期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
Four-channel catalytic micro-reactor based on alumina hollow fiber membrane for efficient catalytic oxidation of CO
1
作者 Baichuan Xu Bin Wang Tao Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期140-147,共8页
The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a fou... The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane,which uses phase inversion method for structural molding and regulation.Due to the advantages of its carrier,it can achieve lower ignition temperature under low noble metal loading.With Pd/CeO_(2) at a loading rate of 2.3%(mass),the result showed that the reaction ignition temperature is even less than 160℃,which is more than 90℃ lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions.The technology in turn significantly reduces the energy consumption of the reaction.And stability tests were conducted under constant conditions for 1000 h,which proved that this catalytic converter has high catalytic efficiency and stability,providing prospects for the design of innovative catalytic converters in the future. 展开更多
关键词 Catalytic converter Precious metal catalyst Phase inversion method Hollow fiber membrane CO oxidation
下载PDF
Research of Oxidation Resistance of PVDF Hollow Fiber Membrane Used in Water Treatment
2
作者 曾令强 王志强 陈文清 《Agricultural Science & Technology》 CAS 2010年第9期17-21,共5页
[Objective] The aim was to research the influences of different formulations on oxidation resistance of PVDF hollow fiber membrane.[Method]The immersion precipitation phase inversion method was employed to make castin... [Objective] The aim was to research the influences of different formulations on oxidation resistance of PVDF hollow fiber membrane.[Method]The immersion precipitation phase inversion method was employed to make casting solution with different formulations into hollow fiber membrane.The membrane was immersed in 1% NaClO solution for testing its performance changes.[Result]The membrane made by materials with bigger molecular weight had better oxidation resistance performance;the surfactant tween-80 could increase water flux,but lead to lower rupture intension;Pore-forming agent PEG400 do better than PVP in the oxidation resistance of membrane.[Conclusion]This study will provide a good idea for the development of the PVDF membrane with high oxidation resistance. 展开更多
关键词 Water treatment Hollow fiber membrane Oxidation resistance
下载PDF
Performances of biological aerated filter employing hollow fiber membrane segments of surface-improved poly(sulfone) as biofilm carriers 被引量:9
3
作者 SHEN Ying-jie WU Guang-xia +5 位作者 FAN Yao-bo ZHONG Hui WU Lin-lin ZHANG Shao-lai ZHAO Xian-hong ZHANG Wei-jun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第7期811-817,共7页
Using the surface of poly (sulfone) hollow fiber membrane segments as grafted layer, the hydrophilic acrylamide chain was grafted on by UV-photoinduced grafting polymerization. The gained improvement of surface wett... Using the surface of poly (sulfone) hollow fiber membrane segments as grafted layer, the hydrophilic acrylamide chain was grafted on by UV-photoinduced grafting polymerization. The gained improvement of surface wettability for the modified membrane was tested by measuring the contact-angle as well as FTIR spectra. Then correlation between the hydrophilic ability of support material and the biofilm adherence ability was demonstrated by comparing the pollutant removal rates from urban wastewater via two identical lab-scale up-flow biological aerated filters, one employed the surface wettability modified poly (sulfone) hollow fiber membrane segment as biofilm carder and the other employed unmodified membrane segment as biofilm carder. The experimental results showed that under the conditions of influent flux 5 L/h, hydraulic retention time 9 h and gas to liquid ratio (G/L) 10: 1, the removal rates of chemical oxygen demand (COD) and ammonium nitrogen (NH4^+-N) for the modified packing filter and the unmodified packing filter was averaged at 83.64% and 96.25%, respectively, with the former filter being 5%-20% more than the latter. The effluent concentration of COD, NH4^+-N and turbidity for the modified packing filter was 25.25 mg/L, 2 mg/L and 8 NTU, respectively. Moreover, the ammonium nitrogen removal performance of the filter packing the modified PSF was compared with the other bioreactor packing of an efficient floating medium. The biomass test indicated that the modified membrane matrixes provided better specific adhesion (3310-5653 mg TSS/L support), which gave a mean of 1000 mg TSS/L more than the unmodified membrane did. In addition, the phenomenon of simultaneous denitrification on the inner surface of the support and nitrification on the outer surface was found in this work. 展开更多
关键词 surface modification UV-photoinduced grafting polymerization NITRIFICATION DENITRIFICATION hollow fiber membrane biofilm attachment
下载PDF
Effects of F127 on Properties of PVB/F127 Blend Hollow Fiber Membrane via Thermally Induced Phase Separation 被引量:5
4
作者 邱运仁 松山秀人 +2 位作者 钟宏 叶红齐 黄可龙 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第2期207-216,共10页
Hydrophilic poly(vinyl butyral)(PVB) /Pluronic F127(F127) blend hollow fiber membranes were prepared via thermally induced phase separation(TIPS) ,and the effects of blend composition on the performance of hydrophilic... Hydrophilic poly(vinyl butyral)(PVB) /Pluronic F127(F127) blend hollow fiber membranes were prepared via thermally induced phase separation(TIPS) ,and the effects of blend composition on the performance of hydrophilic PVB/F127 blend hollow fiber membrane were investigated.The addition of F127 to PVB/polyethylene glycol(PEG) system decreases the cloud point temperature,while the cloud point temperature increases slightly with the addition of F127 to 20%(by mass) PVB/F127/PEG200 system when the concentration of F127 is not higher than 5%(by mass) .Light scattering results show that the initial inter-phase periodic distance formed from the phase separation of 20%(by mass) PVB/F127/PEG200 system decreases with the addition of F127,so does the growth rate during cooling process.The blend hollow fiber membrane prepared at air-gap 5mm,of which the water permeability increases and the rejection changes little with the increase of F127 concentration.For the membrane prepared at zero air-gap,both water permeability and rejection of the PVB/F127 blend membrane are greater than those of PVB membrane,while the tensile strength changes little.Elementary analysis shows that most F127 in the polymer solution can firmly exist in the polymer matrix,increasing the hydrophilicity of the blend membrane prepared at air-gap of 5mm. 展开更多
关键词 thermally induced phase separation hollow fiber membrane blend membrane poly(vinyl butyral) Pluronic F127
下载PDF
CO2/CH4 separation using inside coated thin film composite hollow fiber membranes prepared by interfacial polymerization 被引量:4
5
作者 Eun-Sung Jo Xinghai An +3 位作者 Pravin G.Ingole Won-Kil Choi Yeong-Sung Park Hyung-Keun Lee 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第3期278-287,共10页
Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was deve... Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups. 展开更多
关键词 Thin-film composite hollow fiber membrane Interfacial polymerization CHMA/TMC CO2/CH4 separation
下载PDF
STRUCTURE AND PROPERTIES OF COMPOSITE POLYURETHANE HOLLOW FIBER MEMBRANES 被引量:3
6
作者 Xian-fengLi Chang-faXiao 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2005年第2期203-210,共8页
Composite polyurethane(PU)-SiO_2 hollow fiber membranes were successfully prepared via optimizing thetechnique of dry-jet wet spinning,and their pressure-responsibilities were confirmed by the relationships of pure wa... Composite polyurethane(PU)-SiO_2 hollow fiber membranes were successfully prepared via optimizing thetechnique of dry-jet wet spinning,and their pressure-responsibilities were confirmed by the relationships of pure water flux-transmembrane pressure(PWF-TP)for the first time.The origin for this phenomenon was analyzed on the basis of membranestructure and material characteristics.The effects of SiO_2 content on the structure and properties of membrane wereinvestigated.The experimental results indicated that SiO_2 in membrane created a great many interfacial micro-voids andplayed an important role in pressure-responsibility,PWF and rejection of membrane:with the increase of SiO_2 content,theability of membrane recovery weakened,PWF increased,and rejection decreased slightly. 展开更多
关键词 POLYURETHANE Silicon dioxide Composite hollow fiber membrane Pressure-responsibility.
下载PDF
Effects of Additives and Coagulant Temperature on Fabrication of High Performance PVDF/Pluronic F127 Blend Hollow Fiber Membranes via Nonsolvent Induced Phase Separation 被引量:3
7
作者 Chun Heng Loh Rong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第1期71-79,共9页
Poly(vinylidene fluoride) (PVDF) has become one of the most popular materials for membrane preparation via nonsolvent induced phase separation (NIPS) process. In this study, an amphiphilic block copolymer, Pluro... Poly(vinylidene fluoride) (PVDF) has become one of the most popular materials for membrane preparation via nonsolvent induced phase separation (NIPS) process. In this study, an amphiphilic block copolymer, Pluronic F127, has been used as both a pore-former and a surface-modifier in the fabrication of PVDF hollow fibermembranes to enhance the membrane permeability and hydrophilicity. The effects of 2nd additive and coagulant temperature on the formation of PVDF/Pluronic F 127 membranes have also been investigated. The as-spun hollow fibers were characterized in terms of cross-sectional morphology, pure water permeation (PWP), relative molecular mass cut-off (MWCO), membrane chemistry, and hydrolphilicity. It was obsered that the addition of Pluronic F 127 significantly increased the PWP of as-spun fibers, while the membrane contact angle was reduced. However, the size of macrovoids in the membranes was undesirably large. The addition of a 2nd additive, including lithium chloride (LiC1) and water, or an increase in coagulant temperature was found to effectively suppress the macrovoid for- mation in the Pluronic-containing membranes. In addition, the use of LiC1 as a 2nd additive also further enhanced the PWP and hydrophilicity of the membranes, while the surface pore size became smaller. PVDF hollow fiber with a PWP as high as 2330 L·m-2·h-1·MPa-1, a MWCO of 53000 and'a contact angle of 71 o was successfully fabricated with 3% (by mass) of Pluronic F127 and 3% (by mass) of LiC1 at a coagulant temperature of 25 ℃, which shows better performance as compared with most of PVDF hollow fiber membranes made by NIPS method. 展开更多
关键词 amphiphilic block copolymer pore forming surface modifying additive poly(vinylidene fluoride) hollow fiber membrane
下载PDF
Synergistic action of non-solvent induced phase separation in preparation of poly(vinyl butyral) hollow fiber membrane via thermally induced phase separation 被引量:3
8
作者 邱运仁 漆静 韦玉清 《Journal of Central South University》 SCIE EI CAS 2014年第6期2184-2190,共7页
A systematic study of air gap distance effects on the structure and properties of poly(vinyl butyral)hollow fiber membrane via thermally induced phase separation(TIPS)has been carried out.The results show that the hol... A systematic study of air gap distance effects on the structure and properties of poly(vinyl butyral)hollow fiber membrane via thermally induced phase separation(TIPS)has been carried out.The results show that the hollow fiber membrane prepared at air gap zero has no skin layer; the pore size near the outer surface is larger than that near the inner surface; and the special pore channel-like structure near the outer surface is formed,which is quite different with the typical sponge-like structure caused by TIPS and the finger-like structure caused by non-solvent induced phase separation(NIPS),because of the synergistic action of non-solvent induced phase separation at air gap zero.The pore size gradually decreases from outer surface layer to the intermediate layer,but increases gradually from intermediate layer to the inner surface layer.With the increase of air gap distance,the pore size near the outer surface gets smaller and a dense skin layer is formed,and the pore size gradually increases from the outer surface layer to the inner surface layer.Water permeability of the hollow fiber membrane decreases with air gap distance,the water permeability decreases sharply from 45.50×10-7 to 4.52×10-7 m3/(m2·s·kPa)as air gap increases from 0 to 10 mm at take-up speed of 0.236 m/s,further decreases from 4.52×10-7 to 1.00×10-8 m3/(m2·s·kPa)as the air gap increases from 10 to 40 mm.Both the breaking strength and the elongation increase with the increase of air gap distance.The breaking strength increases from 2.25 MPa to 4.19 MPa and the elongation increases from 33.9% to 132.6% as air gap increases from 0 mm to 40 mm at take-up speed 0.236 m/s. 展开更多
关键词 thermally induced phase separation hollow fiber membranes synergistic action hydrophilic membrane
下载PDF
Mathematic Model of Unsteady Penetration Mass Transfer in Randomly Packed Hollow Fiber Membrane Module 被引量:2
9
作者 张秀莉 张泽廷 +1 位作者 张卫东 郝欣 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期185-190,共6页
Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penet... Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penetration mass transfer theory. The cross section of module is subdivided into many small cells which contains only one hollow-fiber. The cross sectional area distribution of these cells is presented by the normal probability density distribution function. It has been obtained that there was a most serious non-ideal flow in shell side at moderate mean packing density, and the large amount of fluid flowed and transferred mass through a small number of large voids. Thus mass transfer process is dominated by the fluid through the larger void area. The mass transfer process in each cell is described by the unsteady penetration theory. The overall mass transfer coefficient equals to the probability addition of the mean mass transfer coefficient in each cell. The comparisons of the values calculated by the model established with the empirical correlations and the experimental data of this work have been done.The predicted overall mass transfer coefficients are in good agreement with experimental data. 展开更多
关键词 hollow fiber membrane module mass transfer membrane separation mathematic model
下载PDF
Improvement of porous polyvinylidene fluoride-co-hexafluropropylene hollow fiber membranes for sweeping gas membrane distillation of ethylene glycol solution 被引量:2
10
作者 M.Ajdar A.Azdarpour +1 位作者 A.Mansourizadeh B.Honarvar 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第12期3002-3010,共9页
Porous polyvinylidene fluoride-co-hexafluropropylene(PVDF-HFP)hollow fiber membranes were fabricated through a wet spinning process.In order to improve the membrane structure,composition of the polymer solution was ad... Porous polyvinylidene fluoride-co-hexafluropropylene(PVDF-HFP)hollow fiber membranes were fabricated through a wet spinning process.In order to improve the membrane structure,composition of the polymer solution was adjusted by studying ternary phase diagrams of polymer/solvent/non-solvent.The prepared membranes were used for sweeping gas membrane distillation(SGMD)of 20 wt% ethylene glycol(EG)aqueous solution.The membranes were characterized by different tests such as N2 permeation,overall porosity,critical water entry pressure(CEPw),water contact angle and collapsing pressure.From FESEM examination,addition of 3 wt% glycerol in the PVDF-HFP solution,produced membranes with smaller finger-likes cavities,higher surface porosity and smaller pore sizes.Increasing the polymer concentration up to 21 wt% resulted in a dense spongy structure which could significantly reduce the N2 permeance.The membrane prepared by 3 wt% glycerol and 17 wt% polymer demonstrated an improved structure with mean pore size of 18 nm and a high surface porosity of 872 m^−1.CEPw of 350 kPa and overall porosity of 84% were also obtained for the improved membrane.Collapsing pressure of the membranes relatively improved by increasing the polymer concentration.From the SGMDtest,the developed membrane represented a maximumpermeate flux of 28 kg·m^−2·h^−1 which is almost 19% higher than the flux of plain membrane.During 120 h of a long-termSGMD operation,a gradual flux reduction of 30% was noticed.In addition,EG rejection reduced from 100% to around 99.5% during 120 h of the operation. 展开更多
关键词 PVDF-HFP hollow fiber membrane Ternary phase diagram membrane characterization Sweeping gas membrane distillation Ethylene glycol
下载PDF
MORPHOLOGIES AND GAS SEPARATION PROPERTIES OF MELT-SPUN ASYMMETRIC POLY(4-METHYL-1-PENTENE)HOLLOW FIBER MEMBRANES 被引量:2
11
作者 徐志康 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2003年第3期369-372,共4页
Poly(4-methyl-1-pentene) (PMP) hollow fiber membranes were prepared by the melt-spun and cold-stretch(MSCS) method. Scanning electronic microscopy (SEM) was used to characterize the section and surface structures of t... Poly(4-methyl-1-pentene) (PMP) hollow fiber membranes were prepared by the melt-spun and cold-stretch(MSCS) method. Scanning electronic microscopy (SEM) was used to characterize the section and surface structures of themembranes with special asymmetric structure. The preliminary results of gas permeation measurements indicated that the resultant hollow fiber membranes have the potential ability for oxygen/nitrogen separation. 展开更多
关键词 Poly(4-methyl-1-pentene) Asymmetric membranes Hollow fiber membrane Gas permeation O_2/N_2 Separation
下载PDF
Effects of coagulation bath temperature on structure and performance of poly(vinyl butyral) hollow fiber membranes via thermally induced phase separation 被引量:2
12
作者 张明 邱运仁 《Journal of Central South University》 SCIE EI CAS 2014年第8期3057-3062,共6页
Poly (vinyl butyral) (PVB) hollow fiber membranes were fabricated via thermally induced phase separation (TIPS). The effects of coagulation bath temperature (CBT) on the structure and performance of membranes ... Poly (vinyl butyral) (PVB) hollow fiber membranes were fabricated via thermally induced phase separation (TIPS). The effects of coagulation bath temperature (CBT) on the structure and performance of membranes were investigated in detail. The morphologies of the membranes were studied by scanning electron microscopy (SEM), the performances of water permeability, rejection, breaking strength and elongation were measured, respectively. The results indicate that all the membranes have the asymmetric morphology and the thickness of the skin layer decreases and the pore size of the outer layer increases with the increase of CBT. The permeability of membranes prepared at air gap 1.0 cm and take-up speed 0.253 m/s increases from 1.047×10-7 to 5.909×10-7 m3/(m2·s-kPa) with the CBT increasing from 20 ℃ to 40℃, and sharply increases to 35.226×10 7 m3/(m2.s.kPa)once the CBT arrives at 50 ℃. While the carbonic ink rejections have no significant decrease, totally exceed 98%, but that of acid-maleic acid copolymer greatly decreases with the increase of CBT. Both the breaking strength and elongation decrease with the increase of CBT. 展开更多
关键词 thermally induced phase separation coagulation bath temperature poly (vinyl butyral) hollow fiber membrane
下载PDF
Enhanced gas separation performance of mixed matrix hollow fiber membranes containing post-functionalized S-MIL-53 被引量:6
13
作者 Haitao Zhu Xingming Jie +3 位作者 Lina Wang Guodong Kang Dandan Liu Yiming Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期781-790,共10页
Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and ... Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization. 展开更多
关键词 Post-functionalized S-MIL-53 Mixed matrix hollow fiber membranes CO2 permeance Plasticization Gas separation
下载PDF
Determination of inorganic anions in ethyl acetate by in-line hollow fiber membrane extraction with ion chromatography 被引量:1
14
作者 Zhen Zhen Hu Ying Ying Zhong Yun Chang Fan Yan Zhu 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第12期1498-1501,共4页
In this work, a novel hollow fiber membrane extractor was set up to extract inorganic anions from ethyl acetate using deionized water. Inorganic anions in slightly soluble organic solvents can be determined by the in-... In this work, a novel hollow fiber membrane extractor was set up to extract inorganic anions from ethyl acetate using deionized water. Inorganic anions in slightly soluble organic solvents can be determined by the in-line hollow fiber membrane extractor coupled with ion chromatography at first time. Different aspects of the extraction procedure such as magnetic stirring speed, extraction flow rate and extraction time were optimized to achieve high extraction efficiency and good separation results. Satisfactory linear range, limits of detection and good repeatability were obtained. The procedure was applied to analyze inorganic anions in two commercial ethyl acetate samples. 展开更多
关键词 Inorganic anions Ethyl acetate In-line hollow fiber membrane extraction Ion chromatography
下载PDF
Numerical Simulation of a Mathematical Model for Dry/Wet-Spun Nascent Hollow Fiber Membrane 被引量:1
15
作者 法德勒 许振良 《Journal of Shanghai University(English Edition)》 CAS 2004年第2期213-220,共8页
In an effort to find the effect of mass transfer, surface tension and drag forces on the velocity distribution, the mathematical model of the velocity profile of a nascent hollow fiber during membrane formation in the... In an effort to find the effect of mass transfer, surface tension and drag forces on the velocity distribution, the mathematical model of the velocity profile of a nascent hollow fiber during membrane formation in the air gap region was numerically simulated by using the Runge-Kutta method (fourth-order method). The effect of mass transfer on velocity distribution based on the complicated function (G(Cs h)) was presented and the effects of a complicated function were studied in two cases: in the first case, G(Cs h) was constant; in the second, G(Cs h) was variable. The latter was done by varying with the concentration of solvent in a nascent hollow fiber through the air-gap region. One empirical equation was used to describe this change and the predicted values had a better agreement with the experimental values. To verify the model hypotheses, hollow fiber membranes were spun from 20∶80 polybenzimidazole/polyetherimide dopes with 25.6 wt% solid in N, N-dimethylacetamide (DMAc) using water as the external and internal coagulants. Based on the experimental results of dry-jet wet-spinning process for the fabrication of hollow fiber membranes, it is found that the model calculated values were in a good agreement with the experimental values. 展开更多
关键词 Nascent hollow fiber membrane membrane formation numerical simulation mathematical model
下载PDF
Flow-Based Iodometric Extraction Method by the Hollow Fiber Membrane for the Determination of Selenium Sulfide Levels in Cosmeceutical Products 被引量:1
16
作者 Suprawee Wongsuchoto Slra Nltlyanontaklt Pakom Varanusupaku 《Journal of Chemistry and Chemical Engineering》 2012年第4期299-306,共8页
A flow-based iodometric extraction method for the determination of selenium sulfide was developed and applied to cosmeceutical products. Iodine which was generated from the reduction of selenium(IV) ions by iodide i... A flow-based iodometric extraction method for the determination of selenium sulfide was developed and applied to cosmeceutical products. Iodine which was generated from the reduction of selenium(IV) ions by iodide ion was on-line extracted using a polypropylene HFM (hollow fiber membrane) liquid extraction technique. The HFM extraction unit was constructed and used to support an organic solvent (hexane) and separate between the organic phase and aqueous phase. The resulting purple extract was carried to a fiber optic spectrophotometric detector for the measurement at 521 nm. Parameters which affected the extraction efficiency, sensitivity and sample throughput such as iodide (selenium molar ratio, extraction time and washing time between the cycles) were investigated and optimized. A linear dynamic range of 80-373 mg.Lt selenium solution was obtained with an extraction time of 60 sec. The total analysis time including washing was about 180 sec which provided a sample throughput of approximately 20 samples'hr1 and excluded the sample pre-treatment. The recoveries for the determination of selenium in the forms of selenium dioxide and selenium sulfide were in the range of 103%-104% with 1%-3% RSD (relative standard deviation). The relative errors of this method which was applied for determination of selenium sulfide levels in an anti-dandruff shampoo and a cosmeceutical bead sample were both less than 2.5%. 展开更多
关键词 Flow-based method IODOMETRY selenium sulfide hollow fiber membrane cosmeceutical products.
下载PDF
A CONDENSED REVIEW ON THE FABRICATION OF HOLLOW FIBER MEMBRANES FOR GAS SEPARATION:HISTORICAL DEVELOPMENT AND TECHNOLOGY CHALLENGES AHEAD
17
作者 Chung Tai-Shung (Institute of Materials Research & Engineering 3 Research Link, Singapore, 117602) 《化工学报》 EI CAS CSCD 北大核心 2000年第S1期1-4,共4页
A review on the polymeric hollow fibers membranes for gas separation has been conducted. In order to deyelop high performance membranes for gas separation, there are a few technology challenges awaiting the chemical e... A review on the polymeric hollow fibers membranes for gas separation has been conducted. In order to deyelop high performance membranes for gas separation, there are a few technology challenges awaiting the chemical engineers to overcome. There are four major challenges, namely: 1) material selection and synthesis; 2) fabrication of hollow fiber membranes with an ultra- thin dense selective layer; 3) materials against plasticization; and 4) aging. In each area, we summarize the scientific accomplishments and technical difficulties. 展开更多
关键词 hollow fiber membranes characterization PLASTICIZATION AGING gas separation
下载PDF
Effect of Polyvinylidene Fluoride Hollow Fiber Membranes on Mass Transfer of Samarium
18
作者 罗芳 张凤君 +1 位作者 李德谦 吴庸烈 《Journal of Rare Earths》 SCIE EI CAS CSCD 2000年第3期165-168,共4页
The influence of swelling and stripping acidity on the mass transfer coefficient based on water phase and the inner diameters of membranes were studied with P507-HCl-Sm as working system in the two different kinds of ... The influence of swelling and stripping acidity on the mass transfer coefficient based on water phase and the inner diameters of membranes were studied with P507-HCl-Sm as working system in the two different kinds of hollow fiber membranes. Effects of extractant concentration, H+ concentration in aqueous phase and Sm3+ concentration on extraction rate were discussed and the corresponding reaction series were obtained. According to the investigations on the interfacial kinetics, the reaction kinetics equation and reaction rate constant were obtained. 展开更多
关键词 rare earths SAMARIUM EXTRACTION polyvinylidene fluoride hollow fiber membrane mass transfer kinetics
下载PDF
Covalent Immobilization of Lipase on Poly(acrylonitrile-co-maleic acid) Ultrafiltration Hollow Fiber Membrane
19
作者 YE Peng XU Zhi-kang +2 位作者 WU Jian DENG Hong-tao SETA Patrick 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第6期723-727,共5页
Lipase from Candida rugosa was covalently immobilized on the surface of an uhrafihration hollow fiber membrane fabricated from poly ( acrylonitrile-co-maleic acid) ( PANCMA ) in which the carboxyl groups were acti... Lipase from Candida rugosa was covalently immobilized on the surface of an uhrafihration hollow fiber membrane fabricated from poly ( acrylonitrile-co-maleic acid) ( PANCMA ) in which the carboxyl groups were activated with 1-ethyl-3-( dimethylaminopropyl ) carbodiimide hydrochloride ( EDC ) and dicyclohexyl carbodiimide ( DCC )/ N-hydroxyl succinimide(NHS), respectively. The properties of the immobilized lipase were assayed and compared with those of the free enzyme. The maximum activities were observed in a relatively broader pH value range at high temperatures for the immobilized lipase compared to the free one. It was also found that the thermal and pH stabilities of lipase were improved upon immobilization and at 50 ℃ the thermal inactivation rate constant values are 2. 1 × 10^ -2 for the free lipase, 3.2 × 10^-3 for the immobilized lipase on the EDC-activated PANCMA membrane and 3.5 × 10^-3 for the immobilized lipase on the DCC/NHS-activated PANCMA membrane, respectively. 展开更多
关键词 Poly(acrylonitrile-co-maleic acid) Uhrafihration hollow fiber membrane LIPASE Enzyme immobilization Covalent bonding
下载PDF
Electrokinetic phenomena of poly(vinyl butyral) hollow fiber membranes in different electrolyte solutions
20
作者 漆静 王永前 邱运仁 《Journal of Central South University》 SCIE EI CAS 2013年第6期1490-1495,共6页
The streaming potential of poly(vinyl butyral) (PVB) hollow fiber membrane was studied in different electrolyte solutions (including NaCl, KCl, CaCl2 and MgCl2), the effects of ionic strength, ion valence and pH... The streaming potential of poly(vinyl butyral) (PVB) hollow fiber membrane was studied in different electrolyte solutions (including NaCl, KCl, CaCl2 and MgCl2), the effects of ionic strength, ion valence and pH value on the streaming potential (SP) of the membrane were investigated. The zeta potentials and surface charge densities of the membrane were estimated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory. The results show that the PVB membrane has a weak negative charge due to the specific adsorption of ions. Moreover, the streaming potential, the zeta potential and the surface charge density of the membrane depend strongly on the salt concentration and the type and valence of ions. The iso-electric point (IEP) of the PVB membrane is arotmd 3.0 in the monovalent media (NaC1 and KC1) and 3.5 in divalent electrolytes (CaCl2 and MgCl2). A few retentions were obtained for PVB membrane in low concentration solutions. This result verifies that the negative charged membrane surface can reject inorganic solutes by means of electrostatic repulsion effect even though the size of membrane pores is much larger than the size of salts. 展开更多
关键词 streaming potential zeta potential poly(vinyl butyral) hollow fiber membrane
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部