[Objective] The aim of this study was to extract effective feature bands of damaged rice leaves by planthoppers to make identification and classification rapidly from great amounts of imaging spectral data. [Method] T...[Objective] The aim of this study was to extract effective feature bands of damaged rice leaves by planthoppers to make identification and classification rapidly from great amounts of imaging spectral data. [Method] The experiment, using multi-spectral imaging system, acquired the multi-spectral images of damaged rice leaves from band 400 to 720 nm by interval of 5 nm. [Result] According to the principle of band index, it was calculated that the bands at 515, 510, 710, 555, 630, 535, 505, 530 and 595 nm were having high band index value with rich information and little correlation. Furthermore, the experiment used two classification methods and calcu-lated the classification accuracy higher than 90.00% for feature bands and ful bands of damaged rice leaves by planthoppers respectively. [Conclusion] It can be con-cluded that these bands can be considered as effective feature bands to identify damaged rice leaves by planthoppers quickly from a large scale of crops.展开更多
The breeding and selection of resistant varieties is an effective way to minimize wheat Fusarium head blight(FHB)hazards,so it is important to identify and evaluate resistant varieties.The traditional resistance pheno...The breeding and selection of resistant varieties is an effective way to minimize wheat Fusarium head blight(FHB)hazards,so it is important to identify and evaluate resistant varieties.The traditional resistance phenotype identification is still largely dependent on time-consuming manual methods.In this paper,the method for evaluating FHB resistance in wheat ears was optimized based on the fusion feature wavelength images of the hyperspectral imaging system and the Faster R-CNN algorithm.The spectral data from 400-1000 nm were preprocessed by the multiple scattering correction(MSC)algorithm.Three feature wavelengths(553 nm,682 nm and 714 nm)were selected by analyzing the X-loading weights(XLW)according to the absolute value of the peaks and troughs in different principal component(PC)load coefficient curves.Then,the different fusion methods of the three feature wavelengths were explored with different weight coefficients.Faster R-CNN was trained on the fusion and RGB datasets with VGG16,AlexNet,ZFNet,and ResNet-50 networks separately.Then,the other detection models SSD,YOLOv5,YOLOv7,CenterNet,and RetinaNet were used to compare with the Faster R-CNN model.As a result,the Faster R-CNN with VGG16 was best with the mAP(mean Average Precision)ranged from 97.7%to 98.8%.The model showed the best performance for the Fusion Image-1 dataset.Moreover,the Faster R-CNN model with VGG16 achieved an average detection accuracy of 99.00%,which was 23.89%,1.21%,0.75%,0.62%,and 8.46%higher than SSD,YOLOv5,YOLOv7,CenterNet,and RetinaNet models.Therefore,it was demonstrated that the Faster R-CNN model based on the hyperspectral feature image fusion dataset proposed in this paper was feasible for rapid evaluation of wheat FHB resistance.This study provided an important detection method for ensuring wheat food security.展开更多
The occurrence of both band-like and atom-like Auger spectra involving valence band electron of d-transition metals is discussed based on the two-step model of the Auger electron emission, i.e.an initial core-hole is ...The occurrence of both band-like and atom-like Auger spectra involving valence band electron of d-transition metals is discussed based on the two-step model of the Auger electron emission, i.e.an initial core-hole is first generated and the Auger transition occurs between the core-hole andthe valence states, The occupied vaIence states relax to screen the core-hole which results in a redistribution of the valence electrons, The electronic states concerned by the Auger transitionare calculated by the FLAPW method. There is a clear relation between band-like and atom-like features of the spectra and the different responses of these metals to the existence of a core-hole.展开更多
基金Supported by National Natural Science Foundation of China under Grant(No.60968001,61168003)Natural Science Foundation of Yunnan Province under Grant(No.2011FZ079,2009CD047)National Training Programs of Innovation and Entrepreneurship for Undergraduates under Grant(No.201210681005,201310681004)~~
文摘[Objective] The aim of this study was to extract effective feature bands of damaged rice leaves by planthoppers to make identification and classification rapidly from great amounts of imaging spectral data. [Method] The experiment, using multi-spectral imaging system, acquired the multi-spectral images of damaged rice leaves from band 400 to 720 nm by interval of 5 nm. [Result] According to the principle of band index, it was calculated that the bands at 515, 510, 710, 555, 630, 535, 505, 530 and 595 nm were having high band index value with rich information and little correlation. Furthermore, the experiment used two classification methods and calcu-lated the classification accuracy higher than 90.00% for feature bands and ful bands of damaged rice leaves by planthoppers respectively. [Conclusion] It can be con-cluded that these bands can be considered as effective feature bands to identify damaged rice leaves by planthoppers quickly from a large scale of crops.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20221518)the Jiangsu Agriculture Science and Technology Innovation Fund(Grant No.CX(23)1002)。
文摘The breeding and selection of resistant varieties is an effective way to minimize wheat Fusarium head blight(FHB)hazards,so it is important to identify and evaluate resistant varieties.The traditional resistance phenotype identification is still largely dependent on time-consuming manual methods.In this paper,the method for evaluating FHB resistance in wheat ears was optimized based on the fusion feature wavelength images of the hyperspectral imaging system and the Faster R-CNN algorithm.The spectral data from 400-1000 nm were preprocessed by the multiple scattering correction(MSC)algorithm.Three feature wavelengths(553 nm,682 nm and 714 nm)were selected by analyzing the X-loading weights(XLW)according to the absolute value of the peaks and troughs in different principal component(PC)load coefficient curves.Then,the different fusion methods of the three feature wavelengths were explored with different weight coefficients.Faster R-CNN was trained on the fusion and RGB datasets with VGG16,AlexNet,ZFNet,and ResNet-50 networks separately.Then,the other detection models SSD,YOLOv5,YOLOv7,CenterNet,and RetinaNet were used to compare with the Faster R-CNN model.As a result,the Faster R-CNN with VGG16 was best with the mAP(mean Average Precision)ranged from 97.7%to 98.8%.The model showed the best performance for the Fusion Image-1 dataset.Moreover,the Faster R-CNN model with VGG16 achieved an average detection accuracy of 99.00%,which was 23.89%,1.21%,0.75%,0.62%,and 8.46%higher than SSD,YOLOv5,YOLOv7,CenterNet,and RetinaNet models.Therefore,it was demonstrated that the Faster R-CNN model based on the hyperspectral feature image fusion dataset proposed in this paper was feasible for rapid evaluation of wheat FHB resistance.This study provided an important detection method for ensuring wheat food security.
文摘The occurrence of both band-like and atom-like Auger spectra involving valence band electron of d-transition metals is discussed based on the two-step model of the Auger electron emission, i.e.an initial core-hole is first generated and the Auger transition occurs between the core-hole andthe valence states, The occupied vaIence states relax to screen the core-hole which results in a redistribution of the valence electrons, The electronic states concerned by the Auger transitionare calculated by the FLAPW method. There is a clear relation between band-like and atom-like features of the spectra and the different responses of these metals to the existence of a core-hole.