Based on cosmic ray events without a magnetic field taken with the BESIII detector during the summer shutdown of BEPCII in 2012 and di-muon events from a data sample taken at center-of-mass energy of 3.686 GeV in 2009...Based on cosmic ray events without a magnetic field taken with the BESIII detector during the summer shutdown of BEPCII in 2012 and di-muon events from a data sample taken at center-of-mass energy of 3.686 GeV in 2009, we compare the coordinates of hits registered in the BESIII muon counter with the expected interaction point extrapolated from reconstructed tracks from the inner tracking system in the absence of a magnetic field. By minimizing the difference, we align the muon counter with the inner tracking system. Moreover, the strength of the magnetic field in the muon counter is measured for the first time with di-muon events from data taken at a center- of-mass energy of 3.686 GeV. After the Mignment and the magnetic field strength measurement, the offsets in the reconstructed hit positions for muon tracks are reduced, which improves the muon identification. The alignment and magnetic field strength measurement have been adopted in the latest version of the BESIII offiine software system. This addition to the software reduces the systematic uncertainty for the physics analysis in cases where the muon counter information is used.展开更多
基金Supported by National Key Basic Research Program of China(2015CB856701)National Natural Science Foundation of China(NSFC)(11475187,11575198,11521505)100 Talents Program of CAS(U-25)
文摘Based on cosmic ray events without a magnetic field taken with the BESIII detector during the summer shutdown of BEPCII in 2012 and di-muon events from a data sample taken at center-of-mass energy of 3.686 GeV in 2009, we compare the coordinates of hits registered in the BESIII muon counter with the expected interaction point extrapolated from reconstructed tracks from the inner tracking system in the absence of a magnetic field. By minimizing the difference, we align the muon counter with the inner tracking system. Moreover, the strength of the magnetic field in the muon counter is measured for the first time with di-muon events from data taken at a center- of-mass energy of 3.686 GeV. After the Mignment and the magnetic field strength measurement, the offsets in the reconstructed hit positions for muon tracks are reduced, which improves the muon identification. The alignment and magnetic field strength measurement have been adopted in the latest version of the BESIII offiine software system. This addition to the software reduces the systematic uncertainty for the physics analysis in cases where the muon counter information is used.