By dynamic method under UV irradiation, commercial melt-blown polypropylene (PPMB) filter element was modified with acrylamide (AAm) using benzophenone (BP) as initiator. Attenuated total reflection-Fourier tran...By dynamic method under UV irradiation, commercial melt-blown polypropylene (PPMB) filter element was modified with acrylamide (AAm) using benzophenone (BP) as initiator. Attenuated total reflection-Fourier transform infrared spectroscopy and scanning electron microscope verified that polyacrylamide chain was grafted on the fiber surface of PPMB filter element. Elemental content analysis with energy dispersive X-ray of fibers revealed that the polymerization content in the inner part of filter element was relatively higher than that in the outer. Degree of grafting changed with initiator concentration, monomer concentration, reaction temperature and reached 2.6% at the reaction condition: CBp=0.06 mol/L, CAAm=2.0 mol/L, irradiation time: 80 min, temperature: 60℃. Relative water flux altered with the hydrophilicity and pore size of filter element. In the antifouling test, the modified filter gave greater flux recovery (approximately 70%) after filtration of the water extract of Liuweidihuang, suggesting that the fouling layer was more easily reversible due to the hydrophilic nature of the modified filter.展开更多
Microfiltration is widely used in fine filtration operations, with dead-end filtration and cross-flow filtration. The microfiltration filter element or the microfiltration membrane is easy to be polluted by impurities...Microfiltration is widely used in fine filtration operations, with dead-end filtration and cross-flow filtration. The microfiltration filter element or the microfiltration membrane is easy to be polluted by impurities in the water and causes fouling, resulting in flux attenuation. The flux can be expressed by Darcy’s law and attenuation model. In this paper, two industrial titanium rod sintered filter elements (<span style="white-space:nowrap;"><span style="white-space:nowrap;">?</span></span>60 × 960 mm and <span style="white-space:nowrap;"><span style="white-space:nowrap;">?</span></span>60 × 960 mm) of different specifications are selected, and tap water (1.0 NTU) is used for constant pressure dead-end filtration. The amount tends to be the same, about 0.435 m<sup>3</sup><span style="white-space:nowrap;">·</span>m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">?</span></span></span>2</sup><span style="white-space:nowrap;">·</span>h<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">?</span></span></span>1</sup>, which has nothing to do with the filtration accuracy of the filter element but only depends on the characteristics of the filter cake and the filter membrane. Through the analysis of the two models, it is found that the two filtration flux models are not universal and difficult to be applied in engineering.展开更多
基金Project supported by the Natural Science Foundation of Beijing(No.2051002)Science and Technology Programme of Beijing(No.D0205004040421)
文摘By dynamic method under UV irradiation, commercial melt-blown polypropylene (PPMB) filter element was modified with acrylamide (AAm) using benzophenone (BP) as initiator. Attenuated total reflection-Fourier transform infrared spectroscopy and scanning electron microscope verified that polyacrylamide chain was grafted on the fiber surface of PPMB filter element. Elemental content analysis with energy dispersive X-ray of fibers revealed that the polymerization content in the inner part of filter element was relatively higher than that in the outer. Degree of grafting changed with initiator concentration, monomer concentration, reaction temperature and reached 2.6% at the reaction condition: CBp=0.06 mol/L, CAAm=2.0 mol/L, irradiation time: 80 min, temperature: 60℃. Relative water flux altered with the hydrophilicity and pore size of filter element. In the antifouling test, the modified filter gave greater flux recovery (approximately 70%) after filtration of the water extract of Liuweidihuang, suggesting that the fouling layer was more easily reversible due to the hydrophilic nature of the modified filter.
文摘Microfiltration is widely used in fine filtration operations, with dead-end filtration and cross-flow filtration. The microfiltration filter element or the microfiltration membrane is easy to be polluted by impurities in the water and causes fouling, resulting in flux attenuation. The flux can be expressed by Darcy’s law and attenuation model. In this paper, two industrial titanium rod sintered filter elements (<span style="white-space:nowrap;"><span style="white-space:nowrap;">?</span></span>60 × 960 mm and <span style="white-space:nowrap;"><span style="white-space:nowrap;">?</span></span>60 × 960 mm) of different specifications are selected, and tap water (1.0 NTU) is used for constant pressure dead-end filtration. The amount tends to be the same, about 0.435 m<sup>3</sup><span style="white-space:nowrap;">·</span>m<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">?</span></span></span>2</sup><span style="white-space:nowrap;">·</span>h<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">?</span></span></span>1</sup>, which has nothing to do with the filtration accuracy of the filter element but only depends on the characteristics of the filter cake and the filter membrane. Through the analysis of the two models, it is found that the two filtration flux models are not universal and difficult to be applied in engineering.