期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Multi-Branch Fault Line Location Method Based on Time Difference Matrix Fitting
1
作者 Hua Leng Silin He +3 位作者 Jian Qiu Feng Liu Xinfei Huang Jiran Zhu 《Energy Engineering》 EI 2024年第1期77-94,共18页
The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-bran... The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-branch fault location algorithm makes it difficult to meet the demands of high-precision fault localization in the multi-branch distribution network system.In this paper,the multi-branch mainline is decomposed into single branch lines,transforming the complex multi-branch fault location problem into a double-ended fault location problem.Based on the different transmission characteristics of the fault-traveling wave in fault lines and non-fault lines,the endpoint reference time difference matrix S and the fault time difference matrix G were established.The time variation rule of the fault-traveling wave arriving at each endpoint before and after a fault was comprehensively utilized.To realize the fault segment location,the least square method was introduced.It was used to find the first-order fitting relation that satisfies the matching relationship between the corresponding row vector and the first-order function in the two matrices,to realize the fault segment location.Then,the time difference matrix is used to determine the traveling wave velocity,which,combined with the double-ended traveling wave location,enables accurate fault location. 展开更多
关键词 Multi-branch lines distribution network fault location double-ended traveling wave positioning least square method
下载PDF
Research on Asymmetric Fault Location of Wind Farm Collection System Based on Compressed Sensing
2
作者 Huanan Yu Gang Han +1 位作者 Hansong Luo He Wang 《Energy Engineering》 EI 2023年第9期2029-2057,共29页
Aiming at the problem that most of the cables in the power collection systemof offshore wind farms are buried deep in the seabed,whichmakes it difficult to detect faults,this paper proposes a two-step fault location m... Aiming at the problem that most of the cables in the power collection systemof offshore wind farms are buried deep in the seabed,whichmakes it difficult to detect faults,this paper proposes a two-step fault location method based on compressed sensing and ranging equation.The first step is to determine the fault zone through compressed sensing,and improve the datameasurement,dictionary design and algorithmreconstruction:Firstly,the phase-locked loop trigonometric functionmethod is used to suppress the spike phenomenon when extracting the fault voltage,so that the extracted voltage valuewillnot have a large error due to the voltage fluctuation.Secondly,theλ-NIM dictionary is designed by using the node impedancematrix and the fault location coefficient to further reduce the influence of pseudo-fault points.Finally,the CoSaMP algorithmis improved with the generalized Jaccard coefficient to improve the reconstruction accuracy.The second step is to use the ranging equation to accurately locate the asymmetric fault of the wind farm collection system on the basis of determining the fault interval.The simulation results show that the proposedmethod ismore accurate than the compressedsensingmethod andimpedancemethod in fault section location and fault location accuracy,the relative error is reduced from 0.75%to 0.4%,and has a certain anti-noise ability. 展开更多
关键词 Offshore wind farm convergence system compression sensing ranging equation fault location
下载PDF
Adaptive restarting method for LCC-HVDC based on principle of fault location by current injection 被引量:2
3
作者 Ruidong Xu Guobing Song +1 位作者 Junjie Hou Zhongxue Chang 《Global Energy Interconnection》 EI CAS CSCD 2021年第6期554-563,共10页
The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues ... The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues cause a secondary impact on equipment and system power fluctuation.To solve this problem,an adaptive restarting method based on the principle of fault location by current injection is proposed.First,an additional control strategy is proposed to inject a current detection signal.Second,the propagation law of the current signal in the line is analyzed based on the distributed parameter model of transmission line.Finally,a method for identifying fault properties based on the principle of fault location is proposed.The method fully considers the influence of the long-distance transmission line with earth capacitance and overcomes the influence of the increasing effect of the opposite terminal.Simulation results show that the proposed method can accurately identify the fault properties under various complex fault conditions and subsequently realize the adaptive restarting process. 展开更多
关键词 LCC-HVDC Adaptive restarting Current signal injection fault location fault property identification
下载PDF
Accurate Fault Location Modeling for Parallel Transmission Lines Considering Mutual Effect 被引量:1
4
作者 Hamdy A.Ziedan Hegazy Rezk Mujahed Al-Dhaifallah 《Computers, Materials & Continua》 SCIE EI 2021年第4期491-518,共28页
:A new accurate algorithms based on mathematical modeling of two parallel transmissions lines system(TPTLS)as influenced by the mutual effect to determine the fault location is discussed in this work.The distance rela... :A new accurate algorithms based on mathematical modeling of two parallel transmissions lines system(TPTLS)as influenced by the mutual effect to determine the fault location is discussed in this work.The distance relay measures the impedance to the fault location which is the positive-sequence.The principle of summation the positive-,negative-,and zero-sequence voltages which equal zero is used to determine the fault location on the TPTLS.Also,the impedance of the transmission line to the fault location is determined.These algorithms are applied to single-line-to-ground(SLG)and double-line-to-ground(DLG)faults.To detect the fault location along the transmission line,its impedance as seen by the distance relay is determined to indicate if the fault is within the relay’s reach area.TPTLS under study are fed from one-and both-ends.A schematic diagrams are obtained for the impedance relays to determine the fault location with high accuracy. 展开更多
关键词 New accurate algorithms mathematical modeling fault location scheme diagrams parallel transmission lines mutual effect SLG and DLG faults
下载PDF
Small-current grounding fault location method based on transient main resonance frequency analysis 被引量:2
5
作者 Yongjie Zhang Xiaojun Wang +2 位作者 Junjuan Li Yin Xu Guohong Wu 《Global Energy Interconnection》 2020年第4期324-334,共11页
The small-current grounding fault in distribution network is hard to be located because of its weak fault features.To accurately locate the faults,the transient process is analyzed in this paper.Through the study we t... The small-current grounding fault in distribution network is hard to be located because of its weak fault features.To accurately locate the faults,the transient process is analyzed in this paper.Through the study we take that the main resonant frequency and its corresponding component is related to the fault distance.Based on this,a fault location method based on double-end wavelet energy ratio at the scale corresponding to the main resonant frequency is proposed.And back propagation neural network(BPNN)is selected to fit the non-linear relationship between the wavelet energy ratio and fault distance.The performance of this proposed method has been verified in different scenarios of a simulation model in PSCAD/EMTDC. 展开更多
关键词 Small-current grounding fault location Main resonant frequency Double-end wavelet energy ratio Backpropagation neural network(BPNN)
下载PDF
Fault Location Method for STATCOM Connected Transmission Lines Using CCM 被引量:1
6
作者 R. Ilango T. Sree Renga Raja 《Circuits and Systems》 2016年第10期3131-3141,共12页
Determining the fault location using conventional impedance based distance relay in the presence of FACTS controllers is a challenging task in a transmission line. A new distance protection method is developed to loca... Determining the fault location using conventional impedance based distance relay in the presence of FACTS controllers is a challenging task in a transmission line. A new distance protection method is developed to locate the fault in a transmission line compensated with STATCOM with simple calculations. The proposed protection method considers the STATCOM injected/absorbed current to correct the fault loop apparent impedance and accordingly calculates the actual distance to the fault location. The comprehensive equations needed for apparent impedance calculation are also outlined and the performance is evaluated and tested with a typical 400 KV transmission system for different fault types and locations using MATLAB/SIMULINK software. The evaluation results indicate that the new protection method effectively estimates the exact fault location by mitigating the impact of STATCOM on distance relay performance with error less than 0.3%. 展开更多
关键词 Distance Relay fault location Flexible AC Transmission Systems (FACTS) Power System Protection Static Synchronous Compensator (STATCOM)
下载PDF
Parameter identification algorithm for fault location using one terminal data based on frequency domain
7
作者 康小宁 索南加乐 《Journal of Pharmaceutical Analysis》 SCIE CAS 2007年第1期18-23,共6页
This paper presents a novel algorithm of fault location for transmission line.Solving the network spectrum equations for different frequencies the fault can be located accurately by this algorithm with one terminal da... This paper presents a novel algorithm of fault location for transmission line.Solving the network spectrum equations for different frequencies the fault can be located accurately by this algorithm with one terminal data of voltage and current,and the identified parameters,such as fault distance, fault resistance,and opposite terminal system resistance and inductance.The algorithm eliminates the influence of the opposite system impedance on the fault location accuracy,which causes the main error in traditional fault location methods using one terminal data.A method of calculating spectrum from sampled data is also proposed.EMTP simulations show the validity and higher accuracy of the fault location algorithm compared to the existing ones based on one terminal data. 展开更多
关键词 fault location parameter identification frequency domain analysis
下载PDF
Improved fault location method for AT traction power network based on EMU load test
8
作者 Guosong Lin Xuguo Fu +1 位作者 Wei Quan Bin Hong 《Railway Engineering Science》 2022年第4期532-540,共9页
The autotransformer(AT)neutral current ratio method is widely used for fault location in the AT traction power network.With the development of high-speed electrified railways,a large number of data show that the relat... The autotransformer(AT)neutral current ratio method is widely used for fault location in the AT traction power network.With the development of high-speed electrified railways,a large number of data show that the relation between the AT neutral current ratio and the distance from the beginning of the fault AT section to the fault point(Q-L relation)is mostly nonlinear.Therefore,the linear Q-L relation in the traditional fault location method always leads to large errors.To solve this problem,a large number of load-related current data that can be used to describe the Q-L relation are obtained through the load test of the electric multiple unit(EMU).Thus,an improved fault location method based on the back propagation(BP)neural network is proposed in this paper.On this basis,a comparison between the improved method and the traditional method shows that the maximum absolute error and the average absolute error of the improved method are 0.651 km and 0.334 km lower than those of the traditional method,respectively,which demonstrates that the improved method can effectively eliminate the influence of nonlinear factors and greatly improve the accuracy of fault location for the AT traction power network.Finally,combined with a shortcircuit test,the accuracy of the improved method is verified. 展开更多
关键词 fault location EMU load test BP neural network AT traction power network High-speed electrified railway
下载PDF
Fault location by one-terminal measurement in distribution network
9
作者 韩凤玲 王毅 董慧峰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2001年第1期90-93,共4页
Presents the theory behind, the system design of the acquisition of parameters for and the experiment on the fault location by one terminal measurement in actual distribution network, and some of laws governing the on... Presents the theory behind, the system design of the acquisition of parameters for and the experiment on the fault location by one terminal measurement in actual distribution network, and some of laws governing the on site acquisition of parameters and fault location established through experimental research on actual power distribution lines. 展开更多
关键词 distribution network one terminal measurement fault location
下载PDF
T-Shaped Transmission Line Fault Location Based on Phase-Angle Jump Checking
10
作者 Jia’an Xie YurongWang +1 位作者 Guobin Jin Mucheng Wu 《Energy Engineering》 EI 2022年第5期1797-1809,共13页
In order to effectively solve the dead-zone and low-precision of T-shaped transmission line fault location,a new T-shaped transmission line fault location algorithm based on phase-angle jump checking is proposed in th... In order to effectively solve the dead-zone and low-precision of T-shaped transmission line fault location,a new T-shaped transmission line fault location algorithm based on phase-angle jump checking is proposed in this paper.Firstly,the 3-terminal synchronous fundamental positive sequence voltage and current phasors are extracted and substituted into the fault branch distance function to realize the selection of fault branch when the fault occurs;Secondly,use the condition of the fundamental positive sequence voltage phasor at the fault point is equal to calculate all roots(including real root and virtual roots);Finally,the phase-angle jump check function is used for checking calculation,and then the only real root can be determined as the actual fault distance,thereby achieving the purpose of high-precision fault location.MATLAB simulation results show that the proposed new algorithm is feasible and effective with high fault location accuracy and good versatility. 展开更多
关键词 T-shaped transmission line fault location real root and virtual roots phase-angle jump check function
下载PDF
Auxiliary Fault Location on Commercial Equipment Based on Supervised Machine Learning
11
作者 ZHAO Zipiao ZHAO Yongli +1 位作者 YAN Boyuan WANG Dajiang 《ZTE Communications》 2022年第S01期7-15,共9页
As the fundamental infrastructure of the Internet,the optical network carries a great amount of Internet traffic.There would be great financial losses if some faults happen.Therefore,fault location is very important f... As the fundamental infrastructure of the Internet,the optical network carries a great amount of Internet traffic.There would be great financial losses if some faults happen.Therefore,fault location is very important for the operation and maintenance in optical networks.Due to complex relationships among each network element in topology level,each board in network element level,and each component in board level,the con-crete fault location is hard for traditional method.In recent years,machine learning,es-pecially deep learning,has been applied to many complex problems,because machine learning can find potential non-linear mapping from some inputs to the output.In this paper,we introduce supervised machine learning to propose a complete process for fault location.Firstly,we use data preprocessing,data annotation,and data augmenta-tion in order to process original collected data to build a high-quality dataset.Then,two machine learning algorithms(convolutional neural networks and deep neural networks)are applied on the dataset.The evaluation on commercial optical networks shows that this process helps improve the quality of dataset,and two algorithms perform well on fault location. 展开更多
关键词 optical network fault location supervised machine learning
下载PDF
Fault locating for traveling-wave accelerators based on transmission line theory
12
作者 Tong-Ning Hu Hai-Meng Wang +4 位作者 Yi-Feng Zeng Hong-Jie Xu Li Chen Guang-Yao Feng Yuan-Ji Pei 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第8期24-34,共11页
Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared... Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared with commonly used schemes involving dedicated devices or complicated techniques,a convenient approach for breakdown locating based on transmission line(TL)theory offers advantages in the typical constant-gradient TW-accelerating structure.To deliver such an approach,an equivalent TL model has been constructed to equate the TW-accelerating structure based on the fun-damental theory of the TL transient response in the time domain.An equivalence relationship between the TW-accelerating structure and the TL model has been established via analytical derivations associated with grid charts and verified by TL circuit simulations.Furthermore,to validate the proposed fault-locating method in practical applications,an elaborate analysis via such a method has been conducted for the recoverable RF-breakdown phenomena observed at an existing prototype of a TW-accelerating-structure-based beam injector constructed at the Huazhong University of Science and Technology.In addition,further considerations and discussion for extending the applications of the proposed method have been given.This breakdown-locating approach involving the transient response in the framework of TL theory can be a conceivable supple-ment to existing methods,facilitating solution to construction problems at an affordable cost. 展开更多
关键词 Traveling-wave structure RF breakdown fault locating Transmission line
下载PDF
Location of Asymmetric Ground Fault Using Virtual Injected Current Ratio and Two-stage Recovery Strategy in Distribution Networks
13
作者 Haiting Shan Luliang Zhang +1 位作者 Q.H.Wu Mengshi Li 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第1期151-161,共11页
Sparse measurements challenge fault location in distribution networks.This paper proposes a method for asymmetric ground fault location in distribution networks with limited measurements.A virtual injected current vec... Sparse measurements challenge fault location in distribution networks.This paper proposes a method for asymmetric ground fault location in distribution networks with limited measurements.A virtual injected current vector is formulated to estimate the fault line,which can be reconstructed from voltage sags measured at a few buses using compressive sensing(CS).The relationship between the virtual injected current ratio(VICR)and fault position is deduced from circuit analysis to pinpoint the fault.Furthermore,a two-stage recovery strategy is proposed for improving reconstruction accuracy of the current vector,where two different sensing matrixes are utilized to improve the incoherence.The proposed method is validated in IEEE 34 node test feeder.Simulation results show asymmetric ground fault type,resistance,fault position and access of distributed generators(DGs)do not significantly influence performance of our method.In addition,it works effectively under various scenarios of noisy measurement and line parameter error.Validations on 134 node test feeders prove the proposed method is also suitable for systems with more complex structure. 展开更多
关键词 Distribution networks fault location reconstruction accuracy two-stage recovery virtual injected current ratio
原文传递
Single-ended Time Domain Fault Location Based on Transient Signal Measurements of Transmission Lines
14
作者 Jian Luo Yao Liu +2 位作者 Qiushi Cui Jiayong Zhong Lin Zhang 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第2期61-74,共14页
Precise fault location plays an important role in the reliability of modern power systems.With the in-creasing penetration of renewable energy sources,the power system experiences a decrease in system inertia and alte... Precise fault location plays an important role in the reliability of modern power systems.With the in-creasing penetration of renewable energy sources,the power system experiences a decrease in system inertia and alterations in steady-state characteristics following a fault occurrence.Most existing single-ended phasor domain methods assume a certain impedance of the remote-end system or consistent current phases at both ends.These problems present challenges to the applicability of con-ventional phasor-domain location methods.This paper presents a novel single-ended time domain fault location method for single-phase-to-ground faults,one which fully considers the distributed parameters of the line model.The fitting of transient signals in the time domain is real-ized to extract the instantaneous amplitude and phase.Then,to eliminate the error caused by assumptions of lumped series resistance in the Bergeron model,an im-proved numerical derivation is presented for the distrib-uted parameter line model.The instantaneous symmet-rical components are extracted for decoupling and inverse transformation of three-phase recording data.Based on the above,the equation of instantaneous phase constraint is established to effectively identify the fault location.The proposed location method reduces the negative effects of fault resistance and the uncertainty of remote end pa-rameters when relying on one-terminal data for localiza-tion.Additionally,the proposed fault analysis methods have the ability to adapt to transient processes in power systems.Through comparisons with existing methods in three different systems,the fault position is correctly identified within an error of 1%.Also,the results are not affected by sampling rates,data windows,fault inception angles,and load conditions. Index Terms—Fault location,distributed parameter line model,transient signal,renewable energy,instantaneous phase. 展开更多
关键词 fault location distributed parameter line model transient signal renewable energy instantaneous phase
下载PDF
Field experiment using transient energy method to locate a single-phase to ground fault 被引量:1
15
作者 Wei Xie Xuewen Wang +4 位作者 Chen Fang Hengxu Zhang Fang Shi Xiaodong Xing Baicong Sun 《Global Energy Interconnection》 CAS 2020年第6期585-594,共10页
Distribution networks in China and several other countries are predominantly neutral inefficiently grounding systems(NIGSs),and more than 80%of the faults in distribution networks are single-phase-to-ground(SPG)faults... Distribution networks in China and several other countries are predominantly neutral inefficiently grounding systems(NIGSs),and more than 80%of the faults in distribution networks are single-phase-to-ground(SPG)faults.Because of the weak fault current and imperfect monitoring equipment configurations,methods used to determine the faulty line secti ons with SPG faults in NIGSs are in effective.The developme nt and application of distributi on-level phasor measurement units(PMUs)provide further comprehensive fault information for fault diagnosis in a distribution network.When an SPG fault occurs,the transient energy of the faulted line section tends to be higher than the sum of the transient energies of other line sections.In this regard,transient energy-based fault location algorithms appear to be a promising resolution.In this study,a field test plan was designed and implemented for a 10 kV distribution network.The test results dem on strate the effective ness of the transient en ergy-based SPG locati on method in practical distributi on networks. 展开更多
关键词 Sin gle-phase-to-gro und fault fault location Neutral in efficiently groundi ng systems Distributi on n etwork Distribution-level PMU Transient energy.
下载PDF
Fault Location and Classification for Distribution Systems Based on Deep Graph Learning Methods
16
作者 Jiaxiang Hu Weihao Hu +5 位作者 Jianjun Chen Di Cao Zhengyuan Zhang Zhou Liu Zhe Chen Frede Blaabjerg 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第1期35-51,共17页
Accurate and timely fault diagnosis is of great significance for the safe operation and power supply reliability of distribution systems.However,traditional intelligent methods limit the use of the physical structures... Accurate and timely fault diagnosis is of great significance for the safe operation and power supply reliability of distribution systems.However,traditional intelligent methods limit the use of the physical structures and data information of power networks.To this end,this study proposes a fault diagnostic model for distribution systems based on deep graph learning.This model considers the physical structure of the power network as a significant constraint during model training,which endows the model with stronger information perception to resist abnormal data input and unknown application conditions.In addition,a special spatiotemporal convolutional block is utilized to enhance the waveform feature extraction ability.This enables the proposed fault diagnostic model to be more effective in dealing with both fault waveform changes and the spatial effects of faults.In addition,a multi-task learning framework is constructed for fault location and fault type analysis,which improves the performance and generalization ability of the model.The IEEE 33-bus and IEEE 37-bus test systems are modeled to verify the effectiveness of the proposed fault diagnostic model.Finally,different fault conditions,topological changes,and interference factors are considered to evaluate the anti-interference and generalization performance of the proposed model.Experimental results demonstrate that the proposed model outperforms other state-of-the-art methods. 展开更多
关键词 fault diagnosis fault location fault type analysis distribution system deep graph learning multi-task learning
原文传递
Fast Single-phase Fault Location Method Based on Community Graph Depth-first Traversal for Distribution Network
17
作者 Jian Dang Yunjiang Yan +2 位作者 Rong Jia Xiaowei Wang Hui Wei 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第2期612-622,共11页
With the increasing complexity of distribution network structures originating from the high penetration of renewable energy and responsive loads,fast and accurate fault location technology for distribution networks is... With the increasing complexity of distribution network structures originating from the high penetration of renewable energy and responsive loads,fast and accurate fault location technology for distribution networks is a prerequisite for rapid isolation of faults and restoration of the power supply.In this paper,a fault location method based on community graph depth-first traversal is proposed for fast location of single-phase ground faults in distribution networks.First,this paper defines the fault graph weight of the vertices in the distribution network graph model,which can be used to reflect the topology of the vertices and fault points as well as the fluctuation of the vertices’currents.Then,the vertices on the graph model are clustered by using an improved parallel louvain method(IPLM).Finally,the community formed by IPLM is used as the smallest unit for depth-first traversal to achieve fast and accurate location of the fault section.The paper develops a distribution network graph model of IEEE 33-bus system on the graph database for testing.And three other methods are selected for comparison with IPLMDF.The test results show that IPLMDF can achieve fast and accurate fault location when half of the nodes in the distribution network are equipped with D-PMUs.When some of the D-PMUs lose time synchronization,it is still possible to locate the fault section,and at the same time,the locating results can be avoided by falling into local optimal solutions. 展开更多
关键词 Depth-first traversal fault location graph computation single-phase fault
原文传递
Fault location of untransposed double-circuit transmission lines based on an improved Karrenbauer matrix and the QPSO algorithm
18
作者 Minan Tang Hang Lu Bin Li 《Protection and Control of Modern Power Systems》 SCIE EI 2023年第3期139-152,共14页
Some double-circuit transmission lines are untransposed,which results in complex coupling relations between the parameters of the transmission lines.If the traditional modal transformation matrix is directly used to d... Some double-circuit transmission lines are untransposed,which results in complex coupling relations between the parameters of the transmission lines.If the traditional modal transformation matrix is directly used to decouple the parameters,it can lead to large errors in the decoupled modal parameter,errors which will be amplified in the fault location equation.Consequently,it makes the fault location results of the untransposed double-circuit transmission lines less accurate.Therefore,a new modal transformation method is needed to decou-ple the parameter matrix of untransposed double-circuit transmission lines and realize the fault location according to the decoupled modal parameter.By improving the basis of the Karrenbauer matrix,a modal transformation matrix suitable for decoupling parameters of untransposed double-circuit transmission lines is obtained.To address the dif-ficulties in solving the fault location equation of untransposed double-circuit transmission lines,a new fault location method based on an improved Karrenbauer matrix and the quantum-behaved particle swarm optimization(QPSO)algorithm is proposed.Firstly,the line parameter matrix is decomposed into identical and inverse sequence compo-nents using the identical-inverse sequence component transformation.The Karrenbauer matrix is then transformed to obtain the improved Karrenbauer matrix for untransposed double-circuit transmission lines and applied to identi-cal and inverse sequence components to solve the decoupled modal parameter.Secondly,based on the principle that voltage magnitudes at both ends are equal,the fault location equation is expressed using sequence compo-nents at each end,and the QPSO algorithm is introduced to solve the equation.Finally,the feasibility and accuracy of the proposed method are verified by PSCAD simulation.The simulation results fully demonstrate that the innova-tive improvement on the basis of the traditional modal transformation matrix in this paper can realize the modal transformation of the complex coupling parameters of the untransposed double-circuit transmission lines.It causes almost no errors in the decoupling process.The QPSO algorithm can also solve the fault location equation more accu-rately.The new fault location method can realize the accurate fault location of untransposed double-circuit transmis-sion lines. 展开更多
关键词 fault location Untransposed double-circuit transmission lines Karrenbauer matrix Quantum particle
下载PDF
A fault segment location method for distribution networks based on spiking neural P systems and Bayesian estimation
19
作者 Yi Wang Tao Wang Liyuan Liu 《Protection and Control of Modern Power Systems》 SCIE EI 2023年第3期184-195,共12页
With the increasing scale of distribution networks and the mass access of distributed generation,traditional central-ized fault location methods can no longer meet the performance requirements of speed and high accura... With the increasing scale of distribution networks and the mass access of distributed generation,traditional central-ized fault location methods can no longer meet the performance requirements of speed and high accuracy.There-fore,this paper proposes a fault segment location method based on spiking neural P systems and Bayesian estimation for distribution networks with distributed generation.First,the distribution network system topology is decoupled into single-branch networks.A spiking neural P system with excitatory and inhibitory synapses is then proposed to model the suspected faulty segment,and its matrix reasoning algorithm is executed to obtain a preliminary set of location results.Finally,the Bayesian estimation and contradiction principle are applied to verify and correct the ini-tial results to obtain the final location results.Simulation results based on the IEEE 33-node system validate the feasi-bility and effectiveness of the proposed method. 展开更多
关键词 Distribution network fault location Spiking neural P system Bayesian estimation Contradiction principle
下载PDF
Fault Location Approach to Distribution Networks Based on Custom State Estimator
20
作者 Luis F.Ugarte Madson C.de Almeida Luís H.T.Bandória 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第6期1878-1889,共12页
This paper presents a properly designed branchcurrent based state estimator(BCBSE)used as the main core ofan accurate fault location approach(FLA)devoted to distribution networks.Contrary to the approaches available i... This paper presents a properly designed branchcurrent based state estimator(BCBSE)used as the main core ofan accurate fault location approach(FLA)devoted to distribution networks.Contrary to the approaches available in the literature,it uses only a limited set of conventional measurementsobtained from smart meters to accurately locate faults at busesor branches without requiring measurements provided by phasor measurement units(PMUs).This is possible due to themethods used to model the angular reference and the faultedbus,in addition to the proper choice of the weights in the stateestimator(SE).The proposed approach is based on a searchingprocedure composed of up to three stages:①the identificationof the faulted zones;②the identification of the bus closest tothe fault;and③the location of the fault itself,searching onbranches connected to the bus closest to the fault.Furthermore,this paper presents a comprehensive assessment of the proposedapproach,even considering the presence of distributed generation,and a sensitivity study on the proper weights required bythe SE for fault location purposes,which can not be found inthe literature.Results show that the proposed BCBSE-basedFLA is robust,accurate,and aligned with the requirements ofthe traditional and active distribution networks. 展开更多
关键词 Active distribution network branch current based state estimator fault location smart meter
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部