In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the m...In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the mixed method equations. Then, the averaging technique is used to construct the a posteriori error estimates of the two-grid mixed finite element method and theoretical analysis are given for the error estimators. Finally, we give some numerical examples to verify the reliability and efficiency of the a posteriori error estimator.展开更多
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t...An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.展开更多
A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order...A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.展开更多
This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and...This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and temperature loads. In the calculation mesh, the contact surface of pair nodes is located at places on the arch dam where cracking is possible. A new effective iterative method, the mixed finite element method for friction-contact problems, is improved and used for nonlinear simulation of the cracking process. The forces acting on the structure are divided into two parts: external forces and contact forces. The displacement of the structure is chosen as the basic variable and the nodal contact force in the possible contact region of the local coordinate system is chosen as the iterative variable, so that the nonlinear iterative process is only limited within the possible contact surface and is much more economical. This method was used to simulate the cracking process of the Shuanghe Arch Dam in Southwest China. In order to prove the validity and accuracy of this method and to study the effect of thermal stress on arch dam cracking, three schemes were designed for calculation. Numerical results agree with actual measured data, proving that it is feasible to use this method to simulate the entire process of nonlinear arch dam cracking.展开更多
A least-squares mixed finite element method was formulated for a class of Stokes equations in two dimensional domains. The steady state and the time-dependent Stokes' equations were considered. For the stationary ...A least-squares mixed finite element method was formulated for a class of Stokes equations in two dimensional domains. The steady state and the time-dependent Stokes' equations were considered. For the stationary equation, optimal H-t and L-2-error estimates are derived under the standard regularity assumption on the finite element partition ( the LBB-condition is not required). Far the evolutionary equation, optimal L-2 estimates are derived under the conventional Raviart-Thomas spaces.展开更多
The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE s...The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE scheme for the discrete_time along characteristics is presented and error estimates are established.The existence and convergence of MFE solution of the discrete current velocity,elevation of the bottom topography,thickness of fluid column,and mass rate of sediment is demonstrated.展开更多
The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density. The electric potential equ...The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density. The electric potential equation is discretized by a mixed finite element method. The electron and hole density equations are treated by implicit-explicit multistep finite element methods. The schemes are very efficient. The optimal order error estimates both in time and space are derived.展开更多
An initial-boundary value problem for shallow equation system consisting of water dynamics equations,silt transport equation, the equation of bottom topography change,and of some boundary and initial conditions is stu...An initial-boundary value problem for shallow equation system consisting of water dynamics equations,silt transport equation, the equation of bottom topography change,and of some boundary and initial conditions is studied, the existence of its generalized solution and semidiscrete mixed finite element(MFE) solution was discussed, and the error estimates of the semidiscrete MFE solution was derived.The error estimates are optimal.展开更多
The vapor deposition chemical reaction processes, which are of extremely extensive applications, can be classified as a mathematical model by the following governing nonlinear partial differential equations containing...The vapor deposition chemical reaction processes, which are of extremely extensive applications, can be classified as a mathematical model by the following governing nonlinear partial differential equations containing velocity vector, temperature field, pressure field, and gas mass field. The mixed finite element (MFE) method is employed to study the system of equations for the vapor deposition chemical reaction processes. The semidiscrete and fully discrete MFE formulations are derived. And the existence and convergence (error estimate) of the semidiscrete and fully discrete MFE solutions are demonstrated. By employing MFE method to treat the system of equations for the vapor deposition chemical reaction processes, the numerical solutions of the velocity vector, the temperature field, the pressure field, and the gas mass field can be found out simultaneously. Thus, these researches are not only of important theoretical means, but also of extremely extensive applied vistas.展开更多
The penalty and hybrid methods are being much used in dealing with the general incompatible element, With the penalty method convergence can always be assured, but comparatively speaking its accuracy is lower, and the...The penalty and hybrid methods are being much used in dealing with the general incompatible element, With the penalty method convergence can always be assured, but comparatively speaking its accuracy is lower, and the condition number and sparsity are not so good. With the hybrid method, convergence can be assured only when the rank condition is satisfied. So the construction of the element is extremely limited. This paper presents the mixed hybrid penalty element method, which combines the two methods together. And it is proved theoretically that this new method is convergent, and it has the same accuracy, condition number and sparsity as the compatible element. That is to say, they are optimal to each other.Finally, a new triangle element for plate bending with nine freedom degrees is constructed with this method (three degreesof freedom are given on each corner -- one displacement and tworotations), the calculating formula of the element stiffness matrix is almost the same as that of the old triangle element for plate bending with nine degrees of freedom But it is converged to true solution with arbitrary irregrlar triangle subdivision. If the true solution u?H3 with this method the linear and quadratic rates of convergence are obtianed for three bending moments and for the displacement and two rotations respectively.展开更多
<span style="font-family:Verdana;">In this paper, for the initial and boundary value problem of beams with</span> <span style="font-family:Verdana;">structural damping, by introdu...<span style="font-family:Verdana;">In this paper, for the initial and boundary value problem of beams with</span> <span style="font-family:Verdana;">structural damping, by introducing intermediate variables, the original </span><span style="font-family:Verdana;">fourth-order problem is transformed into second-order partial differential equations, and the mixed finite volume element scheme is constructed, and the existence, uniqueness and convergence of the scheme are analyzed</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span><span><span style="font-family:Verdana;"> Numerical examples are provided to confirm the theoretical results. In the end, we test the value of <em>δ</em></span><span style="font-family:Verdana;"> to observe its influence on the model.</span></span></span>展开更多
Mixed element formats of any order based on bubble functions for the stationary Stokes problem are derived in triangular and tetrahedral meshes and the convergence of these formats are proved.
In this paper,a two-grid mixed finite element method(MFEM)of implicit Backward Euler(BE)formula is presented for the fourth order time-dependent singularly perturbed Bi-wave problem for d-wave superconductors by the n...In this paper,a two-grid mixed finite element method(MFEM)of implicit Backward Euler(BE)formula is presented for the fourth order time-dependent singularly perturbed Bi-wave problem for d-wave superconductors by the nonconforming EQ_(1)^(rot) element.In this approach,the original nonlinear system is solved on the coarse mesh through the Newton iteration method,and then the linear system is computed on the fine mesh with Taylor’s expansion.Based on the high accuracy results of the chosen element,the uniform superclose and superconvergent estimates in the broken H^(1)-norm are derived,which are independent of the negative powers of the perturbation parameter appeared in the considered problem.Numerical results illustrate that the computing cost of the proposed two-grid method is much less than that of the conventional Galerkin MFEM without loss of accuracy.展开更多
In this paper,we consider the initial-boundary value problem(IBVP)for the micropolar Naviers-Stokes equations(MNSE)and analyze a first order fully discrete mixed finite element scheme.We first establish some regularit...In this paper,we consider the initial-boundary value problem(IBVP)for the micropolar Naviers-Stokes equations(MNSE)and analyze a first order fully discrete mixed finite element scheme.We first establish some regularity results for the solution of MNSE,which seem to be not available in the literature.Next,we study a semi-implicit time-discrete scheme for the MNSE and prove L2-H1 error estimates for the time discrete solution.Furthermore,certain regularity results for the time discrete solution are establishes rigorously.Based on these regularity results,we prove the unconditional L2-H1 error estimates for the finite element solution of MNSE.Finally,some numerical examples are carried out to demonstrate both accuracy and efficiency of the fully discrete finite element scheme.展开更多
H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and unique...H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.展开更多
Mixed finite element methods are considered for a ferrofluid flow model with magnetization paralleled to the magnetic field.The ferrofluid model is a coupled system of the Maxwell equations and the incompressible Navi...Mixed finite element methods are considered for a ferrofluid flow model with magnetization paralleled to the magnetic field.The ferrofluid model is a coupled system of the Maxwell equations and the incompressible Navier-Stokes equations.By skillfully introducing some new variables,the model is rewritten as several decoupled subsystems that can be solved independently.Mixed finite element formulations are given to discretize the decoupled systems with proper finite element spaces.Existence and uniqueness of the mixed finite element solutions are shown,and optimal order error estimates are obtained under some reasonable assumptions.Numerical experiments confirm the theoretical results.展开更多
In this paper, a new splitting positive definite nonconforming mixed finite element method is proposed for pseudo-hyperbolic equations, in which a quasi-Wilson quadrilateral element is used for the flux p, and the bil...In this paper, a new splitting positive definite nonconforming mixed finite element method is proposed for pseudo-hyperbolic equations, in which a quasi-Wilson quadrilateral element is used for the flux p, and the bilinear element is used for u. Superconvergence results in ||·||div,h norm for p and optimal error estimates in L2 norm for u are derived for both semi-discrete and fully discrete schemes under almost uniform meshes.展开更多
In this paper,we investigate a priori error estimates for the quadratic optimal control problems governed by semilinear elliptic partial differential equations using higher order triangular mixed finite element method...In this paper,we investigate a priori error estimates for the quadratic optimal control problems governed by semilinear elliptic partial differential equations using higher order triangular mixed finite element methods.The state and the co-state are approximated by the order k Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order k(k≥0).A priori error estimates for the mixed finite element approximation of semilinear control problems are obtained.Finally,we present some numerical examples which confirm our theoretical results.展开更多
A splitting positive definite mixed finite element method is proposed for second-order viscoelasticity wave equation. The proposed procedure can be split into three independent symmetric positive definite integro-diff...A splitting positive definite mixed finite element method is proposed for second-order viscoelasticity wave equation. The proposed procedure can be split into three independent symmetric positive definite integro-differential sub-system and does not need to solve a coupled system of equations. Error estimates are derived for both semidiscrete and fully discrete schemes. The existence and uniqueness for semidiscrete scheme are proved. Finally, a numerical example is provided to illustrate the efficiency of the method.展开更多
The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not...The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).展开更多
文摘In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the mixed method equations. Then, the averaging technique is used to construct the a posteriori error estimates of the two-grid mixed finite element method and theoretical analysis are given for the error estimators. Finally, we give some numerical examples to verify the reliability and efficiency of the a posteriori error estimator.
基金Supported by the National Natural Science Foundation of China (10601022)Natural Science Foundation of Inner Mongolia Autonomous Region (200607010106)Youth Science Foundation of Inner Mongolia University(ND0702)
文摘An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
基金supported by the National Natural Science Foundation of China (No. 10601022)NSF ofInner Mongolia Autonomous Region of China (No. 200607010106)513 and Science Fund of InnerMongolia University for Distinguished Young Scholars (No. ND0702)
文摘A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.
基金supported by the National Nature Science Foundation of China (Grant No 90510017)
文摘This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and temperature loads. In the calculation mesh, the contact surface of pair nodes is located at places on the arch dam where cracking is possible. A new effective iterative method, the mixed finite element method for friction-contact problems, is improved and used for nonlinear simulation of the cracking process. The forces acting on the structure are divided into two parts: external forces and contact forces. The displacement of the structure is chosen as the basic variable and the nodal contact force in the possible contact region of the local coordinate system is chosen as the iterative variable, so that the nonlinear iterative process is only limited within the possible contact surface and is much more economical. This method was used to simulate the cracking process of the Shuanghe Arch Dam in Southwest China. In order to prove the validity and accuracy of this method and to study the effect of thermal stress on arch dam cracking, three schemes were designed for calculation. Numerical results agree with actual measured data, proving that it is feasible to use this method to simulate the entire process of nonlinear arch dam cracking.
文摘A least-squares mixed finite element method was formulated for a class of Stokes equations in two dimensional domains. The steady state and the time-dependent Stokes' equations were considered. For the stationary equation, optimal H-t and L-2-error estimates are derived under the standard regularity assumption on the finite element partition ( the LBB-condition is not required). Far the evolutionary equation, optimal L-2 estimates are derived under the conventional Raviart-Thomas spaces.
文摘The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE scheme for the discrete_time along characteristics is presented and error estimates are established.The existence and convergence of MFE solution of the discrete current velocity,elevation of the bottom topography,thickness of fluid column,and mass rate of sediment is demonstrated.
文摘The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density. The electric potential equation is discretized by a mixed finite element method. The electron and hole density equations are treated by implicit-explicit multistep finite element methods. The schemes are very efficient. The optimal order error estimates both in time and space are derived.
文摘An initial-boundary value problem for shallow equation system consisting of water dynamics equations,silt transport equation, the equation of bottom topography change,and of some boundary and initial conditions is studied, the existence of its generalized solution and semidiscrete mixed finite element(MFE) solution was discussed, and the error estimates of the semidiscrete MFE solution was derived.The error estimates are optimal.
基金Project supported by the National Natural Science Foundation of China (Nos.10471100 and 40437017)the Science and Technology Foundation of Beijing Jiaotong University
文摘The vapor deposition chemical reaction processes, which are of extremely extensive applications, can be classified as a mathematical model by the following governing nonlinear partial differential equations containing velocity vector, temperature field, pressure field, and gas mass field. The mixed finite element (MFE) method is employed to study the system of equations for the vapor deposition chemical reaction processes. The semidiscrete and fully discrete MFE formulations are derived. And the existence and convergence (error estimate) of the semidiscrete and fully discrete MFE solutions are demonstrated. By employing MFE method to treat the system of equations for the vapor deposition chemical reaction processes, the numerical solutions of the velocity vector, the temperature field, the pressure field, and the gas mass field can be found out simultaneously. Thus, these researches are not only of important theoretical means, but also of extremely extensive applied vistas.
文摘The penalty and hybrid methods are being much used in dealing with the general incompatible element, With the penalty method convergence can always be assured, but comparatively speaking its accuracy is lower, and the condition number and sparsity are not so good. With the hybrid method, convergence can be assured only when the rank condition is satisfied. So the construction of the element is extremely limited. This paper presents the mixed hybrid penalty element method, which combines the two methods together. And it is proved theoretically that this new method is convergent, and it has the same accuracy, condition number and sparsity as the compatible element. That is to say, they are optimal to each other.Finally, a new triangle element for plate bending with nine freedom degrees is constructed with this method (three degreesof freedom are given on each corner -- one displacement and tworotations), the calculating formula of the element stiffness matrix is almost the same as that of the old triangle element for plate bending with nine degrees of freedom But it is converged to true solution with arbitrary irregrlar triangle subdivision. If the true solution u?H3 with this method the linear and quadratic rates of convergence are obtianed for three bending moments and for the displacement and two rotations respectively.
文摘<span style="font-family:Verdana;">In this paper, for the initial and boundary value problem of beams with</span> <span style="font-family:Verdana;">structural damping, by introducing intermediate variables, the original </span><span style="font-family:Verdana;">fourth-order problem is transformed into second-order partial differential equations, and the mixed finite volume element scheme is constructed, and the existence, uniqueness and convergence of the scheme are analyzed</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span><span><span style="font-family:Verdana;"> Numerical examples are provided to confirm the theoretical results. In the end, we test the value of <em>δ</em></span><span style="font-family:Verdana;"> to observe its influence on the model.</span></span></span>
基金Supported by National Natural Science Foundation of China(11371331)Supported by the Natural Science Foundation of Education Department of Henan Province(14B110018)
文摘Mixed element formats of any order based on bubble functions for the stationary Stokes problem are derived in triangular and tetrahedral meshes and the convergence of these formats are proved.
基金supported by the National Natural Science Foundation of China(Grant Nos.12201640,12071443).
文摘In this paper,a two-grid mixed finite element method(MFEM)of implicit Backward Euler(BE)formula is presented for the fourth order time-dependent singularly perturbed Bi-wave problem for d-wave superconductors by the nonconforming EQ_(1)^(rot) element.In this approach,the original nonlinear system is solved on the coarse mesh through the Newton iteration method,and then the linear system is computed on the fine mesh with Taylor’s expansion.Based on the high accuracy results of the chosen element,the uniform superclose and superconvergent estimates in the broken H^(1)-norm are derived,which are independent of the negative powers of the perturbation parameter appeared in the considered problem.Numerical results illustrate that the computing cost of the proposed two-grid method is much less than that of the conventional Galerkin MFEM without loss of accuracy.
基金supported by the National Natural Science Foundation of China(Grant Nos.11871467,11471329).
文摘In this paper,we consider the initial-boundary value problem(IBVP)for the micropolar Naviers-Stokes equations(MNSE)and analyze a first order fully discrete mixed finite element scheme.We first establish some regularity results for the solution of MNSE,which seem to be not available in the literature.Next,we study a semi-implicit time-discrete scheme for the MNSE and prove L2-H1 error estimates for the time discrete solution.Furthermore,certain regularity results for the time discrete solution are establishes rigorously.Based on these regularity results,we prove the unconditional L2-H1 error estimates for the finite element solution of MNSE.Finally,some numerical examples are carried out to demonstrate both accuracy and efficiency of the fully discrete finite element scheme.
基金Supported by NNSF(10601022,11061021)Supported by NSF of Inner Mongolia Au-tonomous Region(200607010106)Supported by SRP of Higher Schools of Inner Mongolia(NJ10006)
文摘H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.
基金supported by the National Natural Science Foundation of China(Grant Nos.11971094,12171340).
文摘Mixed finite element methods are considered for a ferrofluid flow model with magnetization paralleled to the magnetic field.The ferrofluid model is a coupled system of the Maxwell equations and the incompressible Navier-Stokes equations.By skillfully introducing some new variables,the model is rewritten as several decoupled subsystems that can be solved independently.Mixed finite element formulations are given to discretize the decoupled systems with proper finite element spaces.Existence and uniqueness of the mixed finite element solutions are shown,and optimal order error estimates are obtained under some reasonable assumptions.Numerical experiments confirm the theoretical results.
基金Supported by the National Natural Science Foundation of China(No.10971203,11271340,11101384)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20094101110006)
文摘In this paper, a new splitting positive definite nonconforming mixed finite element method is proposed for pseudo-hyperbolic equations, in which a quasi-Wilson quadrilateral element is used for the flux p, and the bilinear element is used for u. Superconvergence results in ||·||div,h norm for p and optimal error estimates in L2 norm for u are derived for both semi-discrete and fully discrete schemes under almost uniform meshes.
基金supported by the Foundation for Talent Introduction of Guangdong Provincial Universities and CollegesPearl River Scholar Funded Scheme(2008)National Science Foundation of China(10971074).
文摘In this paper,we investigate a priori error estimates for the quadratic optimal control problems governed by semilinear elliptic partial differential equations using higher order triangular mixed finite element methods.The state and the co-state are approximated by the order k Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order k(k≥0).A priori error estimates for the mixed finite element approximation of semilinear control problems are obtained.Finally,we present some numerical examples which confirm our theoretical results.
基金This work was supported in part by the National Natural Science Foundation of China (Grant No, 11061021), the Program of Higher-level Talents of Inner Mongolia University (No. Z200901004), and the Scientific Research Projection of Higher Schools of Inner Mongolia (Nos. N J10006, N J10016, NJZZ12011).
文摘A splitting positive definite mixed finite element method is proposed for second-order viscoelasticity wave equation. The proposed procedure can be split into three independent symmetric positive definite integro-differential sub-system and does not need to solve a coupled system of equations. Error estimates are derived for both semidiscrete and fully discrete schemes. The existence and uniqueness for semidiscrete scheme are proved. Finally, a numerical example is provided to illustrate the efficiency of the method.
基金supported by the National Basic Research Program of China (2005CB321701)NSF of mathematics research special fund of Hebei Province(08M005)
文摘The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).