期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Study on Sustained-Release Pesticides Blended with Fosthiazate-Stearic Acid/Expanded Perlite
1
作者 Huimin Huang Zijun Wu +3 位作者 Zhijian Zhou Qiulin Xu Jie Yan Qiaoguang Li 《Journal of Renewable Materials》 SCIE EI 2023年第1期257-272,共16页
The low utilization rate of pesticides makes the migration of pesticides in water and soil,which brings great harm to the ecosystem.The development of pesticide carriers with good drug loading capacity and release con... The low utilization rate of pesticides makes the migration of pesticides in water and soil,which brings great harm to the ecosystem.The development of pesticide carriers with good drug loading capacity and release control abil-ity is an effective method to realize effective utilization of pesticides and reduce pesticide losses.In this work,fosthiazate-stearic acid/expanded perlite sustained-release particles were successfully prepared by vacuum impregnation using expanded perlite(EP)as carrier,fosthiazate(FOS)as model pesticide and stearic acid(SA)as hydrophobic matrix.The structure and morphology of the samples were studied by BET,FT-IR,TGA,XRD,DSC and SEM.The effects of different mass ratios of FOS to SA on loading capacity and release rate at 24 h were investigated.The sustained release behavior of FOS-SA/EP at different temperatures and pH values was investigated by static dialysis bag method.The results showed that FOS and SA were adsorbed in EP pores by physical interaction.With the mass ratios of FOS to SA decreasing from 7:3 to 3:7,the 24 h release rate of FOS-SA/EP decreased from 18.77%to 8.05%,and the drug loading decreased from 461.32 to 130.99 mg/g.FOS-SA/EP showed obvious temperature response at 25℃,30℃ and 35℃,the cumulative release rate(CRR)of 200 h were 33.38%,41.50%and 51.17%,respectively.When pH=5,the CRR of FOS was higher than that of pH=7,and the CRR of FOS for 200 h were 49.01%and 30.12%,respectively.At different temperatures and pH=5,the release mechanism of FOS-SA/EP belongs to the Fickian diffusion mechanism;When pH=7,the diffusion mechanism is dominant,and the dissolution mechanism is complementary. 展开更多
关键词 expanded perlite FOSTHIAZATE stearic acid sustained release release kinetics
下载PDF
Sorption Kinetics and Capacity of Composite Materials Made up of Polymeric Fabric and Expanded Perlite for Oil in Water
2
作者 祁佩时 林娜 +1 位作者 刘云芝 赵俊杰 《Journal of Donghua University(English Edition)》 EI CAS 2012年第3期233-239,共7页
The oil sorption capacity of composite materials made up of different polymeric fabrics (namely acrylic fabric (AF), polypropylene nonwoven (PP), and silk stocking (SS) as composite out-packing materials) and expanded... The oil sorption capacity of composite materials made up of different polymeric fabrics (namely acrylic fabric (AF), polypropylene nonwoven (PP), and silk stocking (SS) as composite out-packing materials) and expanded perlite (EP) was evaluated for oil removal from the water. The effects of sorbent dosage, desorption time, oil amount in the water, and contact time on composite materials sorption were investigated. The results showed that the optimum quantity of EP was between 0.5 g and 1.0 g for 25 cm2 polymeric fabrics bags. Oil removal efficiency for 6 L/m2 of oil amount in the water was 52%-72%, 44%-63%, and 37%-48% for AF, PP, and SS composite materials, respectively. Oil/water selectivity analysis of different composite materials showed that AF composite material had a very high degree of hydrophobicity and oil sorption capacity of approximately 10.17 g/g. Both oil sorption kinetics and equilibrium studies were carried out, and the equilibrium process of composite materials was described well by the Langmuir isotherm, and the oil sorption kinetics of composite materials showed good correlation coefficients for the pseudo-second order kinetic model. Intra-particle diffusion studies showed that oil sorption mechanism was controlled by the three processes, involving in external liquid membrane diffusion, surface sorption, and intra-particle diffusion. 展开更多
关键词 composite material expanded perlite(EP) oil spill polymeric fabric SORPTION
下载PDF
Highly efficient enrichment and adsorption of rare earth ions(yttrium(Ⅲ))by recyclable magnetic nitrogen functionalized mesoporous expanded perlite
3
作者 Juan Liu Liqiang Zeng +6 位作者 Su Liao Xiaofeng Liao Jun Liu Jinshui Mao Yunnen Chen Tingsheng Qiu Sili Ren 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第10期2849-2853,共5页
A magnetic mesoporous expanded perlite-based(EPd-APTES@Fe3 O_(4))composite was designed and synthesized as a novel adsorbent for enrichment of rare earth ions in aqueous solution.Effect of various factors including th... A magnetic mesoporous expanded perlite-based(EPd-APTES@Fe3 O_(4))composite was designed and synthesized as a novel adsorbent for enrichment of rare earth ions in aqueous solution.Effect of various factors including the pH of solution,contact time and adsorbent dosage on the adsorption behaviors of yttrium(Ⅲ)by the EPd-APTES@Fe3 O_(4) nano-material composites from aqueous solution was investigated.The maximum adsorption capacity of the as-prepared materials for yttrium(Ⅲ)ions was 383.2 mg/g.Among the various isotherm models,the Freundlich isotherm model could well described for the adsorption of the rare ea rth ions at pH 5.5 and 298.15 K.The kinetic analysis indicated that the adsorption process followed the pseudo-second order kinetics model,and the rate-determining step might be chemical adsorption.Thermodynamic parameters declared that the adsorption process was endothermic.In addition,Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS)and the quantum chemical calculation indicated that the yttrium(Ⅲ)ions were captured on the EPd-APTES@Fe3 O_(4) surface mainly by coordination with functional group of-NH2.More importantly,the adsorption-desorption studies indicated that the EPd-APTES@Fe3 O_(4) nano-material composites had a high stability and good recyclability. 展开更多
关键词 Rare earth ions Yttrium(Ⅲ)ions Magnetic mesoporous expanded perlite ENRICHMENT ADSORPTION
原文传递
The development of ultralightweight expanded perlite-based thermal insulation panel using alkali activator solution
4
作者 Damla Nur CELIK Gökhan DURMUŞ 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第11期1486-1499,共14页
The International Energy Agency(IEA)states that global energy consumption will increase by 53%by 2030.Turkey has 70%of the world’s perlite reserves,and in order to reduce energy consumption a thermal insulation panel... The International Energy Agency(IEA)states that global energy consumption will increase by 53%by 2030.Turkey has 70%of the world’s perlite reserves,and in order to reduce energy consumption a thermal insulation panel was developed in Turkey using different particle sizes of expanded perlite(EP).In this study,0–1.18 mm(powder)and 0–3 mm(granular)EP particle sizes were selected,since they have the lowest thermal conductivity coefficients among all the particle sizes.In addition,an alkali activator solution was used as a binder in the mixtures.The alkaline activator solution was obtained by mixing sodium hydroxide solution(6,8,10,and 12 mol·L−1)and sodium silicate(Module 3)at the different ratios of Na2SiO3 to NaOH of 1,1.5,2,and 2.5.This study aimed to experimentally determine the optimum binder and distribution ratio of EP,with the lowest coefficient of thermal conductivity and the lowest density.The lowest thermal conductivity and the lowest density were determined as 0.04919 W·m−1·K−1 and 133.267 kg/m3,respectively,in the sample prepared with 83.33%powder-size EP,6 mol·L−1 sodium hydroxide solution,and ratio of Na2SiO3 to NaOH of 1.5.The density,thermal conductivity,and compressive strength of the sample showed the same trends of behavior when the Na2SiO3 to NaOH ratio was increased.In addition,the highest compressive strength was measured in 12 mol·L−1 NaOH concentration regardless of particle size.In conclusion,the study predicts that the EP-based thermal insulation panel can be used as an insulation material in the construction industry according to the TS825 Thermal Insulation Standard. 展开更多
关键词 expanded perlite alkali activator thermal insulation panel thermal conductivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部