Aim To research new characterization and circuit property of binary matroid. Methods Constract the modular pairs of hyperplanes of a a matroid. Results and Conclusion It is proved that a matroid M on finite set S is b...Aim To research new characterization and circuit property of binary matroid. Methods Constract the modular pairs of hyperplanes of a a matroid. Results and Conclusion It is proved that a matroid M on finite set S is binary if and only if for any two distinct hyper-planes H1 and H2, if H1H2S ,and H1 and H2 are modular pair, then S-(H1H2) is a hyperplande .And a necessary and sufficient condition for a binary matroid to have a k-circuit is obtained.展开更多
Let M be a matroid defined on a finite set E and L?⊂?E?. L is locked in M if??and ?are 2-connected, and . In this paper, we prove that the nontrivial facets of the bases polytope of M are described by the lo...Let M be a matroid defined on a finite set E and L?⊂?E?. L is locked in M if??and ?are 2-connected, and . In this paper, we prove that the nontrivial facets of the bases polytope of M are described by the locked subsets. We deduce that finding the maximum-weight basis of M is a polynomial time problem for matroids with a polynomial number of locked subsets. This class of matroids is closed under 2-sums and contains the class of uniform matroids, the Vámos matroid and all the excluded minors of 2-sums of uniform matroids. We deduce also a matroid oracle for testing uniformity of matroids after one call of this oracle.展开更多
In this paper, we prove an analogous to a result of Erdös and Rényi and of Kelly and Oxley. We also show that there are several properties of k-balanced matroids for which there exists a threshold function.
In this paper, we consider the set partitioning problem with matroid constraint, which is a generation of the k-partitioning problem. The objective is to minimize the weight of the heaviest subset. We present an appro...In this paper, we consider the set partitioning problem with matroid constraint, which is a generation of the k-partitioning problem. The objective is to minimize the weight of the heaviest subset. We present an approximation algorithm, which consists of two sub-algorithms-the modified Edmonds' matroid partitioning algorithm and the exchange algorithm, for the problem. An estimation of the worst ratio for the algorithm is given.展开更多
Let G be a simple graph and T={S :S is extreme in G}. If M(V(G), T) is a matroid, then G is called an extreme matroid graph. In this paper, we study the properties of extreme matroid graph.
Matroid theory has been developed to be a mature branch of mathematics and has extensive applications in combinatorial optimization,algorithm design and so on.On the other hand,quantum computing has attracted much att...Matroid theory has been developed to be a mature branch of mathematics and has extensive applications in combinatorial optimization,algorithm design and so on.On the other hand,quantum computing has attracted much attention and has been shown to surpass classical computing on solving some computational problems.Surprisingly,crossover studies of the two fields seem to be missing in the literature.This paper initiates the study of quantum algorithms for matroid property problems.It is shown that quadratic quantum speedup is possible for the calculation problem of finding the girth or the number of circuits(bases,flats,hyperplanes)of a matroid,and for the decision problem of deciding whether a matroid is uniform or Eulerian,by giving a uniform lower boundΩ■on the query complexity of all these problems.On the other hand,for the uniform matroid decision problem,an asymptotically optimal quantum algorithm is proposed which achieves the lower bound,and for the girth problem,an almost optimal quantum algorithm is given with query complexityO■.In addition,for the paving matroid decision problem,a lower boundΩ■on the query complexity is obtained,and an O■ quantum algorithm is presented.展开更多
文摘Aim To research new characterization and circuit property of binary matroid. Methods Constract the modular pairs of hyperplanes of a a matroid. Results and Conclusion It is proved that a matroid M on finite set S is binary if and only if for any two distinct hyper-planes H1 and H2, if H1H2S ,and H1 and H2 are modular pair, then S-(H1H2) is a hyperplande .And a necessary and sufficient condition for a binary matroid to have a k-circuit is obtained.
文摘Let M be a matroid defined on a finite set E and L?⊂?E?. L is locked in M if??and ?are 2-connected, and . In this paper, we prove that the nontrivial facets of the bases polytope of M are described by the locked subsets. We deduce that finding the maximum-weight basis of M is a polynomial time problem for matroids with a polynomial number of locked subsets. This class of matroids is closed under 2-sums and contains the class of uniform matroids, the Vámos matroid and all the excluded minors of 2-sums of uniform matroids. We deduce also a matroid oracle for testing uniformity of matroids after one call of this oracle.
文摘In this paper, we prove an analogous to a result of Erdös and Rényi and of Kelly and Oxley. We also show that there are several properties of k-balanced matroids for which there exists a threshold function.
基金Project (No. 10671177) supported by the National Natural Science Foundation of China
文摘In this paper, we consider the set partitioning problem with matroid constraint, which is a generation of the k-partitioning problem. The objective is to minimize the weight of the heaviest subset. We present an approximation algorithm, which consists of two sub-algorithms-the modified Edmonds' matroid partitioning algorithm and the exchange algorithm, for the problem. An estimation of the worst ratio for the algorithm is given.
文摘Let G be a simple graph and T={S :S is extreme in G}. If M(V(G), T) is a matroid, then G is called an extreme matroid graph. In this paper, we study the properties of extreme matroid graph.
基金National Natural Science Foundation of China(Grant Nos.62272492,61772565)Guangdong Basic and Applied Basic Research Foundation(No.2020B1515020050).
文摘Matroid theory has been developed to be a mature branch of mathematics and has extensive applications in combinatorial optimization,algorithm design and so on.On the other hand,quantum computing has attracted much attention and has been shown to surpass classical computing on solving some computational problems.Surprisingly,crossover studies of the two fields seem to be missing in the literature.This paper initiates the study of quantum algorithms for matroid property problems.It is shown that quadratic quantum speedup is possible for the calculation problem of finding the girth or the number of circuits(bases,flats,hyperplanes)of a matroid,and for the decision problem of deciding whether a matroid is uniform or Eulerian,by giving a uniform lower boundΩ■on the query complexity of all these problems.On the other hand,for the uniform matroid decision problem,an asymptotically optimal quantum algorithm is proposed which achieves the lower bound,and for the girth problem,an almost optimal quantum algorithm is given with query complexityO■.In addition,for the paving matroid decision problem,a lower boundΩ■on the query complexity is obtained,and an O■ quantum algorithm is presented.