In response to the increased frequency of flood events in recent years, it has become crucial to enhance preparedness and anticipation through precise flood risk assessments. To this end, this study aims to produce up...In response to the increased frequency of flood events in recent years, it has become crucial to enhance preparedness and anticipation through precise flood risk assessments. To this end, this study aims to produce updated and precise flood risk maps for the Lower Valley of Ouémé River Basin, located in the South of Benin. The methodology used consisted of a combination of geographical information systems (GIS) and multi-criteria analysis, including Analytical Hierarchy Process (AHP) methods to define and quantify criteria for flood risk assessment. Seven hydro-geomorphological indicators (elevation, rainfall, slope, distance from rivers, flow accumulation, soil type, and drainage density), four socio-economic vulnerability indicators (female population density, literacy rate, poverty index, and road network density), and two exposure indicators (population density and land use) were integrated to generate risk maps. The results indicate that approximately 21.5% of the Lower Valley is under high and very high flood risk, mainly in the south between Dangbo, So-Ava, and Aguégués. The study findings align with the historical flood pattern in the region, which confirms the suitability of the used method. The novelty of this work lies in its comprehensive approach, the incorporation of AHP for weighting factors, and the use of remote sensing data, GIS technology, and spatial analysis techniques which adds precision to the mapping process. This work advances the scientific understanding of flood risk assessment and offers practical insights and solutions for flood-prone regions. The detailed flood risk indicator maps obtained stand out from previous studies and provide valuable information for effective flood risk management and mitigation efforts in the Lower Valley of Ouémé.展开更多
Flood disasters as Climate change hazards are common in developing countries, particularly in communities along the river Gambia. Local communities, for instance, had their local coping strategies that enabled them to...Flood disasters as Climate change hazards are common in developing countries, particularly in communities along the river Gambia. Local communities, for instance, had their local coping strategies that enabled them to stay in their communities even amid these ordeals, and climate change disaster threats. This work strives to understand flood impacts and the local peoples’ adaptation or coping strategies along the River Gambia basin. A community-based cross-sectional research study of 422 research participants of which 294 are males (69.7%) and females 128 (30.3%), and a focus group discussion of 10 groups which comprised 5 female groups and 5 male groups respectively found that 98.6% of the households experienced floods in their community, and 70.6% experienced flood in their houses, 2.1% have impending flood information and 88.4% do not know evacuation centres. The majority of the households had some local coping strategies, but they acknowledged their insufficient effectiveness. The result also shows that the impact of floods on farmlands, roads, buildings, and livestock was greatly felt. Coping strategies such as sandbags, raised elevations, contour bonds, dikes, and buildings on highlands were all found to be common mechanisms the local people used. The study opines that floods affect communities, but the effects vary depending on individual assets.展开更多
Physiography and soil in Mae Rim watershed, Chiang Mai Province, Thailand were investigated by using aerial photographs and satellite image in conjunction with field work, and soil infiltration rate and soil shear res...Physiography and soil in Mae Rim watershed, Chiang Mai Province, Thailand were investigated by using aerial photographs and satellite image in conjunction with field work, and soil infiltration rate and soil shear resistance were measured in field. Many factors affecting runoff were analyzed using the Integrated Land and Water Information System (ILWIS). As a result, a model determining flood hazard was set up. Three maps including runoff curve number map, runoff coefficient map, and flood inundation map were created. In addition, the time of concentration was predicted.展开更多
Flash flood hazard mapping is a supporting component of non-structural measures for flash flood prevention. Pilot case studies are necessary to develop more practicable methods for the technical support systems of fla...Flash flood hazard mapping is a supporting component of non-structural measures for flash flood prevention. Pilot case studies are necessary to develop more practicable methods for the technical support systems of flash flood hazard mapping. In this study, the headwater catchment of the Xiapu River Basin in central China was selected as a pilot study area for flash flood hazard mapping. A conceptual distributed hydrological model was developed for flood calculation based on the framework of the Xinanjiang model, which is widely used in humid and semi-humid regions in China. The developed model employs the geomorphological unit hydrograph method, which is extremely valuable when simulating the overland flow process in ungauged catchments, as compared with the original Xinanjiang model. The model was tested in the pilot study area, and the results agree with the measured data on the whole. After calibration and validation, the model is shown to be a useful tool for flash flood calculation. A practicable method for flash flood hazard mapping using the calculated peak discharge and digital elevation model data was presented, and three levels of flood hazards were classified. The resulting flash flood hazard maps indicate that the method successfully predicts the spatial distribution of flash flood hazards, and it can meet the current requirements in China.展开更多
Pakistan is a developing country that has a population of 190 million people and faces a huge burden of viral diseases. Every year during monsoon season heavy rain fall and lack of disaster management skills potential...Pakistan is a developing country that has a population of 190 million people and faces a huge burden of viral diseases. Every year during monsoon season heavy rain fall and lack of disaster management skills potentially increase the transmission of waterborne diseases, vector borne diseases and viral outbreaks. Due to severe flooding, thousands of people lose their lives and millions are displaced each year. In most of the cases the children who lose their family members are forced into illegal professions of begging, child labor and prostitution which make them prone to sexually transmitted infections. Up to date, no scientific study has been conducted nationwide to illustrate epidemiological patterns of waterborne diseases, vector borne diseases and viral epidemics during flash flood. Mosquito sprays would not be a sufficient approach for dengue eradication; mass awareness, larvicide and biological control by Guppy fishes are also effective strategies to overcome dengue problem. International health bodies and non-governmental organizations must take note of this alerting situation and take adequate steps such as financial/medical aid in order to defeat the after-effects of flood.展开更多
Today, climate change imposes enormous challenges on a global scale. The interactions of the balances between the need for development, population growth, massive urbanization generate a negative impact on the presenc...Today, climate change imposes enormous challenges on a global scale. The interactions of the balances between the need for development, population growth, massive urbanization generate a negative impact on the presence of these climate changes. One of the direct consequences of these changes is the phenomenon of flash floods, a phenomenon that hit the city of Jeddah (city located in west of Saudi Arabia) twice, one in 2009 and the other in 2011, causing significant human and material damage. Floods are considered as a direct result of the combination of extreme weather and hydrological phenomena;in most cases, the magnitude of these floods is magnified by anthropogenic factors, which increases the risk. According to the risk triangle, risk is defined as a probabilistic function that depends on three essential elements: exposure, vulnerability and hazard. If any of these three elements undergo growth the risk also does so and vice versa. Exposure and vulnerability will depend on the presence of human activities in the study area. This study is conducted on the Wadi Goss watershed as it was one of the most violent basins during the 2009 and 2011 floods. Indeed, we present in this study the extent of the urban extension in the Wadi Goss watershed, since 1984 to days and this by the using Landsat images. Given the nature of the study area, we present a method based on the calculation of various indices followed by a classification operation in order to define the urbanized zones inside the Wadi Goss watershed and then estimate the urban sprawl inside the watershed. We also present in this paper, the characteristics of the watershed as well as the evolution of the urbanized areas exposed to the phenomenon of floods and their contribution to the changes of the hydrological behavior of the basin, and to increase the evolution of the risk of the floods. We have shown through this study that the urban footprint has increased from 90 hectares in 1985 to 850 hectares in 2015. This urban footprint represents 12% of the total area of the watershed. Most of the urban evolution was operated on the wadi area with a concentration in the western part of the basin and especially at its outlet.展开更多
The present work aims to identify flood hazards and risks, particularly to the Attanagalu Oya river basin in Gampaha district, the western province in Sri Lanka. Attanagalu Oya river catchment area periodically faced ...The present work aims to identify flood hazards and risks, particularly to the Attanagalu Oya river basin in Gampaha district, the western province in Sri Lanka. Attanagalu Oya river catchment area periodically faced flood hazards. The flood is categorized by complex like 2008, 2010, 2016, 2017, and it chose 2016 as the primary flood event. Study areas have been selected depending on data availability. Attanagalu Oya river basin is mainly focused as a study area. However, here selected only four Grama Niladhari Divisions are as a sample area. Those are;Kirindivita, Ambanvita, Thammita West, Gonagaha1. Furthermore, many flood hazards can be identified when considering the flood events history. But here selected only two years were 2010 and 2016. These two years were selected with high flood events. For the study, that flood series used 1 feet elevation contours used to identify flood levels and used LiDAR image to identify risk areas in the study site. Due to the blockage of the main waterways that discharge water into the Negombo Lagoon, limited water transportation, low lying land reclamation for development, mainly affect paddy lands and roads, and flood as a major problem identified temporarily and spatially. Eventually, the study could identify flood-prone areas and map the risk zones within the study area.展开更多
The cartography of floods by two different approaches enabled us to determine the limits and the advantages of each one of them. This cartography has been applied to the El Maleh basin situated in the South-East of Mo...The cartography of floods by two different approaches enabled us to determine the limits and the advantages of each one of them. This cartography has been applied to the El Maleh basin situated in the South-East of Morocco. The HEC-RAS approach consists of a combination of the surface hydrologic model and the digital terrain model data. This combination allows thereafter the mapping of the flood zones by the use of the WMS software. Thus it can predict the probability occurrence of floods at various frequency times and determine the intensity of the flood (depth and velocity of flood water) inside the El Maleh river by using the existing hydrological data. Otherwise FHI method approach introduces a multi-criteria index to assess flood risk areas in a regional scale. Six parameters (flow accumulation, distance from drainage network, drainage network density, slope, land use, and geology) were used in this last method. The relative importance of each parameter for the occurrence and severity of flood has been connected to weight values. These values are calculated following an Analytical Hierarchy Process: AHP, a method originally developed for the solution of Operational Research problems. According to their weight values, information of the different parameters is superimposed, resulting to flood risk mapping. The use of the WMS model allowed us to accurately map the flood risk areas with precisely flood heights in different levels. However, this method is only applicable for a small portion of the basin located downstream of the hydrological station. Otherwise, the FHI method allows it to map the entire basin but without giving an indication of the water levels reached by floods. One method does not exclude the other since both approaches provide important information for flood risk assessment.展开更多
[Objective] The research aimed to analyze the variations of rainstorm frequency, intensity and period in the flood season in Guangzhou. [Method] Based on the daily precipitation data in Guangzhou City during 1951-2010...[Objective] The research aimed to analyze the variations of rainstorm frequency, intensity and period in the flood season in Guangzhou. [Method] Based on the daily precipitation data in Guangzhou City during 1951-2010, the interannual and interdecadal variation characteristics of rainstorm in the flood season in recent 60 years were analyzed by using the linear regression analysis, correlation analysis, wavelet analysis and so on. Moreover, the relationship between the rainstorm in the flood season and annual average temperature was analyzed. [Result] In recent 60 years, the rainstorm amount and days in the flood season in Guangzhou respectively increased with 6.23 mm/10 a and 0.27 d/10 a linear trends. The most rainstorm days (rainfall) was in 2001 and was 15 d (1 085.7 mm). There was no rainstorm in the least year (1990). The interannual variations of rainstorm amount and days in the flood season in Guangzhou obviously increased in recent 20 years. The decadal and interannual variations of rainstorm in the prior and latter flood seasons had the difference. The trend in the prior flood season increased and in the latter flood season slightly decreased. The positive correlation between the rainstorm days and the annual average temperature in the flood season in Guangzhou was significant, and the relative coefficient was 0.22, which passed α=0.02 significance level test. The total rainstorm days in the prior flood season in Guangzhou City mainly had 4.2-year interannual and 52.9-year interdecadal periodic variations. The total rainstorm days in the latter flood season mainly had 5.5-year interannual and 18.4-year interdecadal periodic variations. [Conclusion] The research provided the scientific basis for the precipitation forecast in the flood season.展开更多
Flooding has been one of the recurring occurred natural disasters that induce detrimental impacts on humans, property and environment. Frequent floods is a severe issue and a complex natural phenomenon in Pakistan wit...Flooding has been one of the recurring occurred natural disasters that induce detrimental impacts on humans, property and environment. Frequent floods is a severe issue and a complex natural phenomenon in Pakistan with respect to population affected, environmental degradations, and socio-economic and property damages. The Super Flood, which hit Sindh in 2010, has turned out to be a wakeup call and has underlined the overwhelming challenge of natural calamities, as 2010 flood and the preceding flood in 2011 caused a huge loss to life, property and land use. These floods resulted in disruption of power, telecommunication, and water utilities in many districts of Pakistan, including 22 districts of Sindh. These floods call for risk assessment and hazard mapping of Lower Indus Basin flowing in the Sindh Province as such areas were also inundated in 2010 flood, which were not flooded in the past in this manner. This primary focus of this paper is the use of Multi-criteria Evaluation (MCE) methods in integration with the Geographical Information System (GIS) for the analysis of areas prone to flood. This research demonstrated how GIS tools can be used to produce map of flood vulnerable areas using MCE techniques. Slope, Aspect, Curvature, Soil, and Distance from Drainage, Land use, Precipitation, Flow Direction, and Flow Accumulation are taken as the causative factors for flooding in Lower Indus Basin. Analytical Hierarchy Process-AHP was used for the calculation of weights of all these factors. Finally, a flood hazard Map of Lower Indus Basin was generated which delineates the flood prone areas in the Sindh province along Indus River Basin that could be inundated by potential flooding in future. It is aimed that flood hazard mapping and risk assessment using open source geographic information system can serve as a handy tool for the development of land-use strategies so as to decrease the impact from flooding.展开更多
The Nigerian coastline which stretches about 853 km has four distinct morphological zones namely, Barrier Lagoon, Mahin Mud coast, Niger Delta and Strand coast. Nigeria’s coastal zone is richly blessed with various n...The Nigerian coastline which stretches about 853 km has four distinct morphological zones namely, Barrier Lagoon, Mahin Mud coast, Niger Delta and Strand coast. Nigeria’s coastal zone is richly blessed with various natural resources like oil, gas, fish, sand etc., which are presently being exploited for economic development. Coastal populations have increased erratically from about 20% of the National population in 1993 to approximately 51,037,122 m (30% of the national population) in 2011. Development of coastal areas in Nigeria is accelerating and user conflicts are increasing. Both natural and anthropogenic activities in the coastal zone are leading to coastal hazards and eventual rapid degradation of the area. Significant coastal hazards include coastal erosion, storm surges, floods, land subsidence, pollution, especially oil spills and possibly seismicity, which could lead to earthquakes and tsunamis. These hazards are leading to disasters and effecting the socio-economic sustainability of the coastal area.展开更多
Extreme weather anomalies such as rainfall and its subsequent flood events are governed by complex weather systems and interactions between them. It is important to understand the drivers of such events as it helps pr...Extreme weather anomalies such as rainfall and its subsequent flood events are governed by complex weather systems and interactions between them. It is important to understand the drivers of such events as it helps prepare for and mitigate or respond to the related impacts. In line with the above statements, quarter-hourly data for the year 2021 recorded in the Yaounde meteorological station were synthesized to come out with daily and dekadal (10-day averaged) anomalies of six climate factors (rainfall, temperature, insolation, relative humidity, dew point and wind speed), in order to assess the occurrences and severity of floods to changing weather patterns in Yaounde. In addition, Precipitation Concentration Index (PCI) was computed to evaluate the distribution and analyse the frequency and intensity of precipitation. Coefficient of variation (CV) was used to estimate the seasonal and annual variation of rainfall patterns, while Mann-Kendall (MK) trend test was performed to detect weather anomalies (12-month period variation) in quarter-hourly rainfall data from January 1<sup>st</sup> to December 31<sup>st</sup> 2021. The Standard Precipitation Index (SPI) was also used to quantify the rainfall deficiency of the observed time scale. Results reveal that based on the historical data from 1979 to 2018 in the bimodal rainfall forest zone, maximum and minimum temperature averages recorded in Yaounde in 2021 were mostly above historical average values. Precipitations were rare during dry seasons, with range value of 0 - 13.6 mm for the great dry season and 0 - 21.4 mm for the small dry season. Whereas during small and great rainy seasons, rainfalls were regular with intensity varying between 0 and 50 mm, and between 0 and 90.4 mm, respectively. The MK trend test showed that there was a statistical significant increase in rainfall trend for the month of August at a 5% level of significance, while a significant decreasing trend was observed in July and December. There was a strong irregular rainfall distribution during the months of February, July and December 2021, with a weather being mildly wetted during all the dry seasons and extremely wetted in August. Recorded flooding days within the year of study matched with heavy rainy days including during dry seasons.展开更多
Floods are one of nature's most destructive disasters because of the immense damage to land,buildings,and human fatalities.It is difficult to forecast the areas that are vulnerable to flash flooding due to the dyn...Floods are one of nature's most destructive disasters because of the immense damage to land,buildings,and human fatalities.It is difficult to forecast the areas that are vulnerable to flash flooding due to the dynamic and complex nature of the flash floods.Therefore,earlier identification of flash flood susceptible sites can be performed using advanced machine learning models for managing flood disasters.In this study,we applied and assessed two new hybrid ensemble models,namely Dagging and Random Subspace(RS)coupled with Artificial Neural Network(ANN),Random Forest(RF),and Support Vector Machine(SVM)which are the other three state-of-the-art machine learning models for modelling flood susceptibility maps at the Teesta River basin,the northern region of Bangladesh.The application of these models includes twelve flood influencing factors with 413 current and former flooding points,which were transferred in a GIS environment.The information gain ratio,the multicollinearity diagnostics tests were employed to determine the association between the occurrences and flood influential factors.For the validation and the comparison of these models,for the ability to predict the statistical appraisal measures such as Freidman,Wilcoxon signed-rank,and t-paired tests and Receiver Operating Characteristic Curve(ROC)were employed.The value of the Area Under the Curve(AUC)of ROC was above 0.80 for all models.For flood susceptibility modelling,the Dagging model performs superior,followed by RF,the ANN,the SVM,and the RS,then the several benchmark models.The approach and solution-oriented outcomes outlined in this paper will assist state and local authorities as well as policy makers in reducing flood-related threats and will also assist in the implementation of effective mitigation strategies to mitigate future damage.展开更多
Alluvial fans are among the most privileged settlement areas in many mountain regions. These landforms are particularly dynamic being episodically affected by distributary processes generated by extreme flood events. ...Alluvial fans are among the most privileged settlement areas in many mountain regions. These landforms are particularly dynamic being episodically affected by distributary processes generated by extreme flood events. Addressing risk assessment entails determining hazard exposure and unravelling how it might be related to process loading and to process dynamics once the flow becomes unconfined on the surface of alluvial fans. By following a ‘similarity of process concept’, rather than by attempting to scale a real-world prototype, we performed a set of 72 experimental runs on an alluvial fan model. Thereby, we considered two model layouts, one without a guiding channel and featuring a convex shape and the other one with a guiding channel, a bridge, and inclined but planar overland flow areas as to mirror an anthropic environment. Process magnitude and intensity parameters were systematically varied, and the associated biphasic distributary processes video recorded. For each experiment, the exposure was detected by mapping the exposed area in a GIS, thereby discerning between areas exposed to biphasic flows and the associated depositional phenomena or to the liquid flow phase only. Our results reveal that total event volume, sediment availability and stream power in the feeding channel, as well as depositional effects, avulsion, and channelization on the alluvial fan concur to determine the overall exposure. Stream process loading alone, even when rigorously defined in terms of its characterizing parameters, is not sufficient to exhaustively determine exposure. Hence, further developing reliable biphasic simulation models for hazard assessment on settled alluvial fans is pivotal.展开更多
According to Prof. Zhu Kezhen’s(Chu K.C.)historical climatic division,the last 500 years in China can be divided into several alternately cold and warm periods.The periods of 1470-1520,1620-1720,1840-1890 had cold wi...According to Prof. Zhu Kezhen’s(Chu K.C.)historical climatic division,the last 500 years in China can be divided into several alternately cold and warm periods.The periods of 1470-1520,1620-1720,1840-1890 had cold winters,while those of 1550-1600,1770-1830 had warm winters.Based on such division,in four kinds of periods,i.e.cold, warm,cold-warm,and warmcold (transition period),the differences between flood/drought degree in 120 stations in China and average of flood/drought degree in the last 500 years have been calculated. Positive anomaly indicates drought-prone area,while negative anomaly indicates flood-prone area. This historical experience provides a background to analyze the possible scenarios in the case of global warming in the future.The final results suggest that in the case of global warming the hazards of flood probably increase in many parts of China,such as southeast coast area,southwest,northwest, some parts of northeast and inner Mongolia while the hazards of drought probably decrease in the North China Plain,the middle reaches of the Huanghe River and its southern adjacent area. This distribution is basically consistent with that of precipitation in warming periods in this century and that resulted from climatic model in the case of CO2 doubling.展开更多
In the light of the historical substantial data (covering a 70-year period) collected in the Lower Jingjiang segment and aided by topological grey method, here we attempt to characterize the occurrence and future tren...In the light of the historical substantial data (covering a 70-year period) collected in the Lower Jingjiang segment and aided by topological grey method, here we attempt to characterize the occurrence and future trend of flood calamities in the study area. Our findings indicate that overall the high-frequent flood disasters with middle to lower damage prevail at present. A series of dramatic flood waves will appear in the years of 2016, 2022, 2030 and 2042, particularly a destructive flood will occur between 2041 and 2045 in the Lower Jingjiang reaches. Typical of sensitive response to flood hazards in close association with its special geographical location, the lower Jingjiang segment hereby can reflect the development trend of floods in the middle Yangtze reaches. According to the results, a good fitness was revealed between the prediction and practical values. This actually hints that the topological grey method is an effective mathematical means of resolving problems containing uncertainty and indetermination, thus providing valuable information for the flood prediction in the middle Yangtze catchment.展开更多
The city of Jeddah, the second major city in the Kingdom of Saudi Arabia (KSA), was severely damaged on November 25, 2009. A deadly and costly flash flood, which can be exacerbated in arid environments, occurred when ...The city of Jeddah, the second major city in the Kingdom of Saudi Arabia (KSA), was severely damaged on November 25, 2009. A deadly and costly flash flood, which can be exacerbated in arid environments, occurred when more than 90 millimetres (3.5 inches) of rain fell in just four hours. A national disaster was declared. This extreme disaster has been a catalyst for attempts to advance our understanding of flash flood events and how to appropriately respond to their destructive nature. One-hundred and twenty people were killed, around 350 others were reported missing and approximately four billion Saudi riyals (one billion US dollars) of damage was caused. Considered to be one of the great of Saudi’s cities, Jeddah is the economic capital of the country. It is the largest coastal town on the west coast, with a population of about 5.1 million and an estimated area of 5460 square kilometres. Based on its rapid urbanisation and population growth, a function of a multitude of parameters, a multi-criterion analysis using AHP and GIS was performed to comprehensively evaluate the environmental quality of the different municipal wards affected by Jeddah’s flash floods. This research presents an analysis of the different factors that caused these flash flood events. The results indicate that the causes of these floods are related to a number of factors that significantly contribute to the worsening of flood disasters.展开更多
Recent catastrophic events related to floods in Colombia reveal again the situation of disaster as a development issue not solved in the country. It is necessary to analyze in more detail the areas under threat and th...Recent catastrophic events related to floods in Colombia reveal again the situation of disaster as a development issue not solved in the country. It is necessary to analyze in more detail the areas under threat and their respective vulnerability to the different mechanisms can generate flooding events and make adjustments in the assessment of disaster risks for the appropriate decision-making at local, regional and national levels. This paper presents a research project in its first phase, whose main objective is to develop a methodology for vulnerability assessment from a multiscale, multitemporal and multidisciplinary perspectives, combining the use of indicators and a spatial information system to analyze exposure and vulnerability at regional and local level in specific areas. This methodological tool will also enable local and regional authorities to identify the most appropriate strategies to reduce vulnerability and adaptation options, and make better decisions in assessing disaster risk. The information generated in this study will contribute to public policy action structured to correct short- and medium-term situations of actual or potential vulnerability, which can also be used in other activities of territorial and environmental planning, developing technology transfer activities and training associated with the research project in the service of the authorities and communities. Results obtained of the vulnerability analysis for a Colombian study area will relate to the hazards obtained in a parallel project whose goal is to identify the best risk management strategies through the development of GIS (geographic information system)-based scenarios for different risk and vulnerability reduction options.展开更多
Residents along the shoreline of the Orashi River have yearly been displaced and recorded loss of lives,farmland,and infrastructures.The Government’s approach has been the provision of relief materials to...Residents along the shoreline of the Orashi River have yearly been displaced and recorded loss of lives,farmland,and infrastructures.The Government’s approach has been the provision of relief materials to the victims instead of implementing adequate control measures.This research employs Shuttle Radar Topographic Mission and Google Earth imagery in developing a 3D floodplain map using ArcGIS software.The result indicates the drainage system in the study area is dendritic with catchment of 79 subbasins and 76 pour point implying the area is floodplain.Incorporating the 3D slope which reveals that>8 and<8 makes up 1.15%and 98.85%of the study area respectively confirms the area is a floodplain.Aspect indicate west-facing slope are dark blue,3D hillshade indicate yellow is very low area and the high area is pink and also the buffer analysis result reveals waterbodies reflecting blue with an estimated area of 1.88 km2,yellow indicate 0.79 km2 of the shoreline,red indicate 0.81 km2 of the minor floodplain and pink contain 0.82 km2 with the length of 32.82 km.The result from google earth image in 2007 indicate absent of settlement,2013 indicate minimal settlement and 2020 indicate major settlement in the study area when correlated with 3D Floodplain mapping before and during the flood in other to analyze and manage flooding for further purpose and the majority of the area are under seize with flood like in 2020.Therefore,Remote Sensing and GIS techniques are useful for Floodplain mapping,risk analysis for control measures for better flood management.展开更多
In this study, the application of the resilience concept of the flood event depending on progress of the time is analyzed as the hazard occurrence, the disaster risk, the damage risk, and the evolution of the damages....In this study, the application of the resilience concept of the flood event depending on progress of the time is analyzed as the hazard occurrence, the disaster risk, the damage risk, and the evolution of the damages. Flood disaster is defined as the occurrence of an inundation in an exposed area. The human exposure (loss of life, injury, …), structural (buildings, roads, …) and functional (economic, political, … functions of an area) economic exposure cause high risk of damage if the area in which the hazard occurs is at low resilience. Furthermore the damage will increase without adequate response against disaster. The flood disaster risk is decreased by flood control measures, reducing structural and functional exposure. Non-structural measures, such as appropriate prior-evacuation, decrease the human exposure to flood disaster. This study reviews the events of 2000 and 2011 floods in the Shonai River basin in Japan to help assess resilience to flood disaster. These two events had the same type of hazards in intensity and location, allowing the study in terms of adaptation to flood disaster in the river basin to focus on the structural and nonstructural effort to increase resilience of the disaster depending on progress of the time.展开更多
文摘In response to the increased frequency of flood events in recent years, it has become crucial to enhance preparedness and anticipation through precise flood risk assessments. To this end, this study aims to produce updated and precise flood risk maps for the Lower Valley of Ouémé River Basin, located in the South of Benin. The methodology used consisted of a combination of geographical information systems (GIS) and multi-criteria analysis, including Analytical Hierarchy Process (AHP) methods to define and quantify criteria for flood risk assessment. Seven hydro-geomorphological indicators (elevation, rainfall, slope, distance from rivers, flow accumulation, soil type, and drainage density), four socio-economic vulnerability indicators (female population density, literacy rate, poverty index, and road network density), and two exposure indicators (population density and land use) were integrated to generate risk maps. The results indicate that approximately 21.5% of the Lower Valley is under high and very high flood risk, mainly in the south between Dangbo, So-Ava, and Aguégués. The study findings align with the historical flood pattern in the region, which confirms the suitability of the used method. The novelty of this work lies in its comprehensive approach, the incorporation of AHP for weighting factors, and the use of remote sensing data, GIS technology, and spatial analysis techniques which adds precision to the mapping process. This work advances the scientific understanding of flood risk assessment and offers practical insights and solutions for flood-prone regions. The detailed flood risk indicator maps obtained stand out from previous studies and provide valuable information for effective flood risk management and mitigation efforts in the Lower Valley of Ouémé.
文摘Flood disasters as Climate change hazards are common in developing countries, particularly in communities along the river Gambia. Local communities, for instance, had their local coping strategies that enabled them to stay in their communities even amid these ordeals, and climate change disaster threats. This work strives to understand flood impacts and the local peoples’ adaptation or coping strategies along the River Gambia basin. A community-based cross-sectional research study of 422 research participants of which 294 are males (69.7%) and females 128 (30.3%), and a focus group discussion of 10 groups which comprised 5 female groups and 5 male groups respectively found that 98.6% of the households experienced floods in their community, and 70.6% experienced flood in their houses, 2.1% have impending flood information and 88.4% do not know evacuation centres. The majority of the households had some local coping strategies, but they acknowledged their insufficient effectiveness. The result also shows that the impact of floods on farmlands, roads, buildings, and livestock was greatly felt. Coping strategies such as sandbags, raised elevations, contour bonds, dikes, and buildings on highlands were all found to be common mechanisms the local people used. The study opines that floods affect communities, but the effects vary depending on individual assets.
文摘Physiography and soil in Mae Rim watershed, Chiang Mai Province, Thailand were investigated by using aerial photographs and satellite image in conjunction with field work, and soil infiltration rate and soil shear resistance were measured in field. Many factors affecting runoff were analyzed using the Integrated Land and Water Information System (ILWIS). As a result, a model determining flood hazard was set up. Three maps including runoff curve number map, runoff coefficient map, and flood inundation map were created. In addition, the time of concentration was predicted.
基金supported by the Key Project in the National Science and Technology Pillar Program during the Twelfth Five-Year Plan Period(Grant No.2012BAK10B04)the Specific Research Fund of the China Institute of Water Resources and Hydropower Research(Grant No.JZ0145B032014)
文摘Flash flood hazard mapping is a supporting component of non-structural measures for flash flood prevention. Pilot case studies are necessary to develop more practicable methods for the technical support systems of flash flood hazard mapping. In this study, the headwater catchment of the Xiapu River Basin in central China was selected as a pilot study area for flash flood hazard mapping. A conceptual distributed hydrological model was developed for flood calculation based on the framework of the Xinanjiang model, which is widely used in humid and semi-humid regions in China. The developed model employs the geomorphological unit hydrograph method, which is extremely valuable when simulating the overland flow process in ungauged catchments, as compared with the original Xinanjiang model. The model was tested in the pilot study area, and the results agree with the measured data on the whole. After calibration and validation, the model is shown to be a useful tool for flash flood calculation. A practicable method for flash flood hazard mapping using the calculated peak discharge and digital elevation model data was presented, and three levels of flood hazards were classified. The resulting flash flood hazard maps indicate that the method successfully predicts the spatial distribution of flash flood hazards, and it can meet the current requirements in China.
文摘Pakistan is a developing country that has a population of 190 million people and faces a huge burden of viral diseases. Every year during monsoon season heavy rain fall and lack of disaster management skills potentially increase the transmission of waterborne diseases, vector borne diseases and viral outbreaks. Due to severe flooding, thousands of people lose their lives and millions are displaced each year. In most of the cases the children who lose their family members are forced into illegal professions of begging, child labor and prostitution which make them prone to sexually transmitted infections. Up to date, no scientific study has been conducted nationwide to illustrate epidemiological patterns of waterborne diseases, vector borne diseases and viral epidemics during flash flood. Mosquito sprays would not be a sufficient approach for dengue eradication; mass awareness, larvicide and biological control by Guppy fishes are also effective strategies to overcome dengue problem. International health bodies and non-governmental organizations must take note of this alerting situation and take adequate steps such as financial/medical aid in order to defeat the after-effects of flood.
文摘Today, climate change imposes enormous challenges on a global scale. The interactions of the balances between the need for development, population growth, massive urbanization generate a negative impact on the presence of these climate changes. One of the direct consequences of these changes is the phenomenon of flash floods, a phenomenon that hit the city of Jeddah (city located in west of Saudi Arabia) twice, one in 2009 and the other in 2011, causing significant human and material damage. Floods are considered as a direct result of the combination of extreme weather and hydrological phenomena;in most cases, the magnitude of these floods is magnified by anthropogenic factors, which increases the risk. According to the risk triangle, risk is defined as a probabilistic function that depends on three essential elements: exposure, vulnerability and hazard. If any of these three elements undergo growth the risk also does so and vice versa. Exposure and vulnerability will depend on the presence of human activities in the study area. This study is conducted on the Wadi Goss watershed as it was one of the most violent basins during the 2009 and 2011 floods. Indeed, we present in this study the extent of the urban extension in the Wadi Goss watershed, since 1984 to days and this by the using Landsat images. Given the nature of the study area, we present a method based on the calculation of various indices followed by a classification operation in order to define the urbanized zones inside the Wadi Goss watershed and then estimate the urban sprawl inside the watershed. We also present in this paper, the characteristics of the watershed as well as the evolution of the urbanized areas exposed to the phenomenon of floods and their contribution to the changes of the hydrological behavior of the basin, and to increase the evolution of the risk of the floods. We have shown through this study that the urban footprint has increased from 90 hectares in 1985 to 850 hectares in 2015. This urban footprint represents 12% of the total area of the watershed. Most of the urban evolution was operated on the wadi area with a concentration in the western part of the basin and especially at its outlet.
文摘The present work aims to identify flood hazards and risks, particularly to the Attanagalu Oya river basin in Gampaha district, the western province in Sri Lanka. Attanagalu Oya river catchment area periodically faced flood hazards. The flood is categorized by complex like 2008, 2010, 2016, 2017, and it chose 2016 as the primary flood event. Study areas have been selected depending on data availability. Attanagalu Oya river basin is mainly focused as a study area. However, here selected only four Grama Niladhari Divisions are as a sample area. Those are;Kirindivita, Ambanvita, Thammita West, Gonagaha1. Furthermore, many flood hazards can be identified when considering the flood events history. But here selected only two years were 2010 and 2016. These two years were selected with high flood events. For the study, that flood series used 1 feet elevation contours used to identify flood levels and used LiDAR image to identify risk areas in the study site. Due to the blockage of the main waterways that discharge water into the Negombo Lagoon, limited water transportation, low lying land reclamation for development, mainly affect paddy lands and roads, and flood as a major problem identified temporarily and spatially. Eventually, the study could identify flood-prone areas and map the risk zones within the study area.
文摘The cartography of floods by two different approaches enabled us to determine the limits and the advantages of each one of them. This cartography has been applied to the El Maleh basin situated in the South-East of Morocco. The HEC-RAS approach consists of a combination of the surface hydrologic model and the digital terrain model data. This combination allows thereafter the mapping of the flood zones by the use of the WMS software. Thus it can predict the probability occurrence of floods at various frequency times and determine the intensity of the flood (depth and velocity of flood water) inside the El Maleh river by using the existing hydrological data. Otherwise FHI method approach introduces a multi-criteria index to assess flood risk areas in a regional scale. Six parameters (flow accumulation, distance from drainage network, drainage network density, slope, land use, and geology) were used in this last method. The relative importance of each parameter for the occurrence and severity of flood has been connected to weight values. These values are calculated following an Analytical Hierarchy Process: AHP, a method originally developed for the solution of Operational Research problems. According to their weight values, information of the different parameters is superimposed, resulting to flood risk mapping. The use of the WMS model allowed us to accurately map the flood risk areas with precisely flood heights in different levels. However, this method is only applicable for a small portion of the basin located downstream of the hydrological station. Otherwise, the FHI method allows it to map the entire basin but without giving an indication of the water levels reached by floods. One method does not exclude the other since both approaches provide important information for flood risk assessment.
文摘[Objective] The research aimed to analyze the variations of rainstorm frequency, intensity and period in the flood season in Guangzhou. [Method] Based on the daily precipitation data in Guangzhou City during 1951-2010, the interannual and interdecadal variation characteristics of rainstorm in the flood season in recent 60 years were analyzed by using the linear regression analysis, correlation analysis, wavelet analysis and so on. Moreover, the relationship between the rainstorm in the flood season and annual average temperature was analyzed. [Result] In recent 60 years, the rainstorm amount and days in the flood season in Guangzhou respectively increased with 6.23 mm/10 a and 0.27 d/10 a linear trends. The most rainstorm days (rainfall) was in 2001 and was 15 d (1 085.7 mm). There was no rainstorm in the least year (1990). The interannual variations of rainstorm amount and days in the flood season in Guangzhou obviously increased in recent 20 years. The decadal and interannual variations of rainstorm in the prior and latter flood seasons had the difference. The trend in the prior flood season increased and in the latter flood season slightly decreased. The positive correlation between the rainstorm days and the annual average temperature in the flood season in Guangzhou was significant, and the relative coefficient was 0.22, which passed α=0.02 significance level test. The total rainstorm days in the prior flood season in Guangzhou City mainly had 4.2-year interannual and 52.9-year interdecadal periodic variations. The total rainstorm days in the latter flood season mainly had 5.5-year interannual and 18.4-year interdecadal periodic variations. [Conclusion] The research provided the scientific basis for the precipitation forecast in the flood season.
文摘Flooding has been one of the recurring occurred natural disasters that induce detrimental impacts on humans, property and environment. Frequent floods is a severe issue and a complex natural phenomenon in Pakistan with respect to population affected, environmental degradations, and socio-economic and property damages. The Super Flood, which hit Sindh in 2010, has turned out to be a wakeup call and has underlined the overwhelming challenge of natural calamities, as 2010 flood and the preceding flood in 2011 caused a huge loss to life, property and land use. These floods resulted in disruption of power, telecommunication, and water utilities in many districts of Pakistan, including 22 districts of Sindh. These floods call for risk assessment and hazard mapping of Lower Indus Basin flowing in the Sindh Province as such areas were also inundated in 2010 flood, which were not flooded in the past in this manner. This primary focus of this paper is the use of Multi-criteria Evaluation (MCE) methods in integration with the Geographical Information System (GIS) for the analysis of areas prone to flood. This research demonstrated how GIS tools can be used to produce map of flood vulnerable areas using MCE techniques. Slope, Aspect, Curvature, Soil, and Distance from Drainage, Land use, Precipitation, Flow Direction, and Flow Accumulation are taken as the causative factors for flooding in Lower Indus Basin. Analytical Hierarchy Process-AHP was used for the calculation of weights of all these factors. Finally, a flood hazard Map of Lower Indus Basin was generated which delineates the flood prone areas in the Sindh province along Indus River Basin that could be inundated by potential flooding in future. It is aimed that flood hazard mapping and risk assessment using open source geographic information system can serve as a handy tool for the development of land-use strategies so as to decrease the impact from flooding.
文摘The Nigerian coastline which stretches about 853 km has four distinct morphological zones namely, Barrier Lagoon, Mahin Mud coast, Niger Delta and Strand coast. Nigeria’s coastal zone is richly blessed with various natural resources like oil, gas, fish, sand etc., which are presently being exploited for economic development. Coastal populations have increased erratically from about 20% of the National population in 1993 to approximately 51,037,122 m (30% of the national population) in 2011. Development of coastal areas in Nigeria is accelerating and user conflicts are increasing. Both natural and anthropogenic activities in the coastal zone are leading to coastal hazards and eventual rapid degradation of the area. Significant coastal hazards include coastal erosion, storm surges, floods, land subsidence, pollution, especially oil spills and possibly seismicity, which could lead to earthquakes and tsunamis. These hazards are leading to disasters and effecting the socio-economic sustainability of the coastal area.
文摘Extreme weather anomalies such as rainfall and its subsequent flood events are governed by complex weather systems and interactions between them. It is important to understand the drivers of such events as it helps prepare for and mitigate or respond to the related impacts. In line with the above statements, quarter-hourly data for the year 2021 recorded in the Yaounde meteorological station were synthesized to come out with daily and dekadal (10-day averaged) anomalies of six climate factors (rainfall, temperature, insolation, relative humidity, dew point and wind speed), in order to assess the occurrences and severity of floods to changing weather patterns in Yaounde. In addition, Precipitation Concentration Index (PCI) was computed to evaluate the distribution and analyse the frequency and intensity of precipitation. Coefficient of variation (CV) was used to estimate the seasonal and annual variation of rainfall patterns, while Mann-Kendall (MK) trend test was performed to detect weather anomalies (12-month period variation) in quarter-hourly rainfall data from January 1<sup>st</sup> to December 31<sup>st</sup> 2021. The Standard Precipitation Index (SPI) was also used to quantify the rainfall deficiency of the observed time scale. Results reveal that based on the historical data from 1979 to 2018 in the bimodal rainfall forest zone, maximum and minimum temperature averages recorded in Yaounde in 2021 were mostly above historical average values. Precipitations were rare during dry seasons, with range value of 0 - 13.6 mm for the great dry season and 0 - 21.4 mm for the small dry season. Whereas during small and great rainy seasons, rainfalls were regular with intensity varying between 0 and 50 mm, and between 0 and 90.4 mm, respectively. The MK trend test showed that there was a statistical significant increase in rainfall trend for the month of August at a 5% level of significance, while a significant decreasing trend was observed in July and December. There was a strong irregular rainfall distribution during the months of February, July and December 2021, with a weather being mildly wetted during all the dry seasons and extremely wetted in August. Recorded flooding days within the year of study matched with heavy rainy days including during dry seasons.
基金supported by a PhD scholarship granted by Fundacao para a Ciencia e a Tecnologia,I.P.(FCT),Portugal,under the PhD Programme FLUVIO–River Restoration and Management,grant number:PD/BD/114558/2016。
文摘Floods are one of nature's most destructive disasters because of the immense damage to land,buildings,and human fatalities.It is difficult to forecast the areas that are vulnerable to flash flooding due to the dynamic and complex nature of the flash floods.Therefore,earlier identification of flash flood susceptible sites can be performed using advanced machine learning models for managing flood disasters.In this study,we applied and assessed two new hybrid ensemble models,namely Dagging and Random Subspace(RS)coupled with Artificial Neural Network(ANN),Random Forest(RF),and Support Vector Machine(SVM)which are the other three state-of-the-art machine learning models for modelling flood susceptibility maps at the Teesta River basin,the northern region of Bangladesh.The application of these models includes twelve flood influencing factors with 413 current and former flooding points,which were transferred in a GIS environment.The information gain ratio,the multicollinearity diagnostics tests were employed to determine the association between the occurrences and flood influential factors.For the validation and the comparison of these models,for the ability to predict the statistical appraisal measures such as Freidman,Wilcoxon signed-rank,and t-paired tests and Receiver Operating Characteristic Curve(ROC)were employed.The value of the Area Under the Curve(AUC)of ROC was above 0.80 for all models.For flood susceptibility modelling,the Dagging model performs superior,followed by RF,the ANN,the SVM,and the RS,then the several benchmark models.The approach and solution-oriented outcomes outlined in this paper will assist state and local authorities as well as policy makers in reducing flood-related threats and will also assist in the implementation of effective mitigation strategies to mitigate future damage.
基金Project FONDECYT nr.1170657 titled “The flood memory of a river system:using both experimental and field-based approaches to unravel the role of unsteady flow and antecedent flows on sediment dynamics during floods” funded by CONICYT and led by Luca MaoProject FONDECYT nr.1170413 titled “Morphological impacts in rivers affected by volcanic eruptions.Chaiten and Calbuco:similar disturbance but different fluvial evolution?(PIROFLUV)” funded by CONICYT and led by Andrés Iroumé。
文摘Alluvial fans are among the most privileged settlement areas in many mountain regions. These landforms are particularly dynamic being episodically affected by distributary processes generated by extreme flood events. Addressing risk assessment entails determining hazard exposure and unravelling how it might be related to process loading and to process dynamics once the flow becomes unconfined on the surface of alluvial fans. By following a ‘similarity of process concept’, rather than by attempting to scale a real-world prototype, we performed a set of 72 experimental runs on an alluvial fan model. Thereby, we considered two model layouts, one without a guiding channel and featuring a convex shape and the other one with a guiding channel, a bridge, and inclined but planar overland flow areas as to mirror an anthropic environment. Process magnitude and intensity parameters were systematically varied, and the associated biphasic distributary processes video recorded. For each experiment, the exposure was detected by mapping the exposed area in a GIS, thereby discerning between areas exposed to biphasic flows and the associated depositional phenomena or to the liquid flow phase only. Our results reveal that total event volume, sediment availability and stream power in the feeding channel, as well as depositional effects, avulsion, and channelization on the alluvial fan concur to determine the overall exposure. Stream process loading alone, even when rigorously defined in terms of its characterizing parameters, is not sufficient to exhaustively determine exposure. Hence, further developing reliable biphasic simulation models for hazard assessment on settled alluvial fans is pivotal.
文摘According to Prof. Zhu Kezhen’s(Chu K.C.)historical climatic division,the last 500 years in China can be divided into several alternately cold and warm periods.The periods of 1470-1520,1620-1720,1840-1890 had cold winters,while those of 1550-1600,1770-1830 had warm winters.Based on such division,in four kinds of periods,i.e.cold, warm,cold-warm,and warmcold (transition period),the differences between flood/drought degree in 120 stations in China and average of flood/drought degree in the last 500 years have been calculated. Positive anomaly indicates drought-prone area,while negative anomaly indicates flood-prone area. This historical experience provides a background to analyze the possible scenarios in the case of global warming in the future.The final results suggest that in the case of global warming the hazards of flood probably increase in many parts of China,such as southeast coast area,southwest,northwest, some parts of northeast and inner Mongolia while the hazards of drought probably decrease in the North China Plain,the middle reaches of the Huanghe River and its southern adjacent area. This distribution is basically consistent with that of precipitation in warming periods in this century and that resulted from climatic model in the case of CO2 doubling.
文摘In the light of the historical substantial data (covering a 70-year period) collected in the Lower Jingjiang segment and aided by topological grey method, here we attempt to characterize the occurrence and future trend of flood calamities in the study area. Our findings indicate that overall the high-frequent flood disasters with middle to lower damage prevail at present. A series of dramatic flood waves will appear in the years of 2016, 2022, 2030 and 2042, particularly a destructive flood will occur between 2041 and 2045 in the Lower Jingjiang reaches. Typical of sensitive response to flood hazards in close association with its special geographical location, the lower Jingjiang segment hereby can reflect the development trend of floods in the middle Yangtze reaches. According to the results, a good fitness was revealed between the prediction and practical values. This actually hints that the topological grey method is an effective mathematical means of resolving problems containing uncertainty and indetermination, thus providing valuable information for the flood prediction in the middle Yangtze catchment.
文摘The city of Jeddah, the second major city in the Kingdom of Saudi Arabia (KSA), was severely damaged on November 25, 2009. A deadly and costly flash flood, which can be exacerbated in arid environments, occurred when more than 90 millimetres (3.5 inches) of rain fell in just four hours. A national disaster was declared. This extreme disaster has been a catalyst for attempts to advance our understanding of flash flood events and how to appropriately respond to their destructive nature. One-hundred and twenty people were killed, around 350 others were reported missing and approximately four billion Saudi riyals (one billion US dollars) of damage was caused. Considered to be one of the great of Saudi’s cities, Jeddah is the economic capital of the country. It is the largest coastal town on the west coast, with a population of about 5.1 million and an estimated area of 5460 square kilometres. Based on its rapid urbanisation and population growth, a function of a multitude of parameters, a multi-criterion analysis using AHP and GIS was performed to comprehensively evaluate the environmental quality of the different municipal wards affected by Jeddah’s flash floods. This research presents an analysis of the different factors that caused these flash flood events. The results indicate that the causes of these floods are related to a number of factors that significantly contribute to the worsening of flood disasters.
文摘Recent catastrophic events related to floods in Colombia reveal again the situation of disaster as a development issue not solved in the country. It is necessary to analyze in more detail the areas under threat and their respective vulnerability to the different mechanisms can generate flooding events and make adjustments in the assessment of disaster risks for the appropriate decision-making at local, regional and national levels. This paper presents a research project in its first phase, whose main objective is to develop a methodology for vulnerability assessment from a multiscale, multitemporal and multidisciplinary perspectives, combining the use of indicators and a spatial information system to analyze exposure and vulnerability at regional and local level in specific areas. This methodological tool will also enable local and regional authorities to identify the most appropriate strategies to reduce vulnerability and adaptation options, and make better decisions in assessing disaster risk. The information generated in this study will contribute to public policy action structured to correct short- and medium-term situations of actual or potential vulnerability, which can also be used in other activities of territorial and environmental planning, developing technology transfer activities and training associated with the research project in the service of the authorities and communities. Results obtained of the vulnerability analysis for a Colombian study area will relate to the hazards obtained in a parallel project whose goal is to identify the best risk management strategies through the development of GIS (geographic information system)-based scenarios for different risk and vulnerability reduction options.
文摘Residents along the shoreline of the Orashi River have yearly been displaced and recorded loss of lives,farmland,and infrastructures.The Government’s approach has been the provision of relief materials to the victims instead of implementing adequate control measures.This research employs Shuttle Radar Topographic Mission and Google Earth imagery in developing a 3D floodplain map using ArcGIS software.The result indicates the drainage system in the study area is dendritic with catchment of 79 subbasins and 76 pour point implying the area is floodplain.Incorporating the 3D slope which reveals that>8 and<8 makes up 1.15%and 98.85%of the study area respectively confirms the area is a floodplain.Aspect indicate west-facing slope are dark blue,3D hillshade indicate yellow is very low area and the high area is pink and also the buffer analysis result reveals waterbodies reflecting blue with an estimated area of 1.88 km2,yellow indicate 0.79 km2 of the shoreline,red indicate 0.81 km2 of the minor floodplain and pink contain 0.82 km2 with the length of 32.82 km.The result from google earth image in 2007 indicate absent of settlement,2013 indicate minimal settlement and 2020 indicate major settlement in the study area when correlated with 3D Floodplain mapping before and during the flood in other to analyze and manage flooding for further purpose and the majority of the area are under seize with flood like in 2020.Therefore,Remote Sensing and GIS techniques are useful for Floodplain mapping,risk analysis for control measures for better flood management.
文摘In this study, the application of the resilience concept of the flood event depending on progress of the time is analyzed as the hazard occurrence, the disaster risk, the damage risk, and the evolution of the damages. Flood disaster is defined as the occurrence of an inundation in an exposed area. The human exposure (loss of life, injury, …), structural (buildings, roads, …) and functional (economic, political, … functions of an area) economic exposure cause high risk of damage if the area in which the hazard occurs is at low resilience. Furthermore the damage will increase without adequate response against disaster. The flood disaster risk is decreased by flood control measures, reducing structural and functional exposure. Non-structural measures, such as appropriate prior-evacuation, decrease the human exposure to flood disaster. This study reviews the events of 2000 and 2011 floods in the Shonai River basin in Japan to help assess resilience to flood disaster. These two events had the same type of hazards in intensity and location, allowing the study in terms of adaptation to flood disaster in the river basin to focus on the structural and nonstructural effort to increase resilience of the disaster depending on progress of the time.