithmic perturbations.
文摘Periodic solutions of Hopf type and other dynamical behaviors for a four-order differential equation which occurs in the model of infections disease are investigated. The extended theorem about the conditions for the existence of Hopf bifurcation is proved in higher-order differential equations with several parameters. The Hopf bifurcation value is given through the medium of the corresponding coordinate at the Hopf bifurcation point, and depends on one parameter.The paper reveals that the model of Holt and Picker has periodic solutions, and proves the reliability of the numerical solution which is given by Liu Winmin.
基金supported by the Key Foundation of Anhui Education Bureau(KJ2012A019,KJ2013A028)Anhui Provincial Natural Science Foundation(1208085MA13,1308085MA01,1308085QA15)+2 种基金the Research Fund for the Doctoral Program of Higher Education(20103401120002,20113401120001)211 Project of Anhui University(02303129,02303303-33030011,0230390239020011,KYXL2012004,XJYJXKC04)NNSF of China(11226247,11271371)
文摘In this paper, by Schauder’s fxed point theorem and the contraction mapping principle, we consider the existence and stability of T-anti-periodic solutions to fractional diferential equations of order α∈(0,1). An example is given to illustrate the main results.