C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high...C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high density of 0.94 g/cm3 as preform.Experimental results indicated that the fracture characteristics of C/C composites were closely related to the frequency of high-temperature treatment(HTT) at the break of CVI process.According to the load?displacement curves,C/C composites showed a pseudoplastic fracture after twice of HTT.After three times of HTT,load?displacement curves tended to be stable with a decreasing bending strength at 177.5 MPa.Delamination failure and intrastratal fiber fracture were observed at the cross-section of C/C composites by scanning electronic microscope.Because the content of pyrocarbon and fibers has a different distribution in layers,the C/C composites show different fracture characteristics at various regions,which leads to good toughness and bending strength.展开更多
MnFeCoCuNix high-entropy alloys(HEAs)with different Ni contents were fabricated by vacuum induction melting.XRD and SEM−EDS were used to analyze the phase constitution and structure,and the tensile properties of the s...MnFeCoCuNix high-entropy alloys(HEAs)with different Ni contents were fabricated by vacuum induction melting.XRD and SEM−EDS were used to analyze the phase constitution and structure,and the tensile properties of the samples were determined using a universal tensile tester.The results show that the HEAs consist of a dual-phase structure,in which FCC1 phase is rich in Fe and Co,while the FCC2 phase has high contents of Cu and Mn.As Ni content increases,the segregation of Cu decreases,accompanied by the decrease of FCC2 phase.Moreover,the tensile strength of the HEAs increases first and then decreases,and the elongation increases slightly.This is attributed to the combined effect of interface strengthening and solid solution strengthening.The in-situ stretched MnFeCoCuNi0.5 alloy shows obvious neck shrinkage during the tensile fracture process.In the initial deformation stage,the slip lines show different morphologies in the dual-phase structure.However,in the later stage,the surface slip lines become longer and denser due to the redistribution of atoms and the re-separation of the dissolved phase.展开更多
The failure mechanism of a cylindrical shell cut into fragments by circumferential detonation collision was experimentally and numerically investigated.A self-designed detonation wave regulator was used to control the...The failure mechanism of a cylindrical shell cut into fragments by circumferential detonation collision was experimentally and numerically investigated.A self-designed detonation wave regulator was used to control the detonation and cut the shell.It was found that the self-designed regulator controlled the fragment shape.The macrostructure and micro-characteristics of fragments revealed that shear fracture was a prior mechanism,the shell fractured not only at the position of detonation collision,but the crack also penetrated the shell at the first contact position of the Chapmen-Jouguet(C-J)wave.The effects of groove number and outer layer thickness on the fracture behavior were tested by simulations.When the thickness of the outer layer was 5e18 mm,it has little effect on fragmentation of the shell,and shells all fractured at similar positions.The increase of the groove number reduced the fracture possibility of the first contact position of the C-J wave.When the groove number reached 7 with a 10 mm outer layer(1/4 model),the fracture only occurred at the position of detonation collision and the fragment width rebounded.展开更多
To study the damage and fracture mechanism of 6063 aluminum alloy under different stress states,three kinds of representative triaxial stress states have been adopted,namely smooth tensile,notch tensile,and pure shear...To study the damage and fracture mechanism of 6063 aluminum alloy under different stress states,three kinds of representative triaxial stress states have been adopted,namely smooth tensile,notch tensile,and pure shear.The results of the study indicate the following.During the notch tensile test,a relatively higher stress triaxiality appears in the root of the notch.With the applied loading increasing,the volume fraction of microvoids in the root of the notch increases continuously.When it reaches the critical volume fraction of microvoids,the specimen fractures.During the pure shear test,the stress triaxiality almost equals to zero,and there is almost no microvoids but a shear band at the center of the butterfly specimen.The shear band results from nonuniform deformation constantly under the shear stress.With stress concentration,cracks are produced within the shear band and are later coalesced.When the equivalent plastic strain reaches the critical value(equivalent plastic fracture strain),the butterfly specimen fractures.During the smooth tensile test,the stress triaxiality in the gauge of the specimen remains constant at 0.33.Thus,the volume of microvoids of the smooth tensile test is less than that of the notch tensile test and the smooth specimen fractures due to shearing between microvoids.The G-T-N damage model and Johnson-Cook model are used to simulate the notch tensile and shear test,respectively.The simulated engineering stress-strain curves fit the measured engineering stress-strain curves very well.In addition,the empirical damage evolution equation for the notch specimen is obtained from the experimental data and FEM simulations.展开更多
To study the effect of some parameters, such as, length and fraction of glass fiber (GF), and the fraction of maleic anhydride grafted polypropylene (PP-g-MAH), on the mechanical properties of glass fiber reinforced p...To study the effect of some parameters, such as, length and fraction of glass fiber (GF), and the fraction of maleic anhydride grafted polypropylene (PP-g-MAH), on the mechanical properties of glass fiber reinforced polypropylene (GF/PP) composites, tensile tests, bending tests and impact tests were conducted. Scanning electron microscope (SEM) was used to characterize the fracture mechanisms of the composites. The results show that, compared with 3 mm GF, 9 mm GF can significantly improve the strength of the composite better. Addition of PP-g-MAH, a kind of grafting agent, into the PP-30% LGF composite can result in a better mechanical properties because of the strengthening of the bonding interface between the matrix and the fiber. When the mass fraction of GF is 30% and the PP-g-MAH fraction is 6%, the mechanical properties of the composite are the best.展开更多
The properties of boron carbide-lanthanum boride composite material prepared by hot pressed sintering method was tested, and lanthanum boride as a sintering aid for boron carbide was investigated. The result shows tha...The properties of boron carbide-lanthanum boride composite material prepared by hot pressed sintering method was tested, and lanthanum boride as a sintering aid for boron carbide was investigated. The result shows that the hardness of boron carbide-lanthanum boride increases with the increasing content of lanthanum boride. When the content of the lanthanum boride is 6%, the hardness reaches its supreme value of 31.83 GPa, and its hardness is improved nearly 20.52% compared to monolithic boron carbide. The content of the lanthanum boride does not greatly affect flexibility strength, however, it gives much effect on fracture toughness. The curve of fracture toughness likes the form of saw-toothed wave as the content of lanthanum boride increases in the test. When the content of the lanthanum boride is 6%, the fracture toughness reaches its supreme value of 5.14 MPa·m 1/2, which is improved nearly 39.67% compared with monolithic boron carbide materials. The fracture scanning electric microscope analysis of boron carbide-lanthanum boride composite material shows that, with the increase of the content of lanthanum boride, the interior station of monolithic boron carbide is changed. The crystallite arrangement is so compact that pores disappear gradually. The main fracture way of boron carbide-lanthanum boride composite material is intercrystalline rupture, while the transcrystalline rupture is minor, which is in accordance with fracture mechanism of ceramic material. It indicates that this change of fracture mode by the addition of lanthanum boride gives rise to the improvement of the fracture toughness.展开更多
To analyze fracture mechanism of propellant grain and study the mechanical properties of propellant grain, the press and fracture processes of propellant grain with and without initial defects are modeled using the di...To analyze fracture mechanism of propellant grain and study the mechanical properties of propellant grain, the press and fracture processes of propellant grain with and without initial defects are modeled using the discrete element method. On the basis of the appropriate constitutive relationships, the discrete element model of the propellant grain was established. Compared with experimental measurements, the micro-parameters of the bonded-particle model of the propellant grain under unconfined uniaxial compression tests were calibrated. The propellant grains without initial defects, with initial surface defects, and with initial internal defects were studied numerically through a series of unconfined uniaxial compression tests. Results show that the established discrete element model is an efficient tool to study the press and fracture processes of the propellant grain. The fracture process of the propellant grain without initial defects can be divided into the elastic deformation phase, crack initiation phase, crack stable propagation phase, and crack unstable propagation phase. The fracture mechanism of this grain is the global shear failure along the direction of the maximum shear stress. Initial defects have significant effects on both the fracture mechanism and peak strength of the propellant grain. The major fracture mechanism of the propellant grain with initial surface defects is local shear failure, whereas that of the propellant grain with initial internal defects is global tensile failure. Both defects weaken the peak strengths of the propellant grain. Therefore, the carrying and filling process of the propellant grain needs to minimize initial defects as far as possible.展开更多
Grain growth, mechanical properties, and fracture mechanism of nickel-based GH4099 superalloy are investigated using heat treatments, tensile tests, optical microscopy (OM), and scanning electron microscopy (SEM) with...Grain growth, mechanical properties, and fracture mechanism of nickel-based GH4099 superalloy are investigated using heat treatments, tensile tests, optical microscopy (OM), and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The OM observation shows that the matrix grains (γ-grains) undergo an apparent growth during the solution treatment. The grain size diameter increases from 100 to 174 μm when the solution temperature rises from 1100℃ to 1160℃ for 30 min. When the holding time increases from 15 to 60 min at 1140℃, the grain size diameter increases from 140 to 176 μm, indicating that the γ-grain growth is more sensitive to temperature than time. Standard deviation, <em>S</em><sub>v</sub>, and the grain size distribution are utilized to characterize the microstructural uniformity. To predict the grain size more accurately, we develop the grain growth kinetics and find that the growth index is close to 5. The yield strength (<em>R</em><sub>p0.2</sub>), tensile strength (<em>R</em><sub>m</sub>), and ductility (<em>A</em><sub>f</sub>) are also measured. It is found that the effect decreases in the order cooling rate, solution temperature, time. <em>R</em><sub>p0.2</sub> reduces by 47% with the increase in the cooling rate from 1℃ to 8000℃/min, while both strength and ductility exhibit little changes with time. The SEM results show that the fracture surfaces have typical mixed brittle and ductile characteristics when specimens are subjected to water quenching and air cooling. However, a complete brittle fracture occurs under furnace cooling conditions. The EDS analysis indicates that the brittle γ' (Ni<sub>3</sub>Ti) phase precipitates around the γ-grain boundary during the slow cooling process, which is the main factor yielding the complete brittle fracture. Finally, the optimal solution treatment scheme for the GH4099 superalloy is proposed—a temperature of 1140℃ for 30 min followed by air cooling.展开更多
Soperplastic tensions on an IM SiCp/2024Al composite were conducted. The microstrvcture and fmcture sudece of the composite under the optimum saperplastic deformation condition were examined. The eoperimental results ...Soperplastic tensions on an IM SiCp/2024Al composite were conducted. The microstrvcture and fmcture sudece of the composite under the optimum saperplastic deformation condition were examined. The eoperimental results show that as the increase of strain during superpldstic deformation, grains fundarnentally remained equiaxed structure, and dislocation density increases gradually and its structure changes hem intererossed into nets each other to tangled and cellular structure,and the amount of liquid phase at the intedeces or gruin boundaries increases gradually. Mcrostructure examination revealed that failure took place by damage accumulation of the pmpressive decohesion of the SiC particle-matrix until a critical volume fruction was reached.展开更多
Three-dimensional (3D) five-directional braided (SiO2)/SiO2 composites were prepared by silicasol-infiltration-sintering (SIS) method. The flexural properties and microstructures were studied. The flexural stren...Three-dimensional (3D) five-directional braided (SiO2)/SiO2 composites were prepared by silicasol-infiltration-sintering (SIS) method. The flexural properties and microstructures were studied. The flexural strength and flexural elastic modulus were found to be 73 MPa and 12 GPa, respectively. The results of stress vs deflection curve and SEM examinations revealed that the fracture mechanism of 3D, five-directional braided (SiO2)/SiO2 composite was a mixture mode of ductile and brittle. The ductile mode was attributed to the weak bonding strength of fiber/matrix at low temperature. The brittle fracture might be caused by the propagation of micro defect or crack, which existed in the as-prepared composites for the ten-cycle process.展开更多
In order to study and analyze the stability of engineering rock mass under non-uniform triaxial stress and obtain the evolution mechanism of the whole process of fracture,a series of conventional triaxial compression ...In order to study and analyze the stability of engineering rock mass under non-uniform triaxial stress and obtain the evolution mechanism of the whole process of fracture,a series of conventional triaxial compression tests and three-dimensional numerical simulation tests were carried out on hollow granite specimens with different diameters.The bearing capacity of hollow cylindrical specimen is analyzed based on elasticity.The results show that:1)Under low confining pressure,the tensile strain near the hole of the hollow cylindrical specimen is obvious,and the specimen deformation near the hole is significant.At the initial stage of loading,the compressive stress and compressive strain of the specimen are widely distributed.With the progress of loading,the number of microelements subjected to tensile strain gradually increases,and even spreads throughout the specimen;2)Under conventional triaxial compression,the cracking position of hollow cylinder specimens is concentrated in the upper and lower parts,and the final fracture mode is generally compressive shear failure.The final fracture mode of complete specimen is generally tensile fracture.Under high confining pressure,the tensile cracks of the sample are concentrated in the upper and lower parts and are not connected,while the cracks of the upper and lower parts of the intact sample will expand and connect to form a fracture surface;3)In addition,the tensile crack widths of intact and hollow cylindrical specimens under low confining pressure are larger than those under high confining pressure.展开更多
Refill friction stir spot welding(RFSSW)provides a novel method to join similar and/or dissimilar metallic materials without a key-hole in the center of the joint.Having the key-hole free characterization,the similar/...Refill friction stir spot welding(RFSSW)provides a novel method to join similar and/or dissimilar metallic materials without a key-hole in the center of the joint.Having the key-hole free characterization,the similar/dissimilar RFSSW joint exhibits remarkable and endurable characteristics,including high shear strength,long fatigue life,and strong corrosion resistance.In the meanwhile,as the key-hole free joint has different microstructures compared with conventional friction stir spot welding,thus the RFSSW joint shall possess different shear and fatigue fracture mechanisms,which needs further investigation.To explore the underlying failure mechanism,the similar/dissimilar metallic material joining parameters and pre-treatment,mechanical properties,as well as fracture mechanisms under this novel technology will be discussed.In details,the welding tool design,welding parameters setting,and the influence of processing on the lap shear and fatigue properties,as well as the corrosion resistance will be mainly discussed.Moreover,the roadmap of RFFSW is also discussed.展开更多
Segregation of solute atoms in the center of thick plates of the tempered steel can cause an inhomogeneous structural transformation and generate micron-sized inclusions,which leads to lamellar tearing of thick plate ...Segregation of solute atoms in the center of thick plates of the tempered steel can cause an inhomogeneous structural transformation and generate micron-sized inclusions,which leads to lamellar tearing of thick plate and decreases the plasticity and toughness.The formation and fragmentation mechanisms of micron-sized inclusions,like MnS and(Nb,Ti)C,in the center of thick plates were investigated by using thermodynamic calculations,finite element simulations,and electron backscatter diffraction characterization techniques.The results show that micron-sized inclusions nucleate and grow in the liquid phase,and under tensile loading,they exhibit three fragmentation mechanisms.The local stress during the fragmentation of inclusions is lower than the critical fracture stress of adjacent grains,and phase boundaries can effectively impede crack propagation into the matrix.The existence of a low proportion of high-angle grain boundaries(58.1%)and high Kernel average misorientation value(0.534°)in the segregation band promotes inclusions fragmentation and crack propagation.The difference in crack initiation and propagation direction caused by the morphology of inclusions and physical properties,as well as different matrix arrest abilities,is the main reasons for the diversity of inclusion fragmentation.展开更多
The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the...The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated.展开更多
Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and ...Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and fracture structure lead to complex multiphase flow,comprehensively considering multiple mechanisms is crucial for development and CO_(2) storage in fractured shale reservoirs.In this paper,a multi-mechanism coupled model is developed by MATLAB.Compared to the traditional Eclipse300 and MATLAB Reservoir Simulation Toolbox(MRST),this model considers the impact of pore structure on fluid phase behavior by the modified Peng—Robinson equation of state(PR-EOS),and the effect simultaneously radiate to Maxwell—Stefan(M—S)diffusion,stress sensitivity,the nano-confinement(NC)effect.Moreover,a modified embedded discrete fracture model(EDFM)is used to model the complex fractures,which optimizes connection types and half-transmissibility calculation approaches between non-neighboring connections(NNCs).The full implicit equation adopts the finite volume method(FVM)and Newton—Raphson iteration for discretization and solution.The model verification with the Eclipse300 and MRST is satisfactory.The results show that the interaction between the mechanisms significantly affects the production performance and storage characteristics.The effect of molecular diffusion may be overestimated in oil-dominated(liquid-dominated)shale reservoirs.The well spacing and injection gas rate are the most crucial factors affecting the production by sensitivity analysis.Moreover,the potential gas invasion risk is mentioned.This model provides a reliable theoretical basis for CO_(2)-EOR and sequestration in shale oil reservoirs.展开更多
At present,the research on the physical composition and properties of pineapple plants is scarce,and the uncertainty of fruit picking method is the key bottleneck factor hindering the research and development of pinea...At present,the research on the physical composition and properties of pineapple plants is scarce,and the uncertainty of fruit picking method is the key bottleneck factor hindering the research and development of pineapple harvesting machinery.Based on the statistics of survey data from many places,this paper analyzes the fruit-stem fracture mechanism and the theoretical conditions for optimal separation through structural modeling,mechanical behavior analysis and function judgment.On this basis,the“pineapple plant fixation bench”and“fruit-stem bending separation torque test equipment”were developed,and large-size,small-size tests and random optimization tests were carried out successively.The test results showed that the larger of the stem-stalk fixation distance,the more torque and fracture starting angle required for fruit fracture would increase,and the change range was small when the stem-stalk fixation distance was within 50 mm,and the probability of brittle fracture and complete separation was very high.When the space between the fracture section and the fruit-stem connecting point is about 5mm,the range of bending moment value required for the fruit-stem fracture is 1.88 to 2.77 N·m,the range of fracture starting angle is 12.2°to 18.1°,and the angular travel range during the separation process is 82.9°to 87.5°.When the stem-stalk fixation distance is about 15 mm,it is the best fruit-stem separation condition and the breaking torque measured in the verification test is about 2.76 N·m.The fracture starting angle is about 13.8°,the maximum prediction error is 13.1%,and the elastic modulus near the fruit-stem joint ranges from 16.1 to 23.9 MPa.This conclusion can provide an important design basis for the research and development of pineapple field picking robot and harvesting equipment.展开更多
To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with ...To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.展开更多
A high-zinc composite,12vol%SiC/Al-13.3 Zn-3.27 Mg-1.07Cu(wt%),with an ultra-high-strength of 781 MPa was success-fully fabricated through a powder metallurgy method,followed by an extrusion process.The effects of sol...A high-zinc composite,12vol%SiC/Al-13.3 Zn-3.27 Mg-1.07Cu(wt%),with an ultra-high-strength of 781 MPa was success-fully fabricated through a powder metallurgy method,followed by an extrusion process.The effects of solid-solution and aging heat treat-ments on the microstructure and mechanical properties of the composite were extensively investigated.Compared with a single-stage sol-id-solution treatment,a two-stage solid-solution treatment(470℃/1 h+480℃/1 h)exhibited a more effective solid-solution strengthen-ing owing to the higher degree of solid-solution and a more uniform microstructure.According to the aging hardness curves of the com-posite,the optimized aging parameter(100℃/22 h)was determined.Reducing the aging temperature and time resulted in finer and more uniform nanoscale precipitates but only yielded a marginal increase in tensile strength.The fractography analysis revealed that intergranu-lar cracking and interface debonding were the main fracture mechanisms in the ultra-high-strength SiC/Al-Zn-Mg-Cu composites.Weak regions,such as the SiC/Al interface containing numerous compounds and the precipitate-free zones at the high-angle grain boundaries,were identified as significant factors limiting the strength enhancement of the composite.Interfacial compounds,including MgO,MgZn2,and Cu5Zn8,reduced the interfacial bonding strength,leading to interfacial debonding.展开更多
The fracture toughness of rocks is a critical fracturing parameter in geo-energy exploitation playing a significant role in fracture mechanics and hydraulic fracturing.The edge-notched disk bending(ENDB)specimens are ...The fracture toughness of rocks is a critical fracturing parameter in geo-energy exploitation playing a significant role in fracture mechanics and hydraulic fracturing.The edge-notched disk bending(ENDB)specimens are employed to measure the entire range of mixed-modeⅠ/Ⅲfracture toughness of Longmaxi shale.To theoretically interpret the fracture mechanisms,this research first introduces the detailed derivations of three established fracture criteria.By distinguishing the volumetric and distortional strain energy densities,an improved three-dimensional mean strain energy density(MSED)criterion is proposed.As the critical volumetric to distortional MSED ratio decreases,the transition from tensiondominated fracture to shear-dominated fracture is observed.Our results indicate that both peak load and applied energy increase significantly with the transition from pure mode I(i.e.,tension)to pure modeⅢ(i.e.,torsion or tearing)since mode-Ⅲcracking happens in a twisted manner and mode-Ⅰcracking occurs in a coplanar manner.The macroscopic fracture signatures are consistent with those of triaxial hydraulic fracturing.The average ratio of pure mode-Ⅲfracture toughness to pure mode-Ⅰfracture toughness is 0.68,indicating that the obtained mode-Ⅲfracture resistance for a tensionbased loading system is apparent rather than true.Compared to the three mainstream fracture criteria,the present fracture criterion exhibits greater competitiveness and can successfully evaluate and predict mixed-modeⅠ/Ⅲfracture toughness of distinct materials and loading methods.展开更多
X-ray tomography was used to characterize the porosity in high pressure die casting of AM60B alloy. In situ tensile deformation was performed to observe the change of porosities and their influences on crack initiatio...X-ray tomography was used to characterize the porosity in high pressure die casting of AM60B alloy. In situ tensile deformation was performed to observe the change of porosities and their influences on crack initiation, propagation and subsequent fracture of specimen. Results showed that four types of porosi- ties, including gas-shrinkage pore, gas pore, net-shrinkage and island-shrinkage, could be identified according to the formation mechanism and morphology characterization. During tensile deformation, it was shown that the gas-shrinkage pore and net-shrinkage, rather than gas pore or island-shrinkage, were the main sources for crack initiation. In addition, the crack propagated by interconnecting the po- rosities at the cross section with minimum efficient force bearing area. At these locations where externally solidified crystals (ESCs) were present, the crack would propagate along the ESC boundaries in an inter- granular mode, while at these locations without ESCs, the crack would propagate roughly along the direction perpendicular to the tensile stress in a combination of trans-granular and inter-granular modes.展开更多
基金Project (50802115) supported by the National Natural Science Foundation of ChinaProject (2011CB605801) supported by the National Basic Research Program of China
文摘C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high density of 0.94 g/cm3 as preform.Experimental results indicated that the fracture characteristics of C/C composites were closely related to the frequency of high-temperature treatment(HTT) at the break of CVI process.According to the load?displacement curves,C/C composites showed a pseudoplastic fracture after twice of HTT.After three times of HTT,load?displacement curves tended to be stable with a decreasing bending strength at 177.5 MPa.Delamination failure and intrastratal fiber fracture were observed at the cross-section of C/C composites by scanning electronic microscope.Because the content of pyrocarbon and fibers has a different distribution in layers,the C/C composites show different fracture characteristics at various regions,which leads to good toughness and bending strength.
基金The authors are grateful for the financial supports from the Jiangsu Provincial Science and Technology Plan Project,China(BE2018753/KJ185629)the National Natural Science Foundation of China(51571118)the 2020 Extracurricular Academic Research Fund for College Students of Nanjing University of Science and Technology,China.Zong-han XIE acknowledges the support of the Australian Research Council Discovery Projects.
文摘MnFeCoCuNix high-entropy alloys(HEAs)with different Ni contents were fabricated by vacuum induction melting.XRD and SEM−EDS were used to analyze the phase constitution and structure,and the tensile properties of the samples were determined using a universal tensile tester.The results show that the HEAs consist of a dual-phase structure,in which FCC1 phase is rich in Fe and Co,while the FCC2 phase has high contents of Cu and Mn.As Ni content increases,the segregation of Cu decreases,accompanied by the decrease of FCC2 phase.Moreover,the tensile strength of the HEAs increases first and then decreases,and the elongation increases slightly.This is attributed to the combined effect of interface strengthening and solid solution strengthening.The in-situ stretched MnFeCoCuNi0.5 alloy shows obvious neck shrinkage during the tensile fracture process.In the initial deformation stage,the slip lines show different morphologies in the dual-phase structure.However,in the later stage,the surface slip lines become longer and denser due to the redistribution of atoms and the re-separation of the dissolved phase.
基金the National Natural Science Foundation of China No.11972018the Defense Pre-Research Joint Foundation of Chinese Ordnance Industry No.6141B012858.
文摘The failure mechanism of a cylindrical shell cut into fragments by circumferential detonation collision was experimentally and numerically investigated.A self-designed detonation wave regulator was used to control the detonation and cut the shell.It was found that the self-designed regulator controlled the fragment shape.The macrostructure and micro-characteristics of fragments revealed that shear fracture was a prior mechanism,the shell fractured not only at the position of detonation collision,but the crack also penetrated the shell at the first contact position of the Chapmen-Jouguet(C-J)wave.The effects of groove number and outer layer thickness on the fracture behavior were tested by simulations.When the thickness of the outer layer was 5e18 mm,it has little effect on fragmentation of the shell,and shells all fractured at similar positions.The increase of the groove number reduced the fracture possibility of the first contact position of the C-J wave.When the groove number reached 7 with a 10 mm outer layer(1/4 model),the fracture only occurred at the position of detonation collision and the fragment width rebounded.
文摘To study the damage and fracture mechanism of 6063 aluminum alloy under different stress states,three kinds of representative triaxial stress states have been adopted,namely smooth tensile,notch tensile,and pure shear.The results of the study indicate the following.During the notch tensile test,a relatively higher stress triaxiality appears in the root of the notch.With the applied loading increasing,the volume fraction of microvoids in the root of the notch increases continuously.When it reaches the critical volume fraction of microvoids,the specimen fractures.During the pure shear test,the stress triaxiality almost equals to zero,and there is almost no microvoids but a shear band at the center of the butterfly specimen.The shear band results from nonuniform deformation constantly under the shear stress.With stress concentration,cracks are produced within the shear band and are later coalesced.When the equivalent plastic strain reaches the critical value(equivalent plastic fracture strain),the butterfly specimen fractures.During the smooth tensile test,the stress triaxiality in the gauge of the specimen remains constant at 0.33.Thus,the volume of microvoids of the smooth tensile test is less than that of the notch tensile test and the smooth specimen fractures due to shearing between microvoids.The G-T-N damage model and Johnson-Cook model are used to simulate the notch tensile and shear test,respectively.The simulated engineering stress-strain curves fit the measured engineering stress-strain curves very well.In addition,the empirical damage evolution equation for the notch specimen is obtained from the experimental data and FEM simulations.
基金Funded by National Natural Science Foundation of China(Nos.51705295,51778351)the Science and Technology Project for the Universities of Shandong Province (No.J16LA58)Shandong University of Science and Technology Research Fund (No.2018 TDJH101)
文摘To study the effect of some parameters, such as, length and fraction of glass fiber (GF), and the fraction of maleic anhydride grafted polypropylene (PP-g-MAH), on the mechanical properties of glass fiber reinforced polypropylene (GF/PP) composites, tensile tests, bending tests and impact tests were conducted. Scanning electron microscope (SEM) was used to characterize the fracture mechanisms of the composites. The results show that, compared with 3 mm GF, 9 mm GF can significantly improve the strength of the composite better. Addition of PP-g-MAH, a kind of grafting agent, into the PP-30% LGF composite can result in a better mechanical properties because of the strengthening of the bonding interface between the matrix and the fiber. When the mass fraction of GF is 30% and the PP-g-MAH fraction is 6%, the mechanical properties of the composite are the best.
文摘The properties of boron carbide-lanthanum boride composite material prepared by hot pressed sintering method was tested, and lanthanum boride as a sintering aid for boron carbide was investigated. The result shows that the hardness of boron carbide-lanthanum boride increases with the increasing content of lanthanum boride. When the content of the lanthanum boride is 6%, the hardness reaches its supreme value of 31.83 GPa, and its hardness is improved nearly 20.52% compared to monolithic boron carbide. The content of the lanthanum boride does not greatly affect flexibility strength, however, it gives much effect on fracture toughness. The curve of fracture toughness likes the form of saw-toothed wave as the content of lanthanum boride increases in the test. When the content of the lanthanum boride is 6%, the fracture toughness reaches its supreme value of 5.14 MPa·m 1/2, which is improved nearly 39.67% compared with monolithic boron carbide materials. The fracture scanning electric microscope analysis of boron carbide-lanthanum boride composite material shows that, with the increase of the content of lanthanum boride, the interior station of monolithic boron carbide is changed. The crystallite arrangement is so compact that pores disappear gradually. The main fracture way of boron carbide-lanthanum boride composite material is intercrystalline rupture, while the transcrystalline rupture is minor, which is in accordance with fracture mechanism of ceramic material. It indicates that this change of fracture mode by the addition of lanthanum boride gives rise to the improvement of the fracture toughness.
基金The National Key Research and Development Program of China(No.2018YFD1100401-04)the National Natural Science Foundation of China(No.11772091)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.CE01-2)the Open Research Fund Program of Jiangsu Key Laboratory of Engineering M echanics(No.LEM16A08)
文摘To analyze fracture mechanism of propellant grain and study the mechanical properties of propellant grain, the press and fracture processes of propellant grain with and without initial defects are modeled using the discrete element method. On the basis of the appropriate constitutive relationships, the discrete element model of the propellant grain was established. Compared with experimental measurements, the micro-parameters of the bonded-particle model of the propellant grain under unconfined uniaxial compression tests were calibrated. The propellant grains without initial defects, with initial surface defects, and with initial internal defects were studied numerically through a series of unconfined uniaxial compression tests. Results show that the established discrete element model is an efficient tool to study the press and fracture processes of the propellant grain. The fracture process of the propellant grain without initial defects can be divided into the elastic deformation phase, crack initiation phase, crack stable propagation phase, and crack unstable propagation phase. The fracture mechanism of this grain is the global shear failure along the direction of the maximum shear stress. Initial defects have significant effects on both the fracture mechanism and peak strength of the propellant grain. The major fracture mechanism of the propellant grain with initial surface defects is local shear failure, whereas that of the propellant grain with initial internal defects is global tensile failure. Both defects weaken the peak strengths of the propellant grain. Therefore, the carrying and filling process of the propellant grain needs to minimize initial defects as far as possible.
文摘Grain growth, mechanical properties, and fracture mechanism of nickel-based GH4099 superalloy are investigated using heat treatments, tensile tests, optical microscopy (OM), and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The OM observation shows that the matrix grains (γ-grains) undergo an apparent growth during the solution treatment. The grain size diameter increases from 100 to 174 μm when the solution temperature rises from 1100℃ to 1160℃ for 30 min. When the holding time increases from 15 to 60 min at 1140℃, the grain size diameter increases from 140 to 176 μm, indicating that the γ-grain growth is more sensitive to temperature than time. Standard deviation, <em>S</em><sub>v</sub>, and the grain size distribution are utilized to characterize the microstructural uniformity. To predict the grain size more accurately, we develop the grain growth kinetics and find that the growth index is close to 5. The yield strength (<em>R</em><sub>p0.2</sub>), tensile strength (<em>R</em><sub>m</sub>), and ductility (<em>A</em><sub>f</sub>) are also measured. It is found that the effect decreases in the order cooling rate, solution temperature, time. <em>R</em><sub>p0.2</sub> reduces by 47% with the increase in the cooling rate from 1℃ to 8000℃/min, while both strength and ductility exhibit little changes with time. The SEM results show that the fracture surfaces have typical mixed brittle and ductile characteristics when specimens are subjected to water quenching and air cooling. However, a complete brittle fracture occurs under furnace cooling conditions. The EDS analysis indicates that the brittle γ' (Ni<sub>3</sub>Ti) phase precipitates around the γ-grain boundary during the slow cooling process, which is the main factor yielding the complete brittle fracture. Finally, the optimal solution treatment scheme for the GH4099 superalloy is proposed—a temperature of 1140℃ for 30 min followed by air cooling.
文摘Soperplastic tensions on an IM SiCp/2024Al composite were conducted. The microstrvcture and fmcture sudece of the composite under the optimum saperplastic deformation condition were examined. The eoperimental results show that as the increase of strain during superpldstic deformation, grains fundarnentally remained equiaxed structure, and dislocation density increases gradually and its structure changes hem intererossed into nets each other to tangled and cellular structure,and the amount of liquid phase at the intedeces or gruin boundaries increases gradually. Mcrostructure examination revealed that failure took place by damage accumulation of the pmpressive decohesion of the SiC particle-matrix until a critical volume fruction was reached.
基金Funded by the Basic Research Project of Science and Technology of Jiangsu Province(No.BK2009002)the National Natural ScienceFoundation of China(No.61176062)the Fundamental Research Funds for the Central Universities(No.NS2013061)
文摘Three-dimensional (3D) five-directional braided (SiO2)/SiO2 composites were prepared by silicasol-infiltration-sintering (SIS) method. The flexural properties and microstructures were studied. The flexural strength and flexural elastic modulus were found to be 73 MPa and 12 GPa, respectively. The results of stress vs deflection curve and SEM examinations revealed that the fracture mechanism of 3D, five-directional braided (SiO2)/SiO2 composite was a mixture mode of ductile and brittle. The ductile mode was attributed to the weak bonding strength of fiber/matrix at low temperature. The brittle fracture might be caused by the propagation of micro defect or crack, which existed in the as-prepared composites for the ten-cycle process.
基金Projects(52074116,51804113)supported by the National Natural Science Foundation of China。
文摘In order to study and analyze the stability of engineering rock mass under non-uniform triaxial stress and obtain the evolution mechanism of the whole process of fracture,a series of conventional triaxial compression tests and three-dimensional numerical simulation tests were carried out on hollow granite specimens with different diameters.The bearing capacity of hollow cylindrical specimen is analyzed based on elasticity.The results show that:1)Under low confining pressure,the tensile strain near the hole of the hollow cylindrical specimen is obvious,and the specimen deformation near the hole is significant.At the initial stage of loading,the compressive stress and compressive strain of the specimen are widely distributed.With the progress of loading,the number of microelements subjected to tensile strain gradually increases,and even spreads throughout the specimen;2)Under conventional triaxial compression,the cracking position of hollow cylinder specimens is concentrated in the upper and lower parts,and the final fracture mode is generally compressive shear failure.The final fracture mode of complete specimen is generally tensile fracture.Under high confining pressure,the tensile cracks of the sample are concentrated in the upper and lower parts and are not connected,while the cracks of the upper and lower parts of the intact sample will expand and connect to form a fracture surface;3)In addition,the tensile crack widths of intact and hollow cylindrical specimens under low confining pressure are larger than those under high confining pressure.
基金This work was supported by International Science and Technology Cooperation Project of Guangdong Province(Grant No.2022A0505050054)Innovation and Technology Fund(ITF)(Grant No.ITP/021/19AP)National Natural Science Foundation of China(Grant No.51905112).
文摘Refill friction stir spot welding(RFSSW)provides a novel method to join similar and/or dissimilar metallic materials without a key-hole in the center of the joint.Having the key-hole free characterization,the similar/dissimilar RFSSW joint exhibits remarkable and endurable characteristics,including high shear strength,long fatigue life,and strong corrosion resistance.In the meanwhile,as the key-hole free joint has different microstructures compared with conventional friction stir spot welding,thus the RFSSW joint shall possess different shear and fatigue fracture mechanisms,which needs further investigation.To explore the underlying failure mechanism,the similar/dissimilar metallic material joining parameters and pre-treatment,mechanical properties,as well as fracture mechanisms under this novel technology will be discussed.In details,the welding tool design,welding parameters setting,and the influence of processing on the lap shear and fatigue properties,as well as the corrosion resistance will be mainly discussed.Moreover,the roadmap of RFFSW is also discussed.
基金the financial support to the National Natural Science Foundation of China(U20A20279)the technical support provided by Analysis and Test Center of Wuhan University of Science and Technology,China.
文摘Segregation of solute atoms in the center of thick plates of the tempered steel can cause an inhomogeneous structural transformation and generate micron-sized inclusions,which leads to lamellar tearing of thick plate and decreases the plasticity and toughness.The formation and fragmentation mechanisms of micron-sized inclusions,like MnS and(Nb,Ti)C,in the center of thick plates were investigated by using thermodynamic calculations,finite element simulations,and electron backscatter diffraction characterization techniques.The results show that micron-sized inclusions nucleate and grow in the liquid phase,and under tensile loading,they exhibit three fragmentation mechanisms.The local stress during the fragmentation of inclusions is lower than the critical fracture stress of adjacent grains,and phase boundaries can effectively impede crack propagation into the matrix.The existence of a low proportion of high-angle grain boundaries(58.1%)and high Kernel average misorientation value(0.534°)in the segregation band promotes inclusions fragmentation and crack propagation.The difference in crack initiation and propagation direction caused by the morphology of inclusions and physical properties,as well as different matrix arrest abilities,is the main reasons for the diversity of inclusion fragmentation.
基金the financial support from the National Natural Science Foundation of China(No.52109119)the Guangxi Natural Science Foundation(No.2021GXNSFBA075030)+2 种基金the Guangxi Science and Technology Project(No.Guike AD20325002)the Chinese Postdoctoral Science Fund Project(No.2022M723408)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-202202)。
文摘The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated.
基金supported by the National Natural Science Foundation of China(No.52174038 and No.52004307)China Petroleum Science and Technology Project-Major Project-Research on Tight Oil-Shale Oil Reservoir Engineering Methods and Key Technologies in Ordos Basin(No.ZLZX2020-02-04)Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC015)。
文摘Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and fracture structure lead to complex multiphase flow,comprehensively considering multiple mechanisms is crucial for development and CO_(2) storage in fractured shale reservoirs.In this paper,a multi-mechanism coupled model is developed by MATLAB.Compared to the traditional Eclipse300 and MATLAB Reservoir Simulation Toolbox(MRST),this model considers the impact of pore structure on fluid phase behavior by the modified Peng—Robinson equation of state(PR-EOS),and the effect simultaneously radiate to Maxwell—Stefan(M—S)diffusion,stress sensitivity,the nano-confinement(NC)effect.Moreover,a modified embedded discrete fracture model(EDFM)is used to model the complex fractures,which optimizes connection types and half-transmissibility calculation approaches between non-neighboring connections(NNCs).The full implicit equation adopts the finite volume method(FVM)and Newton—Raphson iteration for discretization and solution.The model verification with the Eclipse300 and MRST is satisfactory.The results show that the interaction between the mechanisms significantly affects the production performance and storage characteristics.The effect of molecular diffusion may be overestimated in oil-dominated(liquid-dominated)shale reservoirs.The well spacing and injection gas rate are the most crucial factors affecting the production by sensitivity analysis.Moreover,the potential gas invasion risk is mentioned.This model provides a reliable theoretical basis for CO_(2)-EOR and sequestration in shale oil reservoirs.
基金supported by the Construction Project of PhD Workstation in Guangdong Province(Guangdong Provincial Financial Administration[2020]No.122)the Special Fund for Rural Vitalization Strategy in Guangdong Province(Guangdong Provincial Financial Administration[2022]No.92).
文摘At present,the research on the physical composition and properties of pineapple plants is scarce,and the uncertainty of fruit picking method is the key bottleneck factor hindering the research and development of pineapple harvesting machinery.Based on the statistics of survey data from many places,this paper analyzes the fruit-stem fracture mechanism and the theoretical conditions for optimal separation through structural modeling,mechanical behavior analysis and function judgment.On this basis,the“pineapple plant fixation bench”and“fruit-stem bending separation torque test equipment”were developed,and large-size,small-size tests and random optimization tests were carried out successively.The test results showed that the larger of the stem-stalk fixation distance,the more torque and fracture starting angle required for fruit fracture would increase,and the change range was small when the stem-stalk fixation distance was within 50 mm,and the probability of brittle fracture and complete separation was very high.When the space between the fracture section and the fruit-stem connecting point is about 5mm,the range of bending moment value required for the fruit-stem fracture is 1.88 to 2.77 N·m,the range of fracture starting angle is 12.2°to 18.1°,and the angular travel range during the separation process is 82.9°to 87.5°.When the stem-stalk fixation distance is about 15 mm,it is the best fruit-stem separation condition and the breaking torque measured in the verification test is about 2.76 N·m.The fracture starting angle is about 13.8°,the maximum prediction error is 13.1%,and the elastic modulus near the fruit-stem joint ranges from 16.1 to 23.9 MPa.This conclusion can provide an important design basis for the research and development of pineapple field picking robot and harvesting equipment.
基金the financial support from the National Natural Science Foundation of China(Grant No.51839003)Liaoning Revitalization Talents Program(Grant No.XLYCYSZX 1902)Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources(Grant No.2023zy002).
文摘To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.
基金supported by the National Key Research and Development Program of China(No.2022YFB3707405)the Guangdong Basic and Applied Basic Research Foundation,China(No.2021A1515110525)+1 种基金the National Natural Science Foundation of China(Nos.U22A20114 and 52301200)the Liaoning Revitalization Talents Program,China(No.XLYC2007009)。
文摘A high-zinc composite,12vol%SiC/Al-13.3 Zn-3.27 Mg-1.07Cu(wt%),with an ultra-high-strength of 781 MPa was success-fully fabricated through a powder metallurgy method,followed by an extrusion process.The effects of solid-solution and aging heat treat-ments on the microstructure and mechanical properties of the composite were extensively investigated.Compared with a single-stage sol-id-solution treatment,a two-stage solid-solution treatment(470℃/1 h+480℃/1 h)exhibited a more effective solid-solution strengthen-ing owing to the higher degree of solid-solution and a more uniform microstructure.According to the aging hardness curves of the com-posite,the optimized aging parameter(100℃/22 h)was determined.Reducing the aging temperature and time resulted in finer and more uniform nanoscale precipitates but only yielded a marginal increase in tensile strength.The fractography analysis revealed that intergranu-lar cracking and interface debonding were the main fracture mechanisms in the ultra-high-strength SiC/Al-Zn-Mg-Cu composites.Weak regions,such as the SiC/Al interface containing numerous compounds and the precipitate-free zones at the high-angle grain boundaries,were identified as significant factors limiting the strength enhancement of the composite.Interfacial compounds,including MgO,MgZn2,and Cu5Zn8,reduced the interfacial bonding strength,leading to interfacial debonding.
基金supported by National Natural Science Foundation of China(Grant Nos.52364004,52264006,and 52164001).
文摘The fracture toughness of rocks is a critical fracturing parameter in geo-energy exploitation playing a significant role in fracture mechanics and hydraulic fracturing.The edge-notched disk bending(ENDB)specimens are employed to measure the entire range of mixed-modeⅠ/Ⅲfracture toughness of Longmaxi shale.To theoretically interpret the fracture mechanisms,this research first introduces the detailed derivations of three established fracture criteria.By distinguishing the volumetric and distortional strain energy densities,an improved three-dimensional mean strain energy density(MSED)criterion is proposed.As the critical volumetric to distortional MSED ratio decreases,the transition from tensiondominated fracture to shear-dominated fracture is observed.Our results indicate that both peak load and applied energy increase significantly with the transition from pure mode I(i.e.,tension)to pure modeⅢ(i.e.,torsion or tearing)since mode-Ⅲcracking happens in a twisted manner and mode-Ⅰcracking occurs in a coplanar manner.The macroscopic fracture signatures are consistent with those of triaxial hydraulic fracturing.The average ratio of pure mode-Ⅲfracture toughness to pure mode-Ⅰfracture toughness is 0.68,indicating that the obtained mode-Ⅲfracture resistance for a tensionbased loading system is apparent rather than true.Compared to the three mainstream fracture criteria,the present fracture criterion exhibits greater competitiveness and can successfully evaluate and predict mixed-modeⅠ/Ⅲfracture toughness of distinct materials and loading methods.
基金the National Natural Science Foundation of China (No.51275269)the Tsinghua University Initiative Scientific Research Program (No.20121087918)the National Science and Technology Major Project of the Ministry of Science and Technology of the People’s Republic of China (No.2012ZX04012011) for financial support
文摘X-ray tomography was used to characterize the porosity in high pressure die casting of AM60B alloy. In situ tensile deformation was performed to observe the change of porosities and their influences on crack initiation, propagation and subsequent fracture of specimen. Results showed that four types of porosi- ties, including gas-shrinkage pore, gas pore, net-shrinkage and island-shrinkage, could be identified according to the formation mechanism and morphology characterization. During tensile deformation, it was shown that the gas-shrinkage pore and net-shrinkage, rather than gas pore or island-shrinkage, were the main sources for crack initiation. In addition, the crack propagated by interconnecting the po- rosities at the cross section with minimum efficient force bearing area. At these locations where externally solidified crystals (ESCs) were present, the crack would propagate along the ESC boundaries in an inter- granular mode, while at these locations without ESCs, the crack would propagate roughly along the direction perpendicular to the tensile stress in a combination of trans-granular and inter-granular modes.