Forecasting uncertainties among meteorological fields have long been recognized as the main limitation on the accuracy and predictability of air quality forecasts.However,the particular impact of meteorological foreca...Forecasting uncertainties among meteorological fields have long been recognized as the main limitation on the accuracy and predictability of air quality forecasts.However,the particular impact of meteorological forecasting uncertainties on air quality forecasts specific to different seasons is still not well known.In this study,a series of forecasts with different forecast lead times for January,April,July,and October of 2018 are conducted over the Beijing-Tianjin-Hebei(BTH)region and the impacts of meteorological forecasting uncertainties on surface PM_(2.5)concentration forecasts with each lead time are investigated.With increased lead time,the forecasted PM_(2.5)concentrations significantly change and demonstrate obvious seasonal variations.In general,the forecasting uncertainties in monthly mean surface PM_(2.5)concentrations in the BTH region due to lead time are the largest(80%)in spring,followed by autumn(~50%),summer(~40%),and winter(20%).In winter,the forecasting uncertainties in total surface PM_(2.5)mass due to lead time are mainly due to the uncertainties in PBL heights and hence the PBL mixing of anthropogenic primary particles.In spring,the forecasting uncertainties are mainly from the impacts of lead time on lower-tropospheric northwesterly winds,thereby further enhancing the condensation production of anthropogenic secondary particles by the long-range transport of natural dust.In summer,the forecasting uncertainties result mainly from the decrease in dry and wet deposition rates,which are associated with the reduction of near-surface wind speed and precipitation rate.In autumn,the forecasting uncertainties arise mainly from the change in the transport of remote natural dust and anthropogenic particles,which is associated with changes in the large-scale circulation.展开更多
This study investigated the impacts of increasing model resolutions and shortening forecast lead times on the quantitative precipitation forecast(QPF)for heavy-rainfall events over south China during the rainy seasons...This study investigated the impacts of increasing model resolutions and shortening forecast lead times on the quantitative precipitation forecast(QPF)for heavy-rainfall events over south China during the rainy seasons in 2013-2020.The control experiment,where the analysis-forecast cycles run with model resolutions of about 3 km,was compared to a lower-resolution experiment with model resolutions of about 9 km,and a longer-term experiment activated 12 hours earlier.Rainfall forecasting in the presummer rainy season was significantly improved by improving model resolutions,with more improvements in cases with stronger synoptic-scale forcings.This is partially attributed to the improved initial conditions(ICs)and subsequent forecasts for low-level jets(LLJs).Forecasts of heavy rainfall induced by landfalling tropical cyclones(TCs)benefited from increasing model resolutions in the first 6 hours.Forecast improvements in rainfall due to shortening forecast lead times were more significant at earlier(1-6 h)and later(7-12 h)lead times for cases with stronger and weaker synoptic-scale forcings,respectively,due to the area-and case-dependent improvements in ICs for nonprecipitation variables.Specifically,significant improvements mainly presented over the northern South China Sea for low-level onshore wind of weak-forcing cases but over south China for LLJs of strong-forcing cases during the presummer rainy season,and over south China for all the nonprecipitation variables above the surface during the TC season.However,some disadvantages of higher-resolution and shorter-term forecasts in QPFs highlight the importance of developing ensemble forecasting with proper IC perturbations,which include the complementary advantages of lower-resolution and longer-term forecasts.展开更多
This paper provides a comprehensive assessment of Asian summer monsoon prediction skill as a function of lead time and its relationship to sea surface temperature prediction using the seasonal hindcasts of the Beijing...This paper provides a comprehensive assessment of Asian summer monsoon prediction skill as a function of lead time and its relationship to sea surface temperature prediction using the seasonal hindcasts of the Beijing Climate Center Climate System Model, BCC_CSM1. l(m). For the South and Southeast Asian summer monsoon, reasonable skill is found in the model's forecasting of certain aspects of monsoon climatology and spatiotemporal variability. Nevertheless, deficiencies such as significant forecast errors over the tropical western North Pacific and the eastern equatorial Indian Ocean are also found. In particular, overestimation of the connections of some dynamical monsoon indices with large-scale circulation and precipitation patterns exists in most ensemble mean forecasts, even for short lead-time forecasts. Variations of SST, measured by the first mode over the tropical Pacific and Indian oceans, as well as the spatiotemporal features over the Nifio3.4 region, are overall well predicted. However, this does not necessarily translate into successful forecasts of the Asian summer monsoon by the model. Diagnostics of the relationships between monsoon and SST show that difficulties in predicting the South Asian monsoon can be mainly attributed to the limited regional response of monsoon in observations but the extensive and exaggerated response in predictions due partially to the application of ensemble average forecasting methods. In contrast, in spite of a similar deficiency, the Southeast Asian monsoon can still be forecasted reasonably, probably because of its closer relationship with large-scale circulation patterns and E1 Nifio-Southern Oscillation.展开更多
An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation sin...An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFC3700701)National Natural Science Foundation of China(Grant Nos.41775146,42061134009)+1 种基金USTC Research Funds of the Double First-Class Initiative(YD2080002007)Strategic Priority Research Program of Chinese Academy of Sciences(XDB41000000).
文摘Forecasting uncertainties among meteorological fields have long been recognized as the main limitation on the accuracy and predictability of air quality forecasts.However,the particular impact of meteorological forecasting uncertainties on air quality forecasts specific to different seasons is still not well known.In this study,a series of forecasts with different forecast lead times for January,April,July,and October of 2018 are conducted over the Beijing-Tianjin-Hebei(BTH)region and the impacts of meteorological forecasting uncertainties on surface PM_(2.5)concentration forecasts with each lead time are investigated.With increased lead time,the forecasted PM_(2.5)concentrations significantly change and demonstrate obvious seasonal variations.In general,the forecasting uncertainties in monthly mean surface PM_(2.5)concentrations in the BTH region due to lead time are the largest(80%)in spring,followed by autumn(~50%),summer(~40%),and winter(20%).In winter,the forecasting uncertainties in total surface PM_(2.5)mass due to lead time are mainly due to the uncertainties in PBL heights and hence the PBL mixing of anthropogenic primary particles.In spring,the forecasting uncertainties are mainly from the impacts of lead time on lower-tropospheric northwesterly winds,thereby further enhancing the condensation production of anthropogenic secondary particles by the long-range transport of natural dust.In summer,the forecasting uncertainties result mainly from the decrease in dry and wet deposition rates,which are associated with the reduction of near-surface wind speed and precipitation rate.In autumn,the forecasting uncertainties arise mainly from the change in the transport of remote natural dust and anthropogenic particles,which is associated with changes in the large-scale circulation.
基金National Key Research and Development Program of China(2017YFC1501603)National Natural Science Foundation of China(41975136,42075014)+2 种基金Startup Foundation for Introducing Talent of NUIST(2023r121)Guangdong Basic and Applied Basic Research Foundation(2019A1515011118)Guangzhou Municipal Science and Technology Planning Project of China(202103000030)。
文摘This study investigated the impacts of increasing model resolutions and shortening forecast lead times on the quantitative precipitation forecast(QPF)for heavy-rainfall events over south China during the rainy seasons in 2013-2020.The control experiment,where the analysis-forecast cycles run with model resolutions of about 3 km,was compared to a lower-resolution experiment with model resolutions of about 9 km,and a longer-term experiment activated 12 hours earlier.Rainfall forecasting in the presummer rainy season was significantly improved by improving model resolutions,with more improvements in cases with stronger synoptic-scale forcings.This is partially attributed to the improved initial conditions(ICs)and subsequent forecasts for low-level jets(LLJs).Forecasts of heavy rainfall induced by landfalling tropical cyclones(TCs)benefited from increasing model resolutions in the first 6 hours.Forecast improvements in rainfall due to shortening forecast lead times were more significant at earlier(1-6 h)and later(7-12 h)lead times for cases with stronger and weaker synoptic-scale forcings,respectively,due to the area-and case-dependent improvements in ICs for nonprecipitation variables.Specifically,significant improvements mainly presented over the northern South China Sea for low-level onshore wind of weak-forcing cases but over south China for LLJs of strong-forcing cases during the presummer rainy season,and over south China for all the nonprecipitation variables above the surface during the TC season.However,some disadvantages of higher-resolution and shorter-term forecasts in QPFs highlight the importance of developing ensemble forecasting with proper IC perturbations,which include the complementary advantages of lower-resolution and longer-term forecasts.
基金supported by the National Basic Research Program of China (Grant Nos. 2015CB453200 and 2014CB953900)China Meteorological Special Program (Grant Nos. GYHY 201206016 and GYHY201306020)+1 种基金the National Natural Science Foundation of China (Grant Nos. 41305057, 41275076, and 41375081)the Jiangsu Collaborative Innovation Center for Climate Change, China
文摘This paper provides a comprehensive assessment of Asian summer monsoon prediction skill as a function of lead time and its relationship to sea surface temperature prediction using the seasonal hindcasts of the Beijing Climate Center Climate System Model, BCC_CSM1. l(m). For the South and Southeast Asian summer monsoon, reasonable skill is found in the model's forecasting of certain aspects of monsoon climatology and spatiotemporal variability. Nevertheless, deficiencies such as significant forecast errors over the tropical western North Pacific and the eastern equatorial Indian Ocean are also found. In particular, overestimation of the connections of some dynamical monsoon indices with large-scale circulation and precipitation patterns exists in most ensemble mean forecasts, even for short lead-time forecasts. Variations of SST, measured by the first mode over the tropical Pacific and Indian oceans, as well as the spatiotemporal features over the Nifio3.4 region, are overall well predicted. However, this does not necessarily translate into successful forecasts of the Asian summer monsoon by the model. Diagnostics of the relationships between monsoon and SST show that difficulties in predicting the South Asian monsoon can be mainly attributed to the limited regional response of monsoon in observations but the extensive and exaggerated response in predictions due partially to the application of ensemble average forecasting methods. In contrast, in spite of a similar deficiency, the Southeast Asian monsoon can still be forecasted reasonably, probably because of its closer relationship with large-scale circulation patterns and E1 Nifio-Southern Oscillation.
基金China-Korea Cooperation Project on the development of oceanic monitoring and prediction system on nuclear safetythe Project of the National Programme on Global Change and Air-sea Interaction under contract No.GASI-03-IPOVAI-05
文摘An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.