In the present paper,the numerical solution of It?type stochastic parabolic equation with a timewhite noise process is imparted based on a stochastic finite difference scheme.At the beginning,an implicit stochastic fi...In the present paper,the numerical solution of It?type stochastic parabolic equation with a timewhite noise process is imparted based on a stochastic finite difference scheme.At the beginning,an implicit stochastic finite difference scheme is presented for this equation.Some mathematical analyses of the scheme are then discussed.Lastly,to ascertain the efficacy and accuracy of the suggested technique,the numerical results are discussed and compared with the exact solution.展开更多
In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite differ...In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite difference scheme is discussed by means of variational approximation method in this function space. The approach used is of a simple characteristic in gaining the stability condition of the scheme.展开更多
This study develops an optimized finite difference iterative (OFDI) scheme for the two-dimensional (2D) viscoelastic wave equation. The OFDI scheme is obtained using a proper orthogonal decomposition (POD) metho...This study develops an optimized finite difference iterative (OFDI) scheme for the two-dimensional (2D) viscoelastic wave equation. The OFDI scheme is obtained using a proper orthogonal decomposition (POD) method. It has sufficiently high accuracy with very few unknowns for the 2D viscoelastic wave equation. Existence, stability, and convergence of the OFDI solutions are analyzed. Numerical simulations verify efficiency and feasibility of the proposed scheme.展开更多
The non_stationary natural convection problem is studied. A lowest order finite difference scheme based on mixed finite element method for non_stationary natural convection problem, by the spatial variations discreted...The non_stationary natural convection problem is studied. A lowest order finite difference scheme based on mixed finite element method for non_stationary natural convection problem, by the spatial variations discreted with finite element method and time with finite difference scheme was derived, where the numerical solution of velocity, pressure, and temperature can be found together, and a numerical example to simulate the close square cavity is given, which is of practical importance.展开更多
The proper orthogonal decomposition (POD) is a model reduction technique for the simulation Of physical processes governed by partial differential equations (e.g., fluid flows). It has been successfully used in th...The proper orthogonal decomposition (POD) is a model reduction technique for the simulation Of physical processes governed by partial differential equations (e.g., fluid flows). It has been successfully used in the reduced-order modeling of complex systems. In this paper, the applications of the POD method are extended, i.e., the POD method is applied to a classical finite difference (FD) scheme for the non-stationary Stokes equation with a real practical applied background. A reduced FD scheme is established with lower dimensions and sufficiently high accuracy, and the error estimates are provided between the reduced and the classical FD solutions. Some numerical examples illustrate that the numerical results are consistent with theoretical conclusions. Moreover, it is shown that the reduced FD scheme based on the POD method is feasible and efficient in solving the FD scheme for the non-stationary Stokes equation.展开更多
In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from...In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from the existing compact finite difference schemes which preserve the total energy in a recursive sense,the new schemes are proved to per-fectly preserve the total energy in the discrete sense.By using the standard energy method and the cut-off function technique,the optimal error estimates of the numerical solutions are established,and the convergence rates are of O(h^(4)+τ^(2))with mesh-size h and time-step τ.In order to improve the computational efficiency,an iterative algorithm is proposed as the outer solver and the double sweep method for pentadiagonal linear algebraic equations is introduced as the inner solver to solve the nonlinear difference schemes at each time step.The convergence of the iterative algorithm is also rigorously analyzed.Several numerical results are carried out to test the error estimates and conservative properties.展开更多
A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of ...A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of their conserved quantities. We show consistency of the scheme for arbitrarily large Courant numbers. For scalar problems the scheme is total variation diminishing.A brief discussion is given for entropy condition.展开更多
Based on inverse heat conduction theory, a theoretical model using 6-point Crank-Nicolson finite difference scheme was used to calculate the thermal conductivity from temperature distribution, which can be measured ex...Based on inverse heat conduction theory, a theoretical model using 6-point Crank-Nicolson finite difference scheme was used to calculate the thermal conductivity from temperature distribution, which can be measured experimentally. The method is a direct approach of second-order and the key advantage of the present method is that it is not required a priori knowledge of the functional form of the unknown thermal conductivity in the calculation and the thermal parameters are estimated only according to the known temperature distribution. Two cases were numerically calculated and the influence of experimental deviation on the precision of this method was discussed. The comparison of numerical and analytical results showed good agreement.展开更多
In the present paper two contents are enclosed .First ,the Fourier analysis approach of the dispersion relation and group velocity effect of finite difference schemes is discussed.the defects of the approach is pointe...In the present paper two contents are enclosed .First ,the Fourier analysis approach of the dispersion relation and group velocity effect of finite difference schemes is discussed.the defects of the approach is pointed out and the correction is made;Second,a new systematic analysis method -remaider -effect analysis (abbr.REAM)is proposed by means of the modified partial differential equations (abbr MPDE)of finite difference schemes.The analysis is based on the synthetical study of the rational dispersion-and dissipation relations of finite difference schemes.And the method clearly possesses constructivity展开更多
A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By usi...A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By using a kind of special interpolation, the high resolution Boltzmann type difference scheme is constructed. Finally, numerical tests show that the schemes are effective and useful.展开更多
Present contribution is concerned with the construction and application of a numerical method for the fluid flow problem over a linearly stretching surface with the modification of standard Gradient descent Algorithm ...Present contribution is concerned with the construction and application of a numerical method for the fluid flow problem over a linearly stretching surface with the modification of standard Gradient descent Algorithm to solve the resulted difference equation.The flow problem is constructed using continuity,and Navier Stoke equations and these PDEs are further converted into boundary value problem by applying suitable similarity transformations.A central finite difference method is proposed that gives third-order accuracy using three grid points.The stability conditions of the present proposed method using a Gauss-Seidel iterative procedure is found using Von-Neumann stability criteria and order of the finite difference method is proved by applying the Taylor series on the discretised equation.The comparison of the presently modified optimisation algorithm with the Gauss-Seidel iterative method and standard Newton’s method in optimisation is also made.It can be concluded that the presently modified optimisation Algorithm takes a few iterations to converge with a small value of the parameter contained in it compared with the standard descent algorithm that may take millions of iterations to converge.The present modification of the steepest descent method converges faster than Gauss-Seidel method and standard steepest descent method,and it may also overcome the deficiency of singular hessian arise in Newton’s method for some of the cases that may arise in optimisation problem(s).展开更多
For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation r...For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L 2 norm are derived to determine the error, in the approximate solution.展开更多
The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechan...The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechanics (English Edition), 2007, 28(7), 943-953, has the same performance as the conventional finite difference schemes. It is just another expression of the conventional finite difference schemes. The proposed expression does not have the advantages of a compact difference scheme. Nonetheless, we can more easily obtain and implement compared with the conventional expression in which the coefficients can only be obtained by solving equations, especially for higher accurate schemes.展开更多
In this paper,the convergence and stability of the ’Leap-frog’ finite difference scheme for the semilinear wave equation are proved by using of the bounded extensive method under more generalized condition for the n...In this paper,the convergence and stability of the ’Leap-frog’ finite difference scheme for the semilinear wave equation are proved by using of the bounded extensive method under more generalized condition for the nonlinear term. The more complex standard a priori estimates are avoided so that the theoretical results are complemented for the scheme which was presented by Perring and Skyrne (1962).展开更多
A compressible lattice Boltzmann-finite difference method is extended by the phase-field approach into a monolithic scheme to study fluid flow and heat transfer through regular arrangements of solid bodies of circular...A compressible lattice Boltzmann-finite difference method is extended by the phase-field approach into a monolithic scheme to study fluid flow and heat transfer through regular arrangements of solid bodies of circular,elliptical and irregular shapes.The advantage of using the phase-field method is demon-strated both in its simplicity of accounting for flow and thermal boundary conditions at solid surfaces with irregular shapes and in the capability of generating such complex-shaped objects.For an array of discs,numerical results for the overall solid-to-gas heat transfer rate are validated via experiments on flow through arrays of hot cylinders.The thus validated compressible LB-FD-PF hybrid scheme is used to study the dependence of heat transfer on flow and thermal boundary conditions(Reynolds number,temperature difference between the hot solid bodies and the inlet gas),porosity as well as on the shape of solid objects.Results are rationalized in terms of the residence time of the gas close to the solid body and downstream variations of gas velocity and temperature.Perspective for further applications of the proposed methodology are also discussed.展开更多
In this paper,we derive and analyze a conservative Crank-Nicolson-type finite difference scheme for the Klein-Gordon-Dirac(KGD)system.Differing from the derivation of the existing numerical methods given in literature...In this paper,we derive and analyze a conservative Crank-Nicolson-type finite difference scheme for the Klein-Gordon-Dirac(KGD)system.Differing from the derivation of the existing numerical methods given in literature where the numerical schemes are proposed by directly discretizing the KGD system,we translate the KGD equations into an equivalent system by introducing an auxiliary function,then derive a nonlinear Crank-Nicolson-type finite difference scheme for solving the equivalent system.The scheme perfectly inherits the mass and energy conservative properties possessed by the KGD,while the energy preserved by the existing conservative numerical schemes expressed by two-level’s solution at each time step.By using energy method together with the‘cut-off’function technique,we establish the optimal error estimate of the numerical solution,and the convergence rate is O(τ^(2)+h^(2))in l∞-norm with time stepτand mesh size h.Numerical experiments are carried out to support our theoretical conclusions.展开更多
In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws...In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.展开更多
Numerical diffusion and oscillatory behavior characteristics are averted applying numerical solutions of advection-diffusion equation are themselves immensely sophisticated. In this paper, two numerical methods have b...Numerical diffusion and oscillatory behavior characteristics are averted applying numerical solutions of advection-diffusion equation are themselves immensely sophisticated. In this paper, two numerical methods have been used to solve the advection diffusion equation. We use an explicit finite difference scheme for the advection diffusion equation and semi-discretization on the spatial variable for advection-diffusion equation yields a system of ordinary differential equations solved by Euler’s method. Numerical assessment has been executed with specified initial and boundary conditions, for which the exact solution is known. We compare the solutions of the advection diffusion equation as well as error analysis for both schemes.展开更多
The proper orthogonal decomposition(POD)and the singular value decomposition(SVD) are used to study the finite difference scheme(FDS)for the nonstationary Navier-Stokes equations. Ensembles of data are compiled from t...The proper orthogonal decomposition(POD)and the singular value decomposition(SVD) are used to study the finite difference scheme(FDS)for the nonstationary Navier-Stokes equations. Ensembles of data are compiled from the transient solutions computed from the discrete equation system derived from the FDS for the nonstationary Navier-Stokes equations.The optimal orthogonal bases are reconstructed by the elements of the ensemble with POD and SVD.Combining the above procedures with a Galerkin projection approach yields a new optimizing FDS model with lower dimensions and a high accuracy for the nonstationary Navier-Stokes equations.The errors between POD approximate solutions and FDS solutions are analyzed.It is shown by considering the results obtained for numerical simulations of cavity flows that the error between POD approximate solution and FDS solution is consistent with theoretical results.Moreover,it is also shown that this validates the feasibility and efficiency of POD method.展开更多
A coupled system of singularly perturbed convection-diffusion equations is considered. The leading term of each equation is multiplied by a small positive parameter, but these parameters may have different magnitudes....A coupled system of singularly perturbed convection-diffusion equations is considered. The leading term of each equation is multiplied by a small positive parameter, but these parameters may have different magnitudes. The solutions to the system have boundary layers that overlap and interact. The structure of these layers is analyzed, and this leads to the construction of a piecewise-uniform mesh that is a variant of the usual Shishkin mesh. On this mesh an upwind difference scheme is proved to be almost first- order accurate, uniformly in both small parameters. We present the results of numerical experiments to confirm our theoretical results.展开更多
文摘In the present paper,the numerical solution of It?type stochastic parabolic equation with a timewhite noise process is imparted based on a stochastic finite difference scheme.At the beginning,an implicit stochastic finite difference scheme is presented for this equation.Some mathematical analyses of the scheme are then discussed.Lastly,to ascertain the efficacy and accuracy of the suggested technique,the numerical results are discussed and compared with the exact solution.
文摘In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite difference scheme is discussed by means of variational approximation method in this function space. The approach used is of a simple characteristic in gaining the stability condition of the scheme.
基金Project supported by the National Natural Science Foundation of China(No.11671106)the Fundamental Research Funds for the Central Universities(No.2016MS33)
文摘This study develops an optimized finite difference iterative (OFDI) scheme for the two-dimensional (2D) viscoelastic wave equation. The OFDI scheme is obtained using a proper orthogonal decomposition (POD) method. It has sufficiently high accuracy with very few unknowns for the 2D viscoelastic wave equation. Existence, stability, and convergence of the OFDI solutions are analyzed. Numerical simulations verify efficiency and feasibility of the proposed scheme.
文摘The non_stationary natural convection problem is studied. A lowest order finite difference scheme based on mixed finite element method for non_stationary natural convection problem, by the spatial variations discreted with finite element method and time with finite difference scheme was derived, where the numerical solution of velocity, pressure, and temperature can be found together, and a numerical example to simulate the close square cavity is given, which is of practical importance.
基金Project supported by the National Natural Science Foundation of China (Nos. 10871022, 11061009, and 40821092)the National Basic Research Program of China (973 Program) (Nos. 2010CB428403, 2009CB421407, and 2010CB951001)the Natural Science Foundation of Hebei Province of China (No. A2010001663)
文摘The proper orthogonal decomposition (POD) is a model reduction technique for the simulation Of physical processes governed by partial differential equations (e.g., fluid flows). It has been successfully used in the reduced-order modeling of complex systems. In this paper, the applications of the POD method are extended, i.e., the POD method is applied to a classical finite difference (FD) scheme for the non-stationary Stokes equation with a real practical applied background. A reduced FD scheme is established with lower dimensions and sufficiently high accuracy, and the error estimates are provided between the reduced and the classical FD solutions. Some numerical examples illustrate that the numerical results are consistent with theoretical conclusions. Moreover, it is shown that the reduced FD scheme based on the POD method is feasible and efficient in solving the FD scheme for the non-stationary Stokes equation.
基金supported by the National Natural Science Foundation of China under Grant No.11571181the Natural Science Foundation of Jiangsu Province of China under Grant No.BK20171454.
文摘In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from the existing compact finite difference schemes which preserve the total energy in a recursive sense,the new schemes are proved to per-fectly preserve the total energy in the discrete sense.By using the standard energy method and the cut-off function technique,the optimal error estimates of the numerical solutions are established,and the convergence rates are of O(h^(4)+τ^(2))with mesh-size h and time-step τ.In order to improve the computational efficiency,an iterative algorithm is proposed as the outer solver and the double sweep method for pentadiagonal linear algebraic equations is introduced as the inner solver to solve the nonlinear difference schemes at each time step.The convergence of the iterative algorithm is also rigorously analyzed.Several numerical results are carried out to test the error estimates and conservative properties.
基金The Project Supported by National Natural Science Foundation of China.
文摘A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of their conserved quantities. We show consistency of the scheme for arbitrarily large Courant numbers. For scalar problems the scheme is total variation diminishing.A brief discussion is given for entropy condition.
文摘Based on inverse heat conduction theory, a theoretical model using 6-point Crank-Nicolson finite difference scheme was used to calculate the thermal conductivity from temperature distribution, which can be measured experimentally. The method is a direct approach of second-order and the key advantage of the present method is that it is not required a priori knowledge of the functional form of the unknown thermal conductivity in the calculation and the thermal parameters are estimated only according to the known temperature distribution. Two cases were numerically calculated and the influence of experimental deviation on the precision of this method was discussed. The comparison of numerical and analytical results showed good agreement.
文摘In the present paper two contents are enclosed .First ,the Fourier analysis approach of the dispersion relation and group velocity effect of finite difference schemes is discussed.the defects of the approach is pointed out and the correction is made;Second,a new systematic analysis method -remaider -effect analysis (abbr.REAM)is proposed by means of the modified partial differential equations (abbr MPDE)of finite difference schemes.The analysis is based on the synthetical study of the rational dispersion-and dissipation relations of finite difference schemes.And the method clearly possesses constructivity
文摘A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By using a kind of special interpolation, the high resolution Boltzmann type difference scheme is constructed. Finally, numerical tests show that the schemes are effective and useful.
文摘Present contribution is concerned with the construction and application of a numerical method for the fluid flow problem over a linearly stretching surface with the modification of standard Gradient descent Algorithm to solve the resulted difference equation.The flow problem is constructed using continuity,and Navier Stoke equations and these PDEs are further converted into boundary value problem by applying suitable similarity transformations.A central finite difference method is proposed that gives third-order accuracy using three grid points.The stability conditions of the present proposed method using a Gauss-Seidel iterative procedure is found using Von-Neumann stability criteria and order of the finite difference method is proved by applying the Taylor series on the discretised equation.The comparison of the presently modified optimisation algorithm with the Gauss-Seidel iterative method and standard Newton’s method in optimisation is also made.It can be concluded that the presently modified optimisation Algorithm takes a few iterations to converge with a small value of the parameter contained in it compared with the standard descent algorithm that may take millions of iterations to converge.The present modification of the steepest descent method converges faster than Gauss-Seidel method and standard steepest descent method,and it may also overcome the deficiency of singular hessian arise in Newton’s method for some of the cases that may arise in optimisation problem(s).
基金the Major State Basic Research Program of China(19990328)NNSF of China(19871051,19972039) the Doctorate Foundation of the State Education Commission
文摘For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L 2 norm are derived to determine the error, in the approximate solution.
基金Supported by the National Natural Science Foundation of China (Nos.50876114 and 10602043)the Program for New Century Excellent Talents in University,and the Scientific Research Key Project Fund of Ministry of Education (No.106142)
文摘The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechanics (English Edition), 2007, 28(7), 943-953, has the same performance as the conventional finite difference schemes. It is just another expression of the conventional finite difference schemes. The proposed expression does not have the advantages of a compact difference scheme. Nonetheless, we can more easily obtain and implement compared with the conventional expression in which the coefficients can only be obtained by solving equations, especially for higher accurate schemes.
文摘In this paper,the convergence and stability of the ’Leap-frog’ finite difference scheme for the semilinear wave equation are proved by using of the bounded extensive method under more generalized condition for the nonlinear term. The more complex standard a priori estimates are avoided so that the theoretical results are complemented for the scheme which was presented by Perring and Skyrne (1962).
基金funded by the Deutsche For-schungsgemeinschaft(DFG,German Research Foundation)-422037413-CRC/TRR 287"BULK-REACTION".
文摘A compressible lattice Boltzmann-finite difference method is extended by the phase-field approach into a monolithic scheme to study fluid flow and heat transfer through regular arrangements of solid bodies of circular,elliptical and irregular shapes.The advantage of using the phase-field method is demon-strated both in its simplicity of accounting for flow and thermal boundary conditions at solid surfaces with irregular shapes and in the capability of generating such complex-shaped objects.For an array of discs,numerical results for the overall solid-to-gas heat transfer rate are validated via experiments on flow through arrays of hot cylinders.The thus validated compressible LB-FD-PF hybrid scheme is used to study the dependence of heat transfer on flow and thermal boundary conditions(Reynolds number,temperature difference between the hot solid bodies and the inlet gas),porosity as well as on the shape of solid objects.Results are rationalized in terms of the residence time of the gas close to the solid body and downstream variations of gas velocity and temperature.Perspective for further applications of the proposed methodology are also discussed.
文摘In this paper,we derive and analyze a conservative Crank-Nicolson-type finite difference scheme for the Klein-Gordon-Dirac(KGD)system.Differing from the derivation of the existing numerical methods given in literature where the numerical schemes are proposed by directly discretizing the KGD system,we translate the KGD equations into an equivalent system by introducing an auxiliary function,then derive a nonlinear Crank-Nicolson-type finite difference scheme for solving the equivalent system.The scheme perfectly inherits the mass and energy conservative properties possessed by the KGD,while the energy preserved by the existing conservative numerical schemes expressed by two-level’s solution at each time step.By using energy method together with the‘cut-off’function technique,we establish the optimal error estimate of the numerical solution,and the convergence rate is O(τ^(2)+h^(2))in l∞-norm with time stepτand mesh size h.Numerical experiments are carried out to support our theoretical conclusions.
基金Project supported by the National Natural Science Foundation of China(No.11571366)the Basic Research Foundation of National Numerical Wind Tunnel Project(No.NNW2018-ZT4A08)
文摘In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.
文摘Numerical diffusion and oscillatory behavior characteristics are averted applying numerical solutions of advection-diffusion equation are themselves immensely sophisticated. In this paper, two numerical methods have been used to solve the advection diffusion equation. We use an explicit finite difference scheme for the advection diffusion equation and semi-discretization on the spatial variable for advection-diffusion equation yields a system of ordinary differential equations solved by Euler’s method. Numerical assessment has been executed with specified initial and boundary conditions, for which the exact solution is known. We compare the solutions of the advection diffusion equation as well as error analysis for both schemes.
基金the National Natural Science Foundation of China(Grant Nos.10471100,40437017,and 60573158)Beijing Jiaotong University Science and Technology Foundation
文摘The proper orthogonal decomposition(POD)and the singular value decomposition(SVD) are used to study the finite difference scheme(FDS)for the nonstationary Navier-Stokes equations. Ensembles of data are compiled from the transient solutions computed from the discrete equation system derived from the FDS for the nonstationary Navier-Stokes equations.The optimal orthogonal bases are reconstructed by the elements of the ensemble with POD and SVD.Combining the above procedures with a Galerkin projection approach yields a new optimizing FDS model with lower dimensions and a high accuracy for the nonstationary Navier-Stokes equations.The errors between POD approximate solutions and FDS solutions are analyzed.It is shown by considering the results obtained for numerical simulations of cavity flows that the error between POD approximate solution and FDS solution is consistent with theoretical results.Moreover,it is also shown that this validates the feasibility and efficiency of POD method.
基金This research is supported by the National Natural Science Foundation of China(Grant No. 10301029, 10241003).
文摘A coupled system of singularly perturbed convection-diffusion equations is considered. The leading term of each equation is multiplied by a small positive parameter, but these parameters may have different magnitudes. The solutions to the system have boundary layers that overlap and interact. The structure of these layers is analyzed, and this leads to the construction of a piecewise-uniform mesh that is a variant of the usual Shishkin mesh. On this mesh an upwind difference scheme is proved to be almost first- order accurate, uniformly in both small parameters. We present the results of numerical experiments to confirm our theoretical results.