Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))data...Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))dataset to explore the possibility of using multi-algorithm hybrid ensemble and dimensionality reduction methods to mitigate the uncertainty of soil parameter prediction.Based on six machine learning(ML)algorithms,the base learner pool is constructed,and four ensemble methods,Stacking(SG),Blending(BG),Voting regression(VR),and Feature weight linear stacking(FWL),are used for the multi-algorithm ensemble.Furthermore,the importance of permutation is used for feature dimensionality reduction to mitigate the impact of weakly correlated variables on predictive modeling.The results show that the proposed methods are superior to traditional prediction models and base ML models,where FWL is more suitable for modeling with small-sample datasets,and dimensionality reduction can simplify the data structure and reduce the adverse impact of the small-sample effect,which points the way to feature selection for predictive modeling.Based on the ensemble methods,the feature importance of the five primary factors affecting P_(s) is the maximum dry density(31.145%),clay fraction(15.876%),swell percent(15.289%),plasticity index(14%),and optimum moisture content(13.69%),the influence of input parameters on P_(s) is also investigated,in line with the findings of the existing literature.展开更多
This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between the...This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between theσL and the vertical stressσV during soaking and consolidation,(ii)the influences of initial dry densityρd0 and moisture content w 0 on the vertical and lateral swelling pressures at no swelling strain(i.e.σV0 andσL0),and(iii)evolution of theσL during five long-term wetting-drying cycles.Experimental results demonstrated that the post-soakingσL-σV relationships are piecewise linear and their slopes in the passive state(σL>σV)and active state(σL<σV)are similar to that of the consolidationσL-σV relationships in the normal-and over-consolidated states,respectively.The soakingσL-σV relationships converge to the consolidationσL-σV relationships at a thresholdσV where the interparticle swelling is restrained.TheσL0 andσV0 increase monotonically withρd0;however,they show increasing-then-decreasing trends with the w 0.The extent of compaction-induced swelling anisotropy,which is evaluated byσL0/σV0,reduces with an increase in the compaction energy and molding water content.TheσL reduces over moisture cycles and the stress relaxation in theσL during soaking is observed.An approach was developed to predict the at-rest soakingσL-σV relationships,which requires conventional consolidation and shear strength properties and one measurement of theσL-σV relationships during soaking.The proposed approach was validated using the results of three different expansive soils available in the literature.展开更多
When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining str...When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining structures become unpredictable.This necessitates the determination of lateral pressure coefficient at rest(k_(0) value)for expansive soils in landfill.Considering compaction,excavation of expansive soils,as well as construction of landfill in different seasons,series of stepwise loading and unloading consolidation tests at various moisture contents were carried out in this work to explore the evolution characteristics of k_(0) value and assess the dependence of k_(0) value on vertical stress and moisture content.Besides,scanning electron microscope(SEM)was used to track the change in microstructural features with vertical stresses.The results indicated that the k_(0) value of expansive soil shows a pronounced nonlinearity and is inextricably linked with vertical stress and moisture content,based on which a prediction formula to estimate the variation in k_(0) value with vertical stress during loading stage was proposed;there is a significant exponential increase in k_(0) value with overconsolidation ratio(OCR)during unloading stage,and OCR dominates the release of horizontal stress of expansive soil;SEM results revealed that with an increase in vertical stress,the anisotropy of expansive soil microstructure increases dramatically,causing a significant directional readjustment,which is macroscopically manifested as an initially rapid increase in k_(0) value;but when vertical stress increases to a critical value,the anisotropy of microstructure increases marginally,indicating a stable orientation occurring in the soil microstructure,which causes the k_(0) value to maintain a relatively stable value.展开更多
Alternating rainfall and evaporation in nature severely impact the shear strength of expansive soils. This study presents an instrument for simulating the effect of wetting–drying cycles on the strength of expansive ...Alternating rainfall and evaporation in nature severely impact the shear strength of expansive soils. This study presents an instrument for simulating the effect of wetting–drying cycles on the strength of expansive soils under different loads, and its testing error is verified. With this instrument,direct shear tests were performed on samples experiencing 0-6 cycles under vertical loads of 0 kPa,5 kPa, 15 kPa, and 30 k Pa. The results found that this instrument provides a new method for evaluating the effects of wetting–drying cycles on soils, and this method represents actual engineering conditions more accurately than do preexisting methods. It accurately controls the water content within 1% while simulating the specified loads at different soil depths.Cohesion is significantly affected by wetting–drying cycles, while the friction angle is not as sensitive to these cycles. Decrease in shear strength can be attributed to the fissures in soils caused by wetting–drying cycles. The existence of vertical loads effectively restricts shrinkage fissuring and cohesion attenuation, consequently inhibiting the attenuation of shear strength.展开更多
The factors influencing on soil expansion are reviewed in the paper. A mechanics model to determine swelling potential of expansive soils is presented. The mechanics model is based on the softening of expansive soil f...The factors influencing on soil expansion are reviewed in the paper. A mechanics model to determine swelling potential of expansive soils is presented. The mechanics model is based on the softening of expansive soil following absorption of water. The constitutive relationships of the mechanics model include the relationship among swelling under free load, swelling under load, and vertical pressure, and the relationship of swelling under free loading and swelling pressure. A concept of additional compression modulus is introduced and the method determining the modulus is proposed. Finally, the predicted results of swelling potential using the mechanics model compare well with the measured data.展开更多
Typical failure types of slopes of expansive soils are divided to two kinds: slip in surface layer and slip in shallow layer. Based on total strength law of expansive soils, the relationship between its water content...Typical failure types of slopes of expansive soils are divided to two kinds: slip in surface layer and slip in shallow layer. Based on total strength law of expansive soils, the relationship between its water content and shear strength inculding cohesion and friction angle, was studied in detail. Acoording to change of water content and depth effect during rainfall, distribution of shear strength in slopes of expansive soils was analyzed. Finally, with a slope of expansive soils in Nanning city of Guangxi Autonomous Region of China as a case, safety factor and slip surface was studied.展开更多
Expansive soils can pose tough issues to civil engineering applications. In a typical year, expansive soils can cause a greater financial loss than earthquakes, floods, hurricanes and tornadoes combined. Various means...Expansive soils can pose tough issues to civil engineering applications. In a typical year, expansive soils can cause a greater financial loss than earthquakes, floods, hurricanes and tornadoes combined. Various means have been studied to tackle problems associated with expansive soils. The majority of the methods are based on treatment of the soils. While the methods may be effective in some cases, their limitations are also obvious: The treatment normally involves complex processes and may not be eco-friendly in the long run. In many cases, the effectiveness of the treatment is uncertain. A retaining system that maintains a constant lateral pressure is proposed, which consists of three components: the retaining sheet, the slip-force device and the bracing column. The retaining sheet bears the pressure exerted by expansive backfills and is not embedded into the soils. Placed between the retaining sheet and bracing column, the slip-force device permits displacement of the retaining sheet but keeps the force on the sheet and the bracing column constant. The governing equation of the motion of the piston in the slip-force device is derived and a numerical simulation of a practical case is conducted based on the derived governing equation. Numerical results show that as the expansive soil swell, the spring force will increase and the piston will move accordingly. When the pressure of the oil in chamber reach<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">es</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the open threshold of the unidirectional relief valve, the valve will open and the spring force and the oil pressure in the chamber will keep constant. The results also show that some parameters, such as damping ratio, have very slight influences on the device behavior, say 2 × 10</span><sup><span style="font-family:Verdana;">-6</span></sup><span style="font-family:Verdana;"> or even 4.8 × 10</span><sup><span style="font-family:Verdana;">-9</span></sup><span style="font-family:Verdana;">. Theoretical and numerical studies prove the effectiveness of the proposed retaining system.</span></span></span></span>展开更多
Volume instability of expansive soils due to moisture fluctuations is often disastrous,causing severe damages and distortions in the supported structures.It is,therefore,necessary to adequately improve the performance...Volume instability of expansive soils due to moisture fluctuations is often disastrous,causing severe damages and distortions in the supported structures.It is,therefore,necessary to adequately improve the performance of such soils that they can favorably fulfil the post-construction stability requirements.This can be achieved through chemical stabilization using additives such as lime,cement and fly ash.In this paper,suitability of such additives under various conditions and their mechanisms are reviewed in detail.It is observed that the stabilization process primarily involves hydration,cation exchange,flocculation and pozzolanic reactions.The degree of stabilization is controlled by several factors such as additive type,additive content,soil type,soil mineralogy,curing period,curing temperature,delay in compaction,pH of soil matrix,and molding water content,including presence of nano-silica,organic matter and sulfate compounds.Provision of nano-silica not only improves soil packing but also accelerates the pozzolanic reaction.However,presence of deleterious compounds such as sulfate or organic matter can turn the treated soils unfavorable at times even worser than the unstabilized ones.展开更多
The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can ...The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can be calculated from the resistivity of the liquid phase. On this basis,the two-part model of resistivity changing with the water saturation of the expansive soil can be deduced. A 2-D resistance grid model is established based on simulating the resistance of ver-tically developed fissures. Variation in measured resistance of vertically developed fissures at different positions can be calculated from this model. Fissure development can be inversely determined from the variation in the measured resis-tance. Finally,the model is verified by an indoor resistivity test for remolded soil samples,indicating that the test result agrees well with that of the model established.展开更多
Cracks resulting from cyclic wetting and drying of expansive soils create discontinuities and anisotropy in the soil.The representative elementary volume(REV)defined by the continuous-media theory cannot be applied to...Cracks resulting from cyclic wetting and drying of expansive soils create discontinuities and anisotropy in the soil.The representative elementary volume(REV)defined by the continuous-media theory cannot be applied to cracked expansive soils that are considered discontinuous media.In this study,direct shear tests of three different scales(30 cm^(2),900 cm^(2),1963 cm^(2))and crack image analysis were carried out on undisturbed soil samples subjected to drying-wetting cycles in-situ.The REV size of expansive soil was investigated using the crack intensity factor(CIF)and soil cohesion.The results show that soil cohesion decreased with increasing sample area,and the development of secondary cracks further exacerbated the size effect of sample on cohesion of the soil.As shrinkage cracks developed,the REV size of the soil gradually increased and plateaued after 3−5 cycles.Under the same drying-wetting cycle conditions,the REV size determined using soil cohesion(REV-C)is 1.75 to 2.97 times the REV size determined using CIF(REV-CIF).Under the influence of shrinkage cracks,the average CIF is positively correlated with the REV size determined using different maximum permissible errors,with the coefficient of correlation greater than 0.9.A method for determining the REV-C based on crack image analysis is proposed,and the REV-C of expansive soil in the study area under different exposure times is given.展开更多
In this paper,the discrete element method(DEM)is used to study the microstructure of expansive soils.The results of the numerical calculations are in agreement with the stress-strain triaxial test curve that is obtain...In this paper,the discrete element method(DEM)is used to study the microstructure of expansive soils.The results of the numerical calculations are in agreement with the stress-strain triaxial test curve that is obtained for a representative expansive soil.Biaxial compression tests are conducted for different confining pressures(50 kpa,100 kpa,and 150 kpa).Attention is paid to the following aspects:deviatoric stress,boundary energy,friction energy,bond energy,strain energy,kinetic energy,and the contact force between grains when the test specimen is strained and to the effect of the different confining pressures on the internal crack expansion.The results of this research show that the cross-section of the specimen is destroyed along the middle part of the specimen itself.When the confining pressure is higher,the impulse is stronger,and this leads to more effective destruction.展开更多
Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering cons...Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.展开更多
Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquak...Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa.展开更多
Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective struc...Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective structure to experience bulging failure due to excessive swelling pressure. To investigate the swelling pressure properties of expansive soil, the constant volume test was employed to study the influence of water content and reserved expansion deformation on the characteristics of swelling pressure in strong expansive soils, and also to explore the evolution mechanism of the swelling pressure. The findings demonstrate that the swelling pressure-time curve can be classified into swelling pressure-time softening and swelling pressure-time stability type. The swelling pressuretime curve of the specimen with low water content is the swelling pressure-time softening type, and the softening level will be weakened with increasing reserved expansion deformation. Besides, the maximum swelling pressure Psmax decreases with increasing water content and reserved expansion deformation, especially for expansion ratio η from 24% to 37%. The reserved deformation has little effect on reducing Psmax when it is beyond 7% of the expansion rate. The specimen with low water content has a more homogeneous structure due to the significant expansion-filling effect, and the fracture and reorganization of the aggregates in the specimens with low water content cause the swelling pressure-time softening behavior. In addition, the proposed swelling pressure-time curve prediction model has a good prediction on the test results. If necessary, a deformation space of about 7% expansion rate is recommended to be reserved in the engineering to reduce the swelling pressure except for keeping a stable water content.展开更多
Expansive soils cause problems with the founding of lightly loaded structures in many parts of the world. Foundation design for expansive soils is one of the most discussed and problematic issues in Australia as expan...Expansive soils cause problems with the founding of lightly loaded structures in many parts of the world. Foundation design for expansive soils is one of the most discussed and problematic issues in Australia as expansive soils were responsible for billions of dollars' worth of damage to man-made structures such as buildings and roads. Several studies and reports indicate that one of the most common and least recognized problems causing severe structural damage to houses lies in expansive soils. In this study, a critical review has been carried out on the current Australian standards for building on expansive soils and they are compared with some techniques that are not included in the current Australian standards for residential slabs and footings. Based on the results of this review, the most effective and economical method has been proposed for construction of footings on all site classifications without restriction to 75mm of characteristic movement. In addition, it has become apparent that as design procedures for footings resting on sites with extreme characteristic movements are not included in the current Australian standards, there is a strong need for well-developed and simplified standard design procedures for characteristic soil movement of greater than 75mm to be included into the Australian Standards.展开更多
The wide engineered application of compacted expansive soils necessitates understanding their behavior under field conditions.The results of this study demonstrate how seasonal climatic variation and stress and bounda...The wide engineered application of compacted expansive soils necessitates understanding their behavior under field conditions.The results of this study demonstrate how seasonal climatic variation and stress and boundary conditions individually or collectively influence the hydraulic and volume change behavior of compacted highly expansive soils.The cyclic wetting and drying(CWD)process was applied for two boundary conditions,i.e.constant stress(CS)and constant volume(CV),and for a wide range of axial stress states.The adopted CWD process affected the hydraulic and volume change behaviors of expansive soils,with the first cycle of wetting and drying being the most effective.The CWD process under CS conditions resulted in shrinkage accumulation and reduction in saturated hydraulic conductivity(k sat).On the other hand,CWD under CV conditions caused a reduction of swell pressure while has almost no impact on k sat.An elastic response to CWD was achieved after the third cycle for saturated hydraulic conductivity(k sat),the third to fourth cycle for the volume change potential under the CV conditions,and the fourth to fifth cycle for the volume change potential under the CS conditions.Finally,both swell pressure(s s)and saturated hydraulic conductivity(k sat)are not fundamental parameters of the expansive soil but rather depend on stress,boundary and wetting conditions.展开更多
Based on the centrifugal model tests on railway embankments of expansive soil in Nanning Kunming railway,the author studied several embankments under different physical conditions. The stress and strain states and s...Based on the centrifugal model tests on railway embankments of expansive soil in Nanning Kunming railway,the author studied several embankments under different physical conditions. The stress and strain states and settlement of the embankments were analyzed, and the obtained results can be used as a reference to field construction.展开更多
Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effect...Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effective stress principle,swelling force principle,and soil–water characteristics.Considering the viscoelasticity and structural damage of unsaturated expansive soil during loading,a fractional hardening–damage model of unsaturated expansive soil was established.The model parameters were established on the basis of the proposed calculation method of shear strength and the triaxial shear experiment on unsaturated expansive soil.The proposed model was verified by the experimental data and a traditional damage model.The proposed model can satisfactorily describe the entire process of the strain-hardening law of unsaturated expansive soil.Finally,by investigating the damage variables of the proposed model,it was found that:(a)when the values of confining pressure and matric suction are close,the coupling of confining pressure and matric suction contributes more to the shear strength;(b)there is a damage threshold for unsaturated expansive soil,and is mainly reflected by strength criterion of infinitesimal body;(c)the strain hardening law of unsaturated expansive soil is mainly reflected by fractional derivative operator.展开更多
To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three group...To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three groups of expansive soil slope model tests were designed to investigate the effects of polyester nonwovens and PWC(P-PWC)composite protection system,three-dimensional vegetation network and PWC(T-PWC)composite protection system,and nonprotection on the soil and water behavior in the slopes under precipitation–evaporation cycles.The results showed that the moisture change of P-PWC and T-PWC composite protected slopes was significantly smaller than that of bare slope,which reduced the sensitivity of slope moisture to environmental changes and improved its stability.The soil temperature of the slope protected by the P-PWC and T-PWC systems at a depth of 70 cm increased by 5.6℃ and 2.7℃,respectively.Using PWC composite protection systems exhibited better thermal storage performance,which could increase the utilization of shallow geothermal resources.Moreover,the maximum average crack widths of the bare slopes were 7.89 and 3.17 times those of the P-PWC and TPWC protected slopes,respectively,and the maximum average crack depths were 6.87 and 3 times those of the P-PWC and T-PWC protected slopes,separately.The PPWC protection system weakened the influence of hydro–thermal coupling on the slopes,inhibited the development of cracks on the slopes,and reduced the soil erosion.The maximum soil erosion of slopes protected by P-PWC and T-PWC systems was 332 and 164 times lower than that of bare slope,respectively.The P-PWC and T-PWC protection systems achieved excellent"anti-seepage and moisture retention"and anti-erosion effects,thus improving the soil and water stability of slopes.These findings can provide important guiding reference for controlling rainwater infiltration and soil erosion in expansive soil slope projects.展开更多
This study examined the effects of using bagasse ash in replacement of ordinary Portland cement(OPC)in the treatment of expansive soils.The study concentrated on the compaction characteristics,volume change,compressiv...This study examined the effects of using bagasse ash in replacement of ordinary Portland cement(OPC)in the treatment of expansive soils.The study concentrated on the compaction characteristics,volume change,compressive strength,splitting tensile strength,microstructure,California bearing ratio(CBR)value,and shear wave velocity of expansive soils treated with cement.Different bagasse ash replacement ratios were used to create soil samples.At varying curing times of 7,14,and 28 days,standard compaction tests,unconfined compressive strength tests,CBR tests,Brazilian split tensile testing,and bender element(BE)tests were carried out.According to X-ray diffraction(XRD)investigations,quartz and crystobalite make up the majority of the minerals in bagasse ash.Bagasse ash contains a variety of grain sizes,including numerous fiber-shaped particles,according to a scanning electronic microscope(SEM)test.For all of the treated specimens with various replacement ratios,the overall additive content has not changed.The results of the Brazilian split tensile tests demonstrate improved tensile strength for all specimens with various replacement proportions.A lower maximum dry density and a greater optimal water content would result from the substitution of bagasse ash.When the replacement ratio is not more than 20%,the CBR values of the parts replaced specimens are even higher than the cement treatments.The results of BE testing on the treated soils show that there is significant stiffness anisotropy but that it steadily diminishes with curing time and replacement ratio.According to the study,bagasse ash is a useful mineral additive,and the best replacement ratio(CBA20)is 20%.展开更多
基金great gratitude to National Key Research and Development Project(Grant No.2019YFC1509800)for their financial supportNational Nature Science Foundation of China(Grant No.12172211)for their financial support.
文摘Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))dataset to explore the possibility of using multi-algorithm hybrid ensemble and dimensionality reduction methods to mitigate the uncertainty of soil parameter prediction.Based on six machine learning(ML)algorithms,the base learner pool is constructed,and four ensemble methods,Stacking(SG),Blending(BG),Voting regression(VR),and Feature weight linear stacking(FWL),are used for the multi-algorithm ensemble.Furthermore,the importance of permutation is used for feature dimensionality reduction to mitigate the impact of weakly correlated variables on predictive modeling.The results show that the proposed methods are superior to traditional prediction models and base ML models,where FWL is more suitable for modeling with small-sample datasets,and dimensionality reduction can simplify the data structure and reduce the adverse impact of the small-sample effect,which points the way to feature selection for predictive modeling.Based on the ensemble methods,the feature importance of the five primary factors affecting P_(s) is the maximum dry density(31.145%),clay fraction(15.876%),swell percent(15.289%),plasticity index(14%),and optimum moisture content(13.69%),the influence of input parameters on P_(s) is also investigated,in line with the findings of the existing literature.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.52378365 and 52179109)Jiangsu Province Excellent Postdoctoral Program(Grant No.2023)China Scholarship Council-University of Ottawa Joint Scholarship.
文摘This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between theσL and the vertical stressσV during soaking and consolidation,(ii)the influences of initial dry densityρd0 and moisture content w 0 on the vertical and lateral swelling pressures at no swelling strain(i.e.σV0 andσL0),and(iii)evolution of theσL during five long-term wetting-drying cycles.Experimental results demonstrated that the post-soakingσL-σV relationships are piecewise linear and their slopes in the passive state(σL>σV)and active state(σL<σV)are similar to that of the consolidationσL-σV relationships in the normal-and over-consolidated states,respectively.The soakingσL-σV relationships converge to the consolidationσL-σV relationships at a thresholdσV where the interparticle swelling is restrained.TheσL0 andσV0 increase monotonically withρd0;however,they show increasing-then-decreasing trends with the w 0.The extent of compaction-induced swelling anisotropy,which is evaluated byσL0/σV0,reduces with an increase in the compaction energy and molding water content.TheσL reduces over moisture cycles and the stress relaxation in theσL during soaking is observed.An approach was developed to predict the at-rest soakingσL-σV relationships,which requires conventional consolidation and shear strength properties and one measurement of theσL-σV relationships during soaking.The proposed approach was validated using the results of three different expansive soils available in the literature.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509901)。
文摘When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining structures become unpredictable.This necessitates the determination of lateral pressure coefficient at rest(k_(0) value)for expansive soils in landfill.Considering compaction,excavation of expansive soils,as well as construction of landfill in different seasons,series of stepwise loading and unloading consolidation tests at various moisture contents were carried out in this work to explore the evolution characteristics of k_(0) value and assess the dependence of k_(0) value on vertical stress and moisture content.Besides,scanning electron microscope(SEM)was used to track the change in microstructural features with vertical stresses.The results indicated that the k_(0) value of expansive soil shows a pronounced nonlinearity and is inextricably linked with vertical stress and moisture content,based on which a prediction formula to estimate the variation in k_(0) value with vertical stress during loading stage was proposed;there is a significant exponential increase in k_(0) value with overconsolidation ratio(OCR)during unloading stage,and OCR dominates the release of horizontal stress of expansive soil;SEM results revealed that with an increase in vertical stress,the anisotropy of expansive soil microstructure increases dramatically,causing a significant directional readjustment,which is macroscopically manifested as an initially rapid increase in k_(0) value;but when vertical stress increases to a critical value,the anisotropy of microstructure increases marginally,indicating a stable orientation occurring in the soil microstructure,which causes the k_(0) value to maintain a relatively stable value.
基金provided by the National Natural Science Foundation of China (Grant No. 51169005)
文摘Alternating rainfall and evaporation in nature severely impact the shear strength of expansive soils. This study presents an instrument for simulating the effect of wetting–drying cycles on the strength of expansive soils under different loads, and its testing error is verified. With this instrument,direct shear tests were performed on samples experiencing 0-6 cycles under vertical loads of 0 kPa,5 kPa, 15 kPa, and 30 k Pa. The results found that this instrument provides a new method for evaluating the effects of wetting–drying cycles on soils, and this method represents actual engineering conditions more accurately than do preexisting methods. It accurately controls the water content within 1% while simulating the specified loads at different soil depths.Cohesion is significantly affected by wetting–drying cycles, while the friction angle is not as sensitive to these cycles. Decrease in shear strength can be attributed to the fissures in soils caused by wetting–drying cycles. The existence of vertical loads effectively restricts shrinkage fissuring and cohesion attenuation, consequently inhibiting the attenuation of shear strength.
文摘The factors influencing on soil expansion are reviewed in the paper. A mechanics model to determine swelling potential of expansive soils is presented. The mechanics model is based on the softening of expansive soil following absorption of water. The constitutive relationships of the mechanics model include the relationship among swelling under free load, swelling under load, and vertical pressure, and the relationship of swelling under free loading and swelling pressure. A concept of additional compression modulus is introduced and the method determining the modulus is proposed. Finally, the predicted results of swelling potential using the mechanics model compare well with the measured data.
文摘Typical failure types of slopes of expansive soils are divided to two kinds: slip in surface layer and slip in shallow layer. Based on total strength law of expansive soils, the relationship between its water content and shear strength inculding cohesion and friction angle, was studied in detail. Acoording to change of water content and depth effect during rainfall, distribution of shear strength in slopes of expansive soils was analyzed. Finally, with a slope of expansive soils in Nanning city of Guangxi Autonomous Region of China as a case, safety factor and slip surface was studied.
文摘Expansive soils can pose tough issues to civil engineering applications. In a typical year, expansive soils can cause a greater financial loss than earthquakes, floods, hurricanes and tornadoes combined. Various means have been studied to tackle problems associated with expansive soils. The majority of the methods are based on treatment of the soils. While the methods may be effective in some cases, their limitations are also obvious: The treatment normally involves complex processes and may not be eco-friendly in the long run. In many cases, the effectiveness of the treatment is uncertain. A retaining system that maintains a constant lateral pressure is proposed, which consists of three components: the retaining sheet, the slip-force device and the bracing column. The retaining sheet bears the pressure exerted by expansive backfills and is not embedded into the soils. Placed between the retaining sheet and bracing column, the slip-force device permits displacement of the retaining sheet but keeps the force on the sheet and the bracing column constant. The governing equation of the motion of the piston in the slip-force device is derived and a numerical simulation of a practical case is conducted based on the derived governing equation. Numerical results show that as the expansive soil swell, the spring force will increase and the piston will move accordingly. When the pressure of the oil in chamber reach<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">es</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the open threshold of the unidirectional relief valve, the valve will open and the spring force and the oil pressure in the chamber will keep constant. The results also show that some parameters, such as damping ratio, have very slight influences on the device behavior, say 2 × 10</span><sup><span style="font-family:Verdana;">-6</span></sup><span style="font-family:Verdana;"> or even 4.8 × 10</span><sup><span style="font-family:Verdana;">-9</span></sup><span style="font-family:Verdana;">. Theoretical and numerical studies prove the effectiveness of the proposed retaining system.</span></span></span></span>
文摘Volume instability of expansive soils due to moisture fluctuations is often disastrous,causing severe damages and distortions in the supported structures.It is,therefore,necessary to adequately improve the performance of such soils that they can favorably fulfil the post-construction stability requirements.This can be achieved through chemical stabilization using additives such as lime,cement and fly ash.In this paper,suitability of such additives under various conditions and their mechanisms are reviewed in detail.It is observed that the stabilization process primarily involves hydration,cation exchange,flocculation and pozzolanic reactions.The degree of stabilization is controlled by several factors such as additive type,additive content,soil type,soil mineralogy,curing period,curing temperature,delay in compaction,pH of soil matrix,and molding water content,including presence of nano-silica,organic matter and sulfate compounds.Provision of nano-silica not only improves soil packing but also accelerates the pozzolanic reaction.However,presence of deleterious compounds such as sulfate or organic matter can turn the treated soils unfavorable at times even worser than the unstabilized ones.
基金Project 50579017 supported by the National Natural Science Foundation of China
文摘The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can be calculated from the resistivity of the liquid phase. On this basis,the two-part model of resistivity changing with the water saturation of the expansive soil can be deduced. A 2-D resistance grid model is established based on simulating the resistance of ver-tically developed fissures. Variation in measured resistance of vertically developed fissures at different positions can be calculated from this model. Fissure development can be inversely determined from the variation in the measured resis-tance. Finally,the model is verified by an indoor resistivity test for remolded soil samples,indicating that the test result agrees well with that of the model established.
基金Project(41472240)supported by the National Natural Science Foundation of ChinaProjects(2015B25514,2015B17214)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Cracks resulting from cyclic wetting and drying of expansive soils create discontinuities and anisotropy in the soil.The representative elementary volume(REV)defined by the continuous-media theory cannot be applied to cracked expansive soils that are considered discontinuous media.In this study,direct shear tests of three different scales(30 cm^(2),900 cm^(2),1963 cm^(2))and crack image analysis were carried out on undisturbed soil samples subjected to drying-wetting cycles in-situ.The REV size of expansive soil was investigated using the crack intensity factor(CIF)and soil cohesion.The results show that soil cohesion decreased with increasing sample area,and the development of secondary cracks further exacerbated the size effect of sample on cohesion of the soil.As shrinkage cracks developed,the REV size of the soil gradually increased and plateaued after 3−5 cycles.Under the same drying-wetting cycle conditions,the REV size determined using soil cohesion(REV-C)is 1.75 to 2.97 times the REV size determined using CIF(REV-CIF).Under the influence of shrinkage cracks,the average CIF is positively correlated with the REV size determined using different maximum permissible errors,with the coefficient of correlation greater than 0.9.A method for determining the REV-C based on crack image analysis is proposed,and the REV-C of expansive soil in the study area under different exposure times is given.
基金financially supported by the National Science Foundation of China(41877251)the science and technology innovation fund project of Xinxiang University(15ZA06).
文摘In this paper,the discrete element method(DEM)is used to study the microstructure of expansive soils.The results of the numerical calculations are in agreement with the stress-strain triaxial test curve that is obtained for a representative expansive soil.Biaxial compression tests are conducted for different confining pressures(50 kpa,100 kpa,and 150 kpa).Attention is paid to the following aspects:deviatoric stress,boundary energy,friction energy,bond energy,strain energy,kinetic energy,and the contact force between grains when the test specimen is strained and to the effect of the different confining pressures on the internal crack expansion.The results of this research show that the cross-section of the specimen is destroyed along the middle part of the specimen itself.When the confining pressure is higher,the impulse is stronger,and this leads to more effective destruction.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509901).
文摘Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.
基金National Natural Science Foundation of China under Grant Nos.52208345,52008124,52268054the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection under Grant No.SKLGP2022K002+1 种基金the Natural Science Foundation of Jiangsu Province under Grant No.BK20210479the Fundamental Research Funds for the Central Universities under Grant No.JUSRP121055。
文摘Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa.
基金financially supported by the National Key R&D Program of China (Grant No. 2019YFC1509901)。
文摘Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective structure to experience bulging failure due to excessive swelling pressure. To investigate the swelling pressure properties of expansive soil, the constant volume test was employed to study the influence of water content and reserved expansion deformation on the characteristics of swelling pressure in strong expansive soils, and also to explore the evolution mechanism of the swelling pressure. The findings demonstrate that the swelling pressure-time curve can be classified into swelling pressure-time softening and swelling pressure-time stability type. The swelling pressuretime curve of the specimen with low water content is the swelling pressure-time softening type, and the softening level will be weakened with increasing reserved expansion deformation. Besides, the maximum swelling pressure Psmax decreases with increasing water content and reserved expansion deformation, especially for expansion ratio η from 24% to 37%. The reserved deformation has little effect on reducing Psmax when it is beyond 7% of the expansion rate. The specimen with low water content has a more homogeneous structure due to the significant expansion-filling effect, and the fracture and reorganization of the aggregates in the specimens with low water content cause the swelling pressure-time softening behavior. In addition, the proposed swelling pressure-time curve prediction model has a good prediction on the test results. If necessary, a deformation space of about 7% expansion rate is recommended to be reserved in the engineering to reduce the swelling pressure except for keeping a stable water content.
文摘Expansive soils cause problems with the founding of lightly loaded structures in many parts of the world. Foundation design for expansive soils is one of the most discussed and problematic issues in Australia as expansive soils were responsible for billions of dollars' worth of damage to man-made structures such as buildings and roads. Several studies and reports indicate that one of the most common and least recognized problems causing severe structural damage to houses lies in expansive soils. In this study, a critical review has been carried out on the current Australian standards for building on expansive soils and they are compared with some techniques that are not included in the current Australian standards for residential slabs and footings. Based on the results of this review, the most effective and economical method has been proposed for construction of footings on all site classifications without restriction to 75mm of characteristic movement. In addition, it has become apparent that as design procedures for footings resting on sites with extreme characteristic movements are not included in the current Australian standards, there is a strong need for well-developed and simplified standard design procedures for characteristic soil movement of greater than 75mm to be included into the Australian Standards.
文摘The wide engineered application of compacted expansive soils necessitates understanding their behavior under field conditions.The results of this study demonstrate how seasonal climatic variation and stress and boundary conditions individually or collectively influence the hydraulic and volume change behavior of compacted highly expansive soils.The cyclic wetting and drying(CWD)process was applied for two boundary conditions,i.e.constant stress(CS)and constant volume(CV),and for a wide range of axial stress states.The adopted CWD process affected the hydraulic and volume change behaviors of expansive soils,with the first cycle of wetting and drying being the most effective.The CWD process under CS conditions resulted in shrinkage accumulation and reduction in saturated hydraulic conductivity(k sat).On the other hand,CWD under CV conditions caused a reduction of swell pressure while has almost no impact on k sat.An elastic response to CWD was achieved after the third cycle for saturated hydraulic conductivity(k sat),the third to fourth cycle for the volume change potential under the CV conditions,and the fourth to fifth cycle for the volume change potential under the CS conditions.Finally,both swell pressure(s s)and saturated hydraulic conductivity(k sat)are not fundamental parameters of the expansive soil but rather depend on stress,boundary and wetting conditions.
文摘Based on the centrifugal model tests on railway embankments of expansive soil in Nanning Kunming railway,the author studied several embankments under different physical conditions. The stress and strain states and settlement of the embankments were analyzed, and the obtained results can be used as a reference to field construction.
基金financially supported by Sichuan Huaxi Group Co.,ltd.(No.HXKX2019/015,No.HXKX2019/019,No.HXKX2018/030)the Open Fund of Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology(No.GF2022ZC009)the Open Fund of Sichuan Engineering Research Center for Mechanical Properties and Engineering Technology of Unsaturated Soils(No.SC-FBHT2022-04)。
文摘Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effective stress principle,swelling force principle,and soil–water characteristics.Considering the viscoelasticity and structural damage of unsaturated expansive soil during loading,a fractional hardening–damage model of unsaturated expansive soil was established.The model parameters were established on the basis of the proposed calculation method of shear strength and the triaxial shear experiment on unsaturated expansive soil.The proposed model was verified by the experimental data and a traditional damage model.The proposed model can satisfactorily describe the entire process of the strain-hardening law of unsaturated expansive soil.Finally,by investigating the damage variables of the proposed model,it was found that:(a)when the values of confining pressure and matric suction are close,the coupling of confining pressure and matric suction contributes more to the shear strength;(b)there is a damage threshold for unsaturated expansive soil,and is mainly reflected by strength criterion of infinitesimal body;(c)the strain hardening law of unsaturated expansive soil is mainly reflected by fractional derivative operator.
基金the financial supports from the Key Research and Development Program of Guangxi(No.GUIKE AB22080061)the Guangxi Transportation Industry Key Science and Technology Projects(No.GXJT-2020-02-08)+2 种基金the National Natural Science Foundation of China(No.52268062)the Guangxi Key Project of Nature Science Foundation(No.2020GXNSFDA238024)。
文摘To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three groups of expansive soil slope model tests were designed to investigate the effects of polyester nonwovens and PWC(P-PWC)composite protection system,three-dimensional vegetation network and PWC(T-PWC)composite protection system,and nonprotection on the soil and water behavior in the slopes under precipitation–evaporation cycles.The results showed that the moisture change of P-PWC and T-PWC composite protected slopes was significantly smaller than that of bare slope,which reduced the sensitivity of slope moisture to environmental changes and improved its stability.The soil temperature of the slope protected by the P-PWC and T-PWC systems at a depth of 70 cm increased by 5.6℃ and 2.7℃,respectively.Using PWC composite protection systems exhibited better thermal storage performance,which could increase the utilization of shallow geothermal resources.Moreover,the maximum average crack widths of the bare slopes were 7.89 and 3.17 times those of the P-PWC and TPWC protected slopes,respectively,and the maximum average crack depths were 6.87 and 3 times those of the P-PWC and T-PWC protected slopes,separately.The PPWC protection system weakened the influence of hydro–thermal coupling on the slopes,inhibited the development of cracks on the slopes,and reduced the soil erosion.The maximum soil erosion of slopes protected by P-PWC and T-PWC systems was 332 and 164 times lower than that of bare slope,respectively.The P-PWC and T-PWC protection systems achieved excellent"anti-seepage and moisture retention"and anti-erosion effects,thus improving the soil and water stability of slopes.These findings can provide important guiding reference for controlling rainwater infiltration and soil erosion in expansive soil slope projects.
基金funded by the National Natural Science Foundation of China(Nos.11672066,12172085).
文摘This study examined the effects of using bagasse ash in replacement of ordinary Portland cement(OPC)in the treatment of expansive soils.The study concentrated on the compaction characteristics,volume change,compressive strength,splitting tensile strength,microstructure,California bearing ratio(CBR)value,and shear wave velocity of expansive soils treated with cement.Different bagasse ash replacement ratios were used to create soil samples.At varying curing times of 7,14,and 28 days,standard compaction tests,unconfined compressive strength tests,CBR tests,Brazilian split tensile testing,and bender element(BE)tests were carried out.According to X-ray diffraction(XRD)investigations,quartz and crystobalite make up the majority of the minerals in bagasse ash.Bagasse ash contains a variety of grain sizes,including numerous fiber-shaped particles,according to a scanning electronic microscope(SEM)test.For all of the treated specimens with various replacement ratios,the overall additive content has not changed.The results of the Brazilian split tensile tests demonstrate improved tensile strength for all specimens with various replacement proportions.A lower maximum dry density and a greater optimal water content would result from the substitution of bagasse ash.When the replacement ratio is not more than 20%,the CBR values of the parts replaced specimens are even higher than the cement treatments.The results of BE testing on the treated soils show that there is significant stiffness anisotropy but that it steadily diminishes with curing time and replacement ratio.According to the study,bagasse ash is a useful mineral additive,and the best replacement ratio(CBA20)is 20%.