期刊文献+
共找到93,487篇文章
< 1 2 250 >
每页显示 20 50 100
Blade Wrap Angle Impact on Centrifugal Pump Performance:Entropy Generation and Fluid-Structure Interaction Analysis
1
作者 Hayder Kareem Sakran Mohd Sharizal Abdul Aziz Chu Yee Khor 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期109-137,共29页
The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to anal... The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69.This study investigates six impellermodels that possess varying blade wrap angles(95°,105°,115°,125°,135°,and 145°)that were created while maintaining the same volute and other geometrical characteristics.The investigation of energy loss was conducted to evaluate the values of total and entropy generation rates(TEG,EGR).The fluid-structure interaction was considered numerically using the software tools ANSYS Fluent and ANSYSWorkbench.The elastic structural dynamic equation was used to estimate the structural response,while the shear stress transport k–ωturbulence model was utilized for the fluid domain modeling.The findings suggest that the blade wrap angle has a significant influence on the efficiency of the pump.The impeller featuring a blade wrap angle of 145°exhibits higher efficiency,with a notable increase of 3.76%relative to the original model.Variations in the blade wrap angle impact the energy loss,shaft power,and pump head.The model with a 145°angle exhibited a maximum equivalent stress of 14.8MPa and a total deformation of 0.084 mm.The results provide valuable insights into the intricate flow mechanism of the centrifugal pump,particularly when considering various blade wrap angles. 展开更多
关键词 Centrifugal pump blade wrap angle entropy generation theory fluid-structure interaction hydraulic performance
下载PDF
An extended multiple-support response spectrum method incorporating fluid-structure interaction for seismic analysis of deep-water bridges
2
作者 Wu Kun Li Ning Li Zhongxian 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期211-223,共13页
The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic perfo... The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic performance of bridges considering GMSV and FSI effects simultaneously.In this study,the original multiple-support response spectrum(MSRS)method is extended to consider FSI effect for seismic analysis of deep-water bridges.The solution of hydrodynamic pressure on a pier is obtained using the radiation wave theory,and the FSI-MSRS formulation is derived according to the random vibration theory.The influence of FSI effect on the related coefficients is analyzed.A five-span steel-concrete continuous beam bridge is adopted to conduct the numerical simulations.Different load conditions are designed to investigate the variation of the bridge responses when considering the GMSV and FSI effects.The results indicate that the incoherence effect and wave passage effect decrease the bridge responses with a maximum percentage of 86%,while the FSI effect increases the responses with a maximum percentage of 26%.The GMSV and FSI effects should be included in the seismic design of deep-water bridges. 展开更多
关键词 response spectrum method seismic response of bridge ground motion spatial variability fluid-structure interaction rdiation wave theory
下载PDF
Analysis of the Influence of the Blade Deformation on Wind Turbine Output Power in the Framework of a Bidirectional Fluid-Structure Interaction Model
3
作者 Ling Yuan Zhenggang Liu +1 位作者 Li Li Ming Lin 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1129-1141,共13页
The blades of large-scale wind turbines can obviously deform during operation,and such a deformation can affect the wind turbine’s output power to a certain extent.In order to shed some light on this phenomenon,for w... The blades of large-scale wind turbines can obviously deform during operation,and such a deformation can affect the wind turbine’s output power to a certain extent.In order to shed some light on this phenomenon,for which limited information is available in the literature,a bidirectional fluid-structure interaction(FSI)numerical model is employed in this work.In particular,a 5 MW large-scale wind turbine designed by the National Renewable Energy Laboratory(NREL)of the United States is considered as a testbed.The research results show that blades’deformation can increase the wind turbine’s output power by 135 kW at rated working conditions.Compared with the outcomes of the simulations conducted using the model with no blade deformation,the results obtained with the FSI model are closer to the experimental data.It is concluded that the bidirectional FSI model can replicate the working conditions of wind turbines with great fidelity,thereby providing an effective method for wind turbine design and optimization. 展开更多
关键词 Wind turbine fluid-structure interaction numerical simulation BLADE
下载PDF
Analysis and Optimization of Flow-Guided Structure Based on Fluid-Structure Interaction
4
作者 Yue Cui Liyuan Wang +1 位作者 Jixing Ru Jian Wu 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1573-1584,共12页
Gases containing sulfur oxides can cause corrosion and failure of bellows used as furnace blowers in high-temperature environments.In order to mitigate this issue,the behavior of an effective blast furnace blower has ... Gases containing sulfur oxides can cause corrosion and failure of bellows used as furnace blowers in high-temperature environments.In order to mitigate this issue,the behavior of an effective blast furnace blower has been examined in detail.Firstly,the Sereda corrosion model has been introduced to simulate the corrosion rate of the related bellows taking into account the effects of temperature and SO_(2) gas;such results have been compared with effective measurements;then,the average gas velocity in the pipeline and the von Mises stress distribution of the inner draft tube have been analyzed using a Fluid-Structure Interaction model.Finally,the semi-closed internal corrosion environment caused by a 5 mm radial gap between the inner draft tube and the bellows has been considered.The gas flow rate in the residential space has been found to be low(0.5 ms–this value leads to a stable semi-closed internal corrosion environment for exhaust gas exchange);water phase in the exhaust gas is prone to accelerate the corrosion rate.On this basis,a bellows with an optimized inner draft tube has proposed,which includes corrosion-resistant honeycomb buffer rings. 展开更多
关键词 BELLOWS optimized inner draft tube FSI(fluid-structure interaction) corrosion rate
下载PDF
Fluid-structure interaction simulation of three-dimensional flexible hydrofoil in water tunnel 被引量:5
5
作者 Shiliang HU Chuanjing LU Yousheng HE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第1期15-26,共12页
The closely coupled approach combined with the finite volume method(FVM) solver and the finite element method(FEM) solver is used to investigate the fluid-structure interaction(FSI) of a three-dimensional cantilevered... The closely coupled approach combined with the finite volume method(FVM) solver and the finite element method(FEM) solver is used to investigate the fluid-structure interaction(FSI) of a three-dimensional cantilevered hydrofoil in the water tunnel. The FVM solver and the coupled approach are verified and validated by comparing the numerical predictions with the experimental measurements, and good agreement is obtained concerning both the lift on the foil and the tip displacement. In the noncavitating flow, the result indicates that the growth of the initial incidence angle and the Reynolds number improves the deformation of the foil, and the lift on the foil is increased by the twist deformation. The normalized twist angle and displacement along the span of the hydrofoil for different incidence angles and Reynolds numbers are almost uniform. For the cavitation flow, it is shown that the small amplitude vibration of the foil has limited influence on the developing process of the partial cavity, and the quasi two-dimensional cavity shedding does not change the deformation mode of the hydrofoil. However, the frequency spectrum of the lift on the foil contains the frequency which is associated with the first bend frequency of the hydrofoil. 展开更多
关键词 closely coupled approach fluid-structure interaction(FSI) HYDROFOIL CAVITATION
下载PDF
Failure pressure calculation of fracturing well based on fluid-structure interaction 被引量:2
6
作者 Jinzhou Zhao Lan Ren +1 位作者 Min Li Yongming Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第S1期450-456,共7页
Failure pressure is a key parameter in reservoir hydrofracturing operation. Existing analytical methods for calculating the failure pressure are based on the assumption that borehole fluid is under two extreme conditi... Failure pressure is a key parameter in reservoir hydrofracturing operation. Existing analytical methods for calculating the failure pressure are based on the assumption that borehole fluid is under two extreme conditions: non-infiltration or complete infiltration. The assumption is not suitable for the actual infiltration process, and this will cause a great error in practical calculation. It shows that during the injection process, the dynamic variation in effective stress-dependent permeability has an influence on the infiltration, and the influence also brings about calculation errors. Based on the fluid-structure interaction and finite element method (FEM), considering partial infiltration during injection process, a numerical model for calculating rock failure pressure is established. According to the analysis of permeability test results and response-surface method, a new variation rule of rock permeability with the change of effective stress is presented, and the relationships among the permeability, confining pressure and pore pressure are proposed. There are some differences between the dynamic value of permeability-effective-stress coefficient observed herein and the one obtained by the classical theory. Combining with the numerical model and the dynamic permeability, a coupling method for calculating failure pressure is developed. Comparison of field data and calculated values obtained by various methods shows that accurate values can be obtained by the coupling method. The coupling method can be widely applied to the calculation of failure pressure of reservoirs and complex wells to achieve effective fracturing operation. 展开更多
关键词 failure pressure fluid-structure interaction HYDROFRACTURING coupling method response-surface method
下载PDF
Study of velocity effects on parachute inflation performance based on fluid-structure interaction method 被引量:1
7
作者 程涵 张鑫华 +1 位作者 余莉 陈猛 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第9期1177-1188,共12页
The inflation of a five-ring cone parachute with the airflow velocity of 18m/s is studied based on the simplified arbitrary Lagrange Euler(SALE)/fluid-structure interaction(FSI) method.The numerical results of the can... The inflation of a five-ring cone parachute with the airflow velocity of 18m/s is studied based on the simplified arbitrary Lagrange Euler(SALE)/fluid-structure interaction(FSI) method.The numerical results of the canopy shape,stability,opening load,and drag area are obtained,and they are well consistent with the experimental data gained from wind tunnel tests.The method is then used to simulate the opening process under different velocities.It is found that the first load shock affected by the velocity often occurs at the end of the initial inflation stage.For the first time,the phenomena that the inflation distance proportion coefficient increases and the dynamic load coefficient decreases,respectively,with the increase in the velocity are revealed.The above proposed method is competent to solve the large deformation problem without empirical coefficients,and can collect more space-time details of fluid-structure-motion information when it is compared with the traditional method. 展开更多
关键词 fluid-structure interaction(FSI) PARACHUTE inflation performance VELOCITY empirical coefficient opening shock load
下载PDF
Improved frequency modeling and solution for parallel liquid-filled pipes considering both fluid-structure interaction and structural coupling 被引量:1
8
作者 Xumin GUO Chunliang XIAO +3 位作者 Hui MA Hui LI Xufang ZHANG Bangchun WEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第8期1269-1288,共20页
The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more ... The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering. 展开更多
关键词 parallel liquid-filled pipe(PLFP) dynamic analysis improved frequency modeling and solution fluid-structure interaction(FSI) structure coupling
下载PDF
Bioprosthetic Valve Size Selection to Optimize Aortic Valve ReplacementSurgical Outcome: A Fluid-Structure Interaction Modeling Study 被引量:1
9
作者 Caili Li Dalin Tang +9 位作者 Jing Yao Christopher Baird Haoliang Sun Chanjuan Gong Luyao Ma Yanjuan Zhang Liang Wang Han Yu Chun Yang Yongfeng Shao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期159-174,共16页
Aortic valve replacement(AVR)remains a major treatment option for patients with severe aortic valve disease.Clinical outcome of AVR is strongly dependent on implanted prosthetic valve size.Fluid-structure interaction(... Aortic valve replacement(AVR)remains a major treatment option for patients with severe aortic valve disease.Clinical outcome of AVR is strongly dependent on implanted prosthetic valve size.Fluid-structure interaction(FSI)aortic root models were constructed to investigate the effect of valve size on hemodynamics of the implanted bioprosthetic valve and optimize the outcome of AVR surgery.FSI models with 4 sizes of bioprosthetic valves(19(No.19),21(No.21),23(No.23)and 25 mm(No.25))were constructed.Left ventricle outflow track flow data from one patient was collected and used as model flow conditions.Anisotropic Mooney–Rivlin models were used to describe mechanical properties of aortic valve leaflets.Blood flow pressure,velocity,systolic valve orifice pressure gradient(SVOPG),systolic cross-valve pressure difference(SCVPD),geometric orifice area,and flow shear stresses from the four valve models were compared.Our results indicated that larger valves led to lower transvalvular pressure gradient,which is linked to better post AVR outcome.Peak SVOPG,mean SCVPD and maximum velocity for Valve No.25 were 48.17%,49.3%,and 44.60%lower than that from Valve No.19,respectively.Geometric orifice area from Valve No.25 was 52.03%higher than that from Valve No.19(1.87 cm2 vs.1.23 cm2).Implantation of larger valves can significantly reduce mean flow shear stress on valve leaflets.Our initial results suggested that larger valve size may lead to improved hemodynamic performance and valve cardiac function post AVR.More patient studies are needed to validate our findings. 展开更多
关键词 fluid-structure interaction aortic valve aortic valve replacement bioprosthetic valve prosthesis–patient mismatch
下载PDF
Design and fluid-structure interaction analysis for a microfluidic T-junction with chemo-responsive hydrogel valves
10
作者 E.KHANJANI A.HAJARIAN +3 位作者 A.KARGAR-ESTAHBANATY N.ARBABI A.TAHERI M.BAGHANI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第6期939-952,共14页
Due to the deformation ability even under small loads, hydrogels have been widely used as a type of soft materials in various applications such as actuating and sensing, and have attracted many researchers to study th... Due to the deformation ability even under small loads, hydrogels have been widely used as a type of soft materials in various applications such as actuating and sensing, and have attracted many researchers to study their behaviors. In this paper, the behavior of hydrogel micro-valves with reverse sensitivity to the p H inside a T-junction flow sorter is investigated. With the fluid-structure interaction(FSI) approach, the effects of various parameters such as the inlet pressure and the p H value on the stress and deformation of the micro-valves are examined, and the results with and without FSI,including the flow rate and the closure p H, are compared. In order to reduce the response time of hydrogels, the effects of three different patterns on the performance of the microvalves are explored. Eventually, it is concluded that FSI is a key influential factor in designing and analyzing the behaviors of hydrogels. 展开更多
关键词 HYDROGEL PH-SENSITIVE T-junction flow sorter fluid-structure interaction(FSI) micro-valve
下载PDF
Numerical Simulation of ATPS Parachute Transient Dynamics Using Fluid-Structure Interaction Method
11
作者 Fan Yuxin Xia Jian 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第5期535-542,共8页
In order to simulate and analyze the dynamic characteristics of the parachute from advanced tactical parachute system(ATPS),a nonlinear finite element algorithm and a preconditioning finite volume method are employed ... In order to simulate and analyze the dynamic characteristics of the parachute from advanced tactical parachute system(ATPS),a nonlinear finite element algorithm and a preconditioning finite volume method are employed and developed to construct three dimensional parachute fluid-structure interaction(FSI)model.Parachute fabric material is represented by membrane-cable elements,and geometrical nonlinear algorithm is employed with wrinkling technique embedded to simulate the large deformations of parachute structure by applying the NewtonRaphson iteration method.On the other hand,the time-dependent flow surrounding parachute canopy is simulated using preconditioned lower-upper symmetric Gauss-Seidel(LU-SGS)method.The pseudo solid dynamic mesh algorithm is employed to update the flow-field mesh based on the complex and arbitrary motion of parachute canopy.Due to the large amount of computation during the FSI simulation,massage passing interface(MPI)parallel computation technique is used for all those three modules to improve the performance of the FSI code.The FSI method is tested to simulate one kind of ATPS parachutes to predict the parachute configuration and anticipate the parachute descent speeds.The comparison of results between the proposed method and those in literatures demonstrates the method to be a useful tool for parachute designers. 展开更多
关键词 parachute dynamics fluid-structure interaction nonlinear structure dynamics time dependent flow parallel computation technique
下载PDF
Fluid-Structure Interaction Analysis of Flexible Plate with Partitioned Coupling Method
12
作者 W.Z.,Lim R.Y.,Xiao 《China Ocean Engineering》 SCIE EI CSCD 2019年第6期713-722,共10页
The development and rapid usage of numerical codes for fluid-structure interaction(FSI) problems are of great relevance to researchers in many engineering fields such as civil engineering and ocean engineering. This m... The development and rapid usage of numerical codes for fluid-structure interaction(FSI) problems are of great relevance to researchers in many engineering fields such as civil engineering and ocean engineering. This multidisciplinary field known as FSI has been expanded to engineering fields such as offshore structures, tall slender structures and other flexible structures applications. The motivation of this paper is to investigate the numerical model of two-way coupling FSI partitioned flexible plate structure under fluid flow. The adopted partitioned method and approach utilized the advantage of the existing numerical algorithms in solving the two-way coupling fluid and structural interactions. The flexible plate was subjected to a fluid flow which causes large deformation on the fluid domain from the oscillation of the flexible plate. Both fluid and flexible plate are subjected to the interaction of load transfer within two physics by using the strong and weak coupling methods of MFS and Load Transfer Physics Environment, respectively. The oscillation and deformation results have been validated which demonstrate the reliability of both strong and weak method in resolving the two-way coupling problem in contribution of knowledge to the feasibility field study of ocean engineering and civil engineering. 展开更多
关键词 fluid-structure interaction flexible plate structure two-way coupling partitioned method numerical simulation
下载PDF
A Fluid-Structure Interaction Simulation of Coal and Gas Outbursts Based on the Interaction between the Gas Pressure and Deformation of a Coal-Rock Mass
13
作者 Lin Fang Mengjun Wu +3 位作者 Bin Wu Honglin Li Chenhao He Fan Sun 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1649-1668,共20页
Based on the theories of the gas seepage in coal seams and the deformation of the coal-rock medium,the gas seepage field in coal-rock mass is coupled with the deformation field of the coal-rock mass to establish a flu... Based on the theories of the gas seepage in coal seams and the deformation of the coal-rock medium,the gas seepage field in coal-rock mass is coupled with the deformation field of the coal-rock mass to establish a fluidstructure interaction model for the interaction between coal gas and coal-rock masses.The outburst process in coal-rock masses under the joint action of gas pressure and crustal stress is simulated using the material point method.The simulation results show the changes in gas pressure,velocity distribution,maximum principal stress distribution,and damage distribution during the process of the coal and gas outburst,as well as themovement and accumulation of coal-rock masses after the occurrence of the outburst.It was found that the gas pressure gradient was greatest at theworking face after the occurrence of the outburst,the gas pressures and pressure gradients at each location within the coal seamgradually decreased with time,and the damage distribution was essentially the same as the minimum principal stress distribution.The simulation further revealed that the outburst first occurred in themiddle of the tunnel excavation face and that the speed at which particles of coal mass were ejected was highest at the center and decreased toward the upper and lower sides.The study provides a scientific basis for enhancing our understanding of the mechanism behind coal and gas outbursts,as well as their prevention and control. 展开更多
关键词 Coal and gas outburst fluid-structure interaction model material point method numerical simulation
下载PDF
Fluid-Structure Interaction in Problems of Patient Specific Transcatheter Aortic Valve Implantation with and Without Paravalvular Leakage Complication
14
作者 Adi Azriff Basri Mohammad Zuber +4 位作者 Ernnie Illyani Basri Muhammad Shukri Zakaria Ahmad Fazli Abd Aziz Masaaki Tamagawa Kamarul Arifin Ahmad 《Fluid Dynamics & Materials Processing》 EI 2021年第3期531-553,共23页
Paravalvular Leakage(PVL)has been recognized as one of the most dangerous complications in relation to Transcathether Aortic Valve Implantation(TAVI)activities.However,data available in the literature about Fluid Str... Paravalvular Leakage(PVL)has been recognized as one of the most dangerous complications in relation to Transcathether Aortic Valve Implantation(TAVI)activities.However,data available in the literature about Fluid Structure Interaction(FSI)for this specific problem are relatively limited.In the present study,the fluid and structure responses of the hemodynamics along the patient aorta model and the aortic wall deformation are studied with the aid of numerical simulation taking into account PVL and 100%TAVI valve opening.In particular,the aorta without valve(AWoV)is assumed as the normal condition,whereas an aorta with TAVI 26 mm for 100%Geometrical Orifice Area(GOA)is considered as the patient aorta with PVL complication.A 3D patient-specific aorta model is elaborated using the MIMICS software.Implantation of the identical TAVI valve of Edward SAPIEN XT 26(Edwards Lifes ciences,Irvine,California)is considered.An undersized 26 mm TAVI valve with 100%valve opening is selected to mimic the presence of PVL at the aortic annulus.The present research indicates that the existence of PVL can increase the blood velocity,pressure drop and WSS in comparison to normal conditions,thereby paving the way to the development of recirculation flow,thrombus formation,aorta wall collapse,aortic rupture and damage of endothelium. 展开更多
关键词 Paravalvular Leakage(PVL) HEMODYNAMICS transcatheter aortic valve implantation(TAVI) fluid-structure interaction(FSI) edward sapien valve aortic valve(ESV) aortic stenosis(AS)
下载PDF
Monolithic approach to thermal fluid-structure interaction withnonconforming interfaces
15
作者 殷亮 蒋军成 张立翔 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第2期211-222,共12页
This paper presents a monolithic approach to the thermal fluid-structureinteraction(FSI) with nonconforming interfaces.The thermal viscous flow is governedby the Boussinesq approximation and the incompressible Navier-... This paper presents a monolithic approach to the thermal fluid-structureinteraction(FSI) with nonconforming interfaces.The thermal viscous flow is governedby the Boussinesq approximation and the incompressible Navier-Stokes equations.Themotion of the fluid domain is accounted for by an arbitrary Lagrangian-Eulerian(ALE)strategy.A pseudo-solid formulation is used to manage the deformation of the fluid do-main.The structure is described by the geometrically nonlinear thermoelastic dynamics.An efficient data transfer strategy based on the Gauss points is proposed to guarantee theequilibrium of the stresses and heat along the interface.The resulting strongly coupledset of nonlinear equations for the fluid,structure,and heat is solved by a monolithicsolution procedure.A numerical example is presented to demonstrate the robustness andefficiency of the methodology. 展开更多
关键词 thermal fluid-structure interaction(FSI) nonconforming interface mono-lithic solution
下载PDF
Numerical Simulation of the Slit-Trap Dam Based on Fluid-Structure Interaction
16
作者 李昆 陈晓清 +2 位作者 陈剑刚 王飞 王小军 《Journal of Donghua University(English Edition)》 EI CAS 2016年第5期740-744,共5页
Debris flow can cause serious damage,and it is a part of the study of fluid-structure interaction(FSI).FSI analysis was established on the interaction between unsteady flow and the slit-trap dam's vibration,with a... Debris flow can cause serious damage,and it is a part of the study of fluid-structure interaction(FSI).FSI analysis was established on the interaction between unsteady flow and the slit-trap dam's vibration,with a coupling bench which can transfer fluid pressure and structure displacement.Debris flow can be seen as the Bingham body of incompressible.Based on ANSYS and CFX softwares,unidirectional and bidirectional coupling methods were used to study the transient interaction between debris flow and dam.The comparison between lateral fluid pressure states under different velocities and the equivalent stresses of the dam under different coupling conditions was made.The result shows that fluid-structure coupling becomes stronger with the increase of flow velocity.The maximum equivalent stress appears at the dam foundation,while the minimum equivalent stress appears at the dam abutment.With the increase of height,the fluid pressure decreases.The fluid pressure based on unidirectional FSI analysis is larger than that based on bidirectional FSI analysis and the maximum appears on the joint of the dam foundation and channel.The maximum equivalent stress of the dam based on the former is less than that based on the latter. 展开更多
关键词 slit-trap dam fluid-structure interaction(FSI) numerical simulation debris flow
下载PDF
Fluid-Structure Interaction Simulation of Aqueous Outflow System in Response to Juxtacanalicular Meshwork Permeability Changes with a Two-Way Coupled Method 被引量:3
17
作者 Jing Zhang Xiuqing Qian +1 位作者 Haixia Zhang Zhicheng Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第8期301-314,共14页
Elevated intraocular pressure appears to have a broader impact on increased resistance to aqueous humor outflow through the conventional aqueous outflow system(AOS).However,there is still no consensus about exact loca... Elevated intraocular pressure appears to have a broader impact on increased resistance to aqueous humor outflow through the conventional aqueous outflow system(AOS).However,there is still no consensus about exact location of the increased outflow resistance of aqueous humor,and the mechanism is not perfect.In addition,it is difficult to accurately obtain hydrodynamic parameters of aqueous humor within the trabecular meshwork outflow pathways based on the current technology.In this paper,a two-way fluid-structure interaction simulation was performed to study the pressure difference and velocity in the superficial trabecular meshwork,juxtacanalicular meshwork(JCM)and Schlemm’s canal in response to JCM permeability changes.We obtained the JCM permeability of normal intraocular pressure varied between 1×10?15 m2 and 10×10?15 m2 while permeability of the JCM ranged from 2×10?16 m2 and 3×10?16 m2 under conditions of high intraocular pressure.The study indicated that the fluid dynamics parameters in trabecular meshwork and Schlemm’s canal are most significantly affected by the changes of JCM permeability.Moreover,the study demonstrates that the finite element modeling of AOS provides a practical means for studying the outflow dynamics and the biomechanical environment of the AOS. 展开更多
关键词 Juxtacanalicular MESHWORK fluid-structure interaction PERMEABILITY TRABECULAR MESHWORK
下载PDF
OpenIFEM:A High Performance Modular Open-Source Software of the Immersed Finite Element Method for Fluid-Structure Interactions 被引量:2
18
作者 Jie Cheng Feimi Yu Lucy T.Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第4期91-124,共34页
We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This s... We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This software is modularly built to perform multiple tasks including fluid dynamics(incompressible and slightly compressible fluid models),linear and nonlinear solid mechanics,and fully coupled fluid-structure interactions.Most of open-source software packages are restricted to certain discretization methods;some are under-tested,under-documented,and lack modularity as well as extensibility.OpenIFEM is designed and built to include a set of generic classes for users to adapt so that any fluid and solid solvers can be coupled through the FSI algorithm.In addition,the package utilizes well-developed and tested libraries.It also comes with standard test cases that serve as software and algorithm validation.The software can be built on cross-platform,i.e.,Linux,Windows,and Mac OS,using CMake.Efficient parallelization is also implemented for high-performance computing for large-sized problems.OpenIFEM is documented using Doxygen and publicly available to download on GitHub.It is expected to benefit the future development of FSI algorithms and be applied to a variety of FSI applications. 展开更多
关键词 Immersed FINITE element method OPEN-SOURCE PARALLELIZATION fluid-structure interaction adaptive MESH REFINEMENT
下载PDF
Patient-Specific Echo-Based Fluid-Structure Interaction Modeling Study of Blood Flow in the Left Ventricle with Infarction and Hypertension 被引量:2
19
作者 Longling Fan Jing Yao +2 位作者 Chun Yang Di Xu Dalin Tang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第2期221-237,共17页
Understanding cardiac blood flow behaviors is of importance for cardiovascular research and clinical assessment of ventricle functions.Patient-specific Echo-based left ventricle(LV)fluid-structure interaction(FSI)mode... Understanding cardiac blood flow behaviors is of importance for cardiovascular research and clinical assessment of ventricle functions.Patient-specific Echo-based left ventricle(LV)fluid-structure interaction(FSI)models were introduced to perform ventricle mechanical analysis,investigate flow behaviors,and evaluate the impact of myocardial infarction(MI)and hypertension on blood flow in the LV.Echo image data were acquired from 3 patients with consent obtained:one healthy volunteer(P1),one hypertension patient(P2),and one patient who had an inferior and posterior myocardial infarction(P3).The nonlinear Mooney-Rivlin model was used for ventricle tissue with material parameter values chosen to match echo-measure LV volume data.Using the healthy case as baseline,LV with MI had lower peak flow velocity(30%lower at beginejection)and hypertension LV had higher peak flow velocity(16%higher at begin-filling).The vortex area(defined as the area with vorticity>0)for P3 was 19%smaller than that of P1.The vortex area for P2 was 12%smaller than that of P1.At peak of filling,the maximum flow shear stress(FSS)for P2 and P3 were 390%higher and 63%lower than that of P1,respectively.Meanwhile,LV stress and strain of P2 were 41%and 15%higher than those of P1,respectively.LV stress and strain of P3 were 36%and 42%lower than those of P1,respectively.In conclusion,FSI models could provide both flow and structural stress/strain information which would serve as the base for further cardiovascular investigations related to disease initiation,progression,and treatment strategy selections.Large-scale studies are needed to validate our findings. 展开更多
关键词 fluid-structure interaction model VENTRICLE flow fluid dynamic VENTRICLE material properties VENTRICLE MECHANICS
下载PDF
A Novel Approach for the Numerical Simulation of Fluid-Structure Interaction Problems in the Presence of Debris 被引量:3
20
作者 Miaomiao Ren Xiaobin Shu 《Fluid Dynamics & Materials Processing》 EI 2020年第5期979-991,共13页
A novel algorithm is proposed for the simulation of fluid-structure interaction problems.In particular,much attention is paid to natural phenomena such as debris flow.The fluid part(debris flow fluid)is simulated in t... A novel algorithm is proposed for the simulation of fluid-structure interaction problems.In particular,much attention is paid to natural phenomena such as debris flow.The fluid part(debris flow fluid)is simulated in the framework of the smoothed particle hydrodynamics(SPH)approach,while the solid part(downstream obstacles)is treated using the finite element method(FEM).Fluid-structure coupling is implemented through dynamic boundary conditions.In particular,the software“TensorFlow”and an algorithm based on Python are combined to conduct the required calculations.The simulation results show that the dynamics of viscous and non-viscous debris flows can be extremely different when there are obstacles in the downstream direction.The implemented SPH-FEM coupling method can simulate the fluid-structure coupling problem with a reasonable approximation. 展开更多
关键词 fluid-structure coupling SPH FEM TensorFlow PYTHON dynamic boundary conditions
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部