A nonlinear model of mean free surface of waves or wave set-up is presented. The model is based on that of Roelvink (1993), but the numerical techniques used in the solution are based on the Weighted-Average Flux (WAF...A nonlinear model of mean free surface of waves or wave set-up is presented. The model is based on that of Roelvink (1993), but the numerical techniques used in the solution are based on the Weighted-Average Flux (WAF) method (Watson el al., 1992), with Time-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number of computational points to be used, and is particularly efficient in modeling wave set-up. The short wave (or primary wave) energy equation is solved by use of a more traditional Lax-Wendroff technique. A nonlinear wave theory (James, 1974) is introduced. The model described in this paper is found to be satisfactory in most respects when compared with the measurements conducted by Stive (1983) except in modeling the mean free surface very close to the mean shoreline.展开更多
Some new results of the modeling of mean free surface of waves or wave set-up are presented. The stream function wave theory is applied to incident short waves. The limiting wave steepness is adopted as the wave break...Some new results of the modeling of mean free surface of waves or wave set-up are presented. The stream function wave theory is applied to incident short waves. The limiting wave steepness is adopted as the wave breaker index in the calculation of wave breaking dissipation. The model is based on Roelvink (1993), but the numerical techniques used in the solution are based on the Weighted-Average Flux (WAF) method (Watson et al., 1992), with Time-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number of computational points to be used, and is particularly efficient in modeling wave set-up. The short wave (or incident primary wave) energy equation is solved by use of a traditional Lax-Wendroff technique. The present model is found to be satisfactory compared with the measurements conducted by Stive (1983).展开更多
In the present paper, the inelastic mean free path (IMFP) of incident electrons is calculated as a function of energy for silicon (Si), oxides of silicon (SiO2), SiO, and A1203 in bulk form by employing atomic/m...In the present paper, the inelastic mean free path (IMFP) of incident electrons is calculated as a function of energy for silicon (Si), oxides of silicon (SiO2), SiO, and A1203 in bulk form by employing atomic/molecular inelastic cross sections derived by using a semi-empirical quantum mechanical method developed earlier. A general agreement of the present results is found with most of the available data. It is of great importance that we have been able to estimate the minimum IMFP, which corresponds to the peak of inelastic interactions of incident electrons in each solid investigated. New results are presented for SiO, for which no comparison is available. The present work is important in view of the lack of experimental data on the IMFP in solids.展开更多
Classical molecular dynamics(MD)simulations ae performed to investigate the effects of mechanical strain on the thermal conductivity of single-layer black phosphorus(SLBP)nanoribbons along different directions at room...Classical molecular dynamics(MD)simulations ae performed to investigate the effects of mechanical strain on the thermal conductivity of single-layer black phosphorus(SLBP)nanoribbons along different directions at room temperature.The results show that the tensile strain afects the thermal conductivity of nanoribbons by changing thephonon density of state(DOS)and mean free path(M FP).The thermal conductivity shows a sharp enhancement with the tensile strain applied along the armchai diection,while it increases slowly with the strain applied along the zigzag diection.This phenomenon cm be mainly explained by effects of the phonon DOS and MFP.The increasing strain along the armchai direction weakens DOS and strengthens MFP clearly.However,when it comes to the increasing strain along the zigzag deection'DOS enliances significantly while MFP decreases slightly.The findings explore the relationship between the tensile strain and the thermal conductivity reasonably and can provide a reliable method to estimate the MFP of black phosphorus.展开更多
Ta/MgO/NiFe/MgO/Ta ultrathin films with and without intercalation of NiFe nanoparticles in MgO layers were prepared by magnetron sputtering, followed by a vacuum annealing process. The measured and calculated results ...Ta/MgO/NiFe/MgO/Ta ultrathin films with and without intercalation of NiFe nanoparticles in MgO layers were prepared by magnetron sputtering, followed by a vacuum annealing process. The measured and calculated results show that the former has higher specular electron scattering (SES) parameter at MgO/NiFe interfaces, lower resistivity, and higher magnetoresistance (MR). The improved transport properties (TPs) are mainly attributed to the suppressed diffuse electron scattering by means of the introduction of NiFe nanoparticles.展开更多
This work was carried out to synthesis a silica matrix by sol-gel technique,which used as host to Kiton Red laser dye doped with silica nanoparticles,which also prepared by sol-gel technique,to obtain KRSiO2 nanoparti...This work was carried out to synthesis a silica matrix by sol-gel technique,which used as host to Kiton Red laser dye doped with silica nanoparticles,which also prepared by sol-gel technique,to obtain KRSiO2 nanoparticles confined in silica xerogel matrix.The rods at different pH values were successfully synthesized.The different values of pH cause different size of obtained nanoparticles,these nanoparticles act as scatter centers in the matrix.Amplified spontaneous emission(ASE),threshold pumping energy(Eth),and mean free path(lt)for photons in the rods have been reported.the results show that the values of bandwidth at full width half-maximum(FWHM)and the threshold energy are about 8.7nm and 12 mJ respectively.展开更多
It is shown that the linear resistivity dependence on temperature for metals above the Debye’s temperature mainly is caused by electron-electron scattering of randomly moving electrons. The electron mean free path in...It is shown that the linear resistivity dependence on temperature for metals above the Debye’s temperature mainly is caused by electron-electron scattering of randomly moving electrons. The electron mean free path in metals at this temperature range is in inverse proportion to the effective density of randomly moving electrons, i.e. it is in inverse proportion both to the temperature, and to the density-of-states at the Fermi surface. The general relationships for estimation of the average diffusion coefficient, the average velocity, mean free length and average relaxation time of randomly moving electrons at the Fermi surface at temperatures above the Debye’s temperature are presented. The effective electron scattering cross-sections for different metals also are estimated. The calculation results of resistivity dependence on temperature in the range of temperature from 1 K to 900 K for Au, Cu, Mo, and Al also are presented and compared with the experimental data. Additionally in temperature range from 1 K to 900 K for copper, the temperature dependences of the mean free path, average diffusion coefficient, average drift mobility, average Hall mobility, average relaxation time of randomly moving electrons, and their resultant phonon mediated scattering cross-section are presented.展开更多
Secondary electron yields for Ar^+ impact on 6LiF, 7LiF and MgF2 thin films grown on aluminum substrates are measured each as a function of target temperature and projectile energy. Remarkably different behaviours of...Secondary electron yields for Ar^+ impact on 6LiF, 7LiF and MgF2 thin films grown on aluminum substrates are measured each as a function of target temperature and projectile energy. Remarkably different behaviours of the electron yields for LiF and MgF2 films are observed in a temperature range from 25 ℃ to 300 ℃. The electron yield of LiF is found to sharply increase with target temperature and to be saturated at about 175 ℃. But the target temperature has no effect on the electron yield of MgF2. It is also found that for the ion energies greater than 4 keV, the electron yield of 6LiF is consistently high as compared with that of 7LiF that may be due to the enhanced contribution of recoiling 6Li atoms to the secondary electron generation. A comparison between the electron yields of MgF2 and LiF reveales that above a certain ion energy the electron yield of MgF2 is considerably low as compared with that of LiF. We suggest that the short inelastic mean free path of electrons in MgF2 can be one of the reasons for its low electron yield.展开更多
In principle, the free fatty acids, diterpene fatty acid esters and triglycerides from green coffee oil can be separated effectively, by a suitable separation process, due to the differences between molar mass and vap...In principle, the free fatty acids, diterpene fatty acid esters and triglycerides from green coffee oil can be separated effectively, by a suitable separation process, due to the differences between molar mass and vapor pressures. In addition, in the case of component separation by molecular distillation, boiling point is replaced by evaporation rate at a given temperature. Several experiments and theoretical analyses have been carried out to identify the impact of important parameters (mean free path, evaporation rate, relative volatility and Knudsen number), which determine the performance of these processes and degree of separation. In this work, a process development based on molecular distillation, for the enrichment of coffee diterpenes from green coffee oil is presented. The distillates were enriched in diterpene fatty acid esters and free fatty acids, while the residues were enriched in high molar mass triglycerides.展开更多
Nuclear chain reactions are, by now, commonly used in the nuclear reactors, and thus it seems that there is no basic problem in fission processes from the scientific point of view. However, the criticality accident th...Nuclear chain reactions are, by now, commonly used in the nuclear reactors, and thus it seems that there is no basic problem in fission processes from the scientific point of view. However, the criticality accident that occurred in JCO in 1999 suggests that one should carefully examine this accident from the nuclear physics point of view. Indeed the chain nuclear reactions should have taken place in the small area of space with 45 cm diameter disk times 30 cm height tank. In fact, when people carry the uranium nitrate solution into sedimentation tank, then this solution with uranium should get into the critical state at the 45? of uranium nitrate solution. The root cause of the accident should not be very simple from the nuclear physics point, and it should be quite important to examine why the uranium nitrate solution with 45? could have become critical.展开更多
We mainly investigated the effect of metallic wire grid on its optical property. At first, we give one simple model to deduce an expression which can describe the relationship of the optical property with the width of...We mainly investigated the effect of metallic wire grid on its optical property. At first, we give one simple model to deduce an expression which can describe the relationship of the optical property with the width of metallic wire grid. This expression could be used to calculate the reflectance of the metallic wire grid. We also give the corresponding computer simulation. Our simulation shows that the reflectance would increase when the width of metallic wire grid increase. The wider the metallic wire grid is, the higher the reflectance is. The reflectance would reach the maximum value only when the width is over the free path of electronic.展开更多
The isotope labeled graphene was synthesized in the concentration of 13 C carbon atom in 1%, 25%, 50%, 75% and 99%. The isotope effect on the phonon behavior in graphene was investigated based on the micro-Raman analy...The isotope labeled graphene was synthesized in the concentration of 13 C carbon atom in 1%, 25%, 50%, 75% and 99%. The isotope effect on the phonon behavior in graphene was investigated based on the micro-Raman analysis of 13 C isotope labeled graphene samples. We found that the phonon scattering is affected by the isotopic carbon atom as a point defect. Based on the experiment results, the Klemens-Callaway model and uncertainty principle were used to obtain the mean free path of the G and D phonons. The results agree with the thermal conductivity measurement by non-contact optical method and with other theoretical calculations.展开更多
We investigate the gas flows near to solid surfaces in terms of the local spatial variation in the molecular mean free path(MFP).Molecular dynamics(MD)is the appropriate scientific tool for obtaining molecularly-accur...We investigate the gas flows near to solid surfaces in terms of the local spatial variation in the molecular mean free path(MFP).Molecular dynamics(MD)is the appropriate scientific tool for obtaining molecularly-accurate dynamic information in micro and nano-scale gas flows,and has been used to evaluate the molecular mean free path of gases.In the calibration procedure,the viscosity of a gas in the homogeneous case can be recovered in our MD simulations and reach good agreement with the theoretical prediction and data from NIST.In surface-bounded gas flows,if the collisions between gas molecules and walls are counted,a spatially-varying mean free path is presented,and for the first time we have observed that the distribution of the free paths deviates from the exponential one and spikes appear in their distributions at larger Kn,i.e.in the transition flow regime.Based on elementary kinetic theory,the effective viscosity of the gas derived from the mean free path has been incorporated into the framework of the continuum-fluid dynamics equations,and micro-Couette flows are performed to demonstrate this potential application.展开更多
We consider the area-preserving mean curvature flow with free Neumann boundaries. We show that a rotationally symmetric n-dimensional hypersurface in R^(n+1)between two parallel hyperplanes will converge to a cylinder...We consider the area-preserving mean curvature flow with free Neumann boundaries. We show that a rotationally symmetric n-dimensional hypersurface in R^(n+1)between two parallel hyperplanes will converge to a cylinder with the same area under this flow. We use the geometric properties and the maximal principle to obtain gradient and curvature estimates, leading to long-time existence of the flow and convergence to a constant mean curvature surface.展开更多
In order to improve the wear resistance of coarse-grained WC-Co cemented carbides,the fine WC powder were used to reinforce the metallic binder.These WC-Co-based cemented carbides having bimodal WC grain size distribu...In order to improve the wear resistance of coarse-grained WC-Co cemented carbides,the fine WC powder were used to reinforce the metallic binder.These WC-Co-based cemented carbides having bimodal WC grain size distributions were synthesized by liquid phase sintering.For comparison,the cemented carbides having unimodal WC grain size distributions were synthesized.The microstructure,hardness,fracture toughness and wear resistance of these cemented carbides were investigated.The results show that adding fine WC powder is an effective method to improve the wear resistance of coarsegrained WC-Co cemented carbides.The WC size,mean free path and fracture toughness decrease with the addition of fine WC powder,while the hardness exhibits an opposite trend.The impact-wear coefficient of bimodal distribution cemented carbides is noticeably lower than that of the unimodal one with the same hardness,which means that the cemented carbides with bimodal grain structure have better combination of hardness and impact-abrasive wear resistance.The impact-abrasive wear mechanism of the bimodal cemented carbides is that the fine WC grains prevent abrasive wear and the coarse WC grains prevent impact wear.展开更多
Yttria-stabilized zirconia(YSZ) is widely used as thermal barrier coatings(TBCs) to reduce heat transfer between hot gases and metallic components in gas-turbine engines. Porous structure can generally reduce the latt...Yttria-stabilized zirconia(YSZ) is widely used as thermal barrier coatings(TBCs) to reduce heat transfer between hot gases and metallic components in gas-turbine engines. Porous structure can generally reduce the lattice thermal conductivity of bulk material, so porous YSZ can be potentially used as TBCs with better thermal performance. In this work, we investigate the thermal conductivity of nanoporous YSZ using the nonequilibrium molecular dynamics(NEMD) simulation, and comprehensively discuss the effects of cross-sectional area, pore size, structure length, porosity, Y_2O_3 concentration and temperature on the thermal conductivity. To compare with the results of the NEMD simulation, we solve the heat diffusion equation and the gray Boltzmann transport equation(BTE) to calculate the thermal conductivity of the same porous structure. From the results,we find that the thermal conductivity of YSZ has a weak dependence on the structure length at the length range from 10 to 26 nm, which indicates that the majority of heat carriers have very short mean free path(MFP) but there exists small percentage(about 3%) of phonons with longer MFP(larger than 10 nm) contributing to the thermal conductivity. The thermal conductivity predicted by NEMD simulation is smaller than that of solving heat diffusion equation(diffusive limit) with the same porous structure. It shows that the presence of pores affects phonon scattering and further affects the thermal conductivity of nanoporous YSZ. The results agree well with the solution of gray BTE with a average MFP of 0.6 nm. The thermal conductivity of nanoporous YSZ weakly depends on the Y_2O_3 concentration and temperature, which shows the phonons with very short MFP play the major contribution to the thermal conductivity. The results help to better understand the heat transfer in porous YSZ structure and develop better TBCs.展开更多
High-resolution optical imaging through or within thick scattering media is a long sought after yet unreached goal.In the past decade,the thriving technique developments in wavefront measurement and manipulation do no...High-resolution optical imaging through or within thick scattering media is a long sought after yet unreached goal.In the past decade,the thriving technique developments in wavefront measurement and manipulation do not significantly push the boundary forward.The optical diffusion limit is still a ceiling.In this work,we propose that a scattering medium can be conceptualized as an assembly of randomly packed pinhole cameras and the corresponding speckle pattern as a superposition of randomly shifted pinhole images.The concept is demonstrated through both simulation and experiments,confirming the new perspective to interpret the mechanism of information transmission through scattering media under incoherent illumination.We also analyze the efficiency of single-pinhole and dual-pinhole channels.While in infancy,the proposed method reveals a new perspective to understand imaging and information transmission through scattering media.展开更多
This paper extends the flux scattering method to study the carrier transport property in nanoscale MOSFETs with special emphasis on the low-field mobility and the transport mechanism transition. A unified analytical e...This paper extends the flux scattering method to study the carrier transport property in nanoscale MOSFETs with special emphasis on the low-field mobility and the transport mechanism transition. A unified analytical expression for the low-field mobility is proposed, which covers the entire regime from drift-diffusion transport to quasi-ballistic transport in 1-D, 2-D and 3-D MOSFETs. Two key parameters, namely the long-channel low-field mobility (λ0) and the low-field mean free path (λ0), are obtained from the experimental data, and the transport mechanism transition in MOSFETs is further discussed both experimentally and theoretically. Our work shows that λ0 is available to characterize the inherent transition of the carrier transport mechanism rather than the low-field mobility. The mobility reduces in the MOSFET with the shrinking of the channel length; however, λ0 is nearly a constant, and λ0 can be used as the "entry criterion" to determine whether the device begins to operate under quasi-ballistic transport to some extent.展开更多
基金National Natural Science Foundation of China.(No.19732004)
文摘A nonlinear model of mean free surface of waves or wave set-up is presented. The model is based on that of Roelvink (1993), but the numerical techniques used in the solution are based on the Weighted-Average Flux (WAF) method (Watson el al., 1992), with Time-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number of computational points to be used, and is particularly efficient in modeling wave set-up. The short wave (or primary wave) energy equation is solved by use of a more traditional Lax-Wendroff technique. A nonlinear wave theory (James, 1974) is introduced. The model described in this paper is found to be satisfactory in most respects when compared with the measurements conducted by Stive (1983) except in modeling the mean free surface very close to the mean shoreline.
基金This project was supported by the Fok Ying Tung Education Foundation(Grant No.81068)and the China-Australia Institutional Links Project.
文摘Some new results of the modeling of mean free surface of waves or wave set-up are presented. The stream function wave theory is applied to incident short waves. The limiting wave steepness is adopted as the wave breaker index in the calculation of wave breaking dissipation. The model is based on Roelvink (1993), but the numerical techniques used in the solution are based on the Weighted-Average Flux (WAF) method (Watson et al., 1992), with Time-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number of computational points to be used, and is particularly efficient in modeling wave set-up. The short wave (or incident primary wave) energy equation is solved by use of a traditional Lax-Wendroff technique. The present model is found to be satisfactory compared with the measurements conducted by Stive (1983).
基金Project supported by the Indian Space Research Organization through Respond Project (Grant No.ISRO/RES/2/356/10-11)
文摘In the present paper, the inelastic mean free path (IMFP) of incident electrons is calculated as a function of energy for silicon (Si), oxides of silicon (SiO2), SiO, and A1203 in bulk form by employing atomic/molecular inelastic cross sections derived by using a semi-empirical quantum mechanical method developed earlier. A general agreement of the present results is found with most of the available data. It is of great importance that we have been able to estimate the minimum IMFP, which corresponds to the peak of inelastic interactions of incident electrons in each solid investigated. New results are presented for SiO, for which no comparison is available. The present work is important in view of the lack of experimental data on the IMFP in solids.
基金The National Natural Science Foundation of China(No.51575104)
文摘Classical molecular dynamics(MD)simulations ae performed to investigate the effects of mechanical strain on the thermal conductivity of single-layer black phosphorus(SLBP)nanoribbons along different directions at room temperature.The results show that the tensile strain afects the thermal conductivity of nanoribbons by changing thephonon density of state(DOS)and mean free path(M FP).The thermal conductivity shows a sharp enhancement with the tensile strain applied along the armchai diection,while it increases slowly with the strain applied along the zigzag diection.This phenomenon cm be mainly explained by effects of the phonon DOS and MFP.The increasing strain along the armchai direction weakens DOS and strengthens MFP clearly.However,when it comes to the increasing strain along the zigzag deection'DOS enliances significantly while MFP decreases slightly.The findings explore the relationship between the tensile strain and the thermal conductivity reasonably and can provide a reliable method to estimate the MFP of black phosphorus.
基金financially supported by the National Natural Science Foundation of China (Nos. 51071023,51101012)Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (No.PHR201007122)
文摘Ta/MgO/NiFe/MgO/Ta ultrathin films with and without intercalation of NiFe nanoparticles in MgO layers were prepared by magnetron sputtering, followed by a vacuum annealing process. The measured and calculated results show that the former has higher specular electron scattering (SES) parameter at MgO/NiFe interfaces, lower resistivity, and higher magnetoresistance (MR). The improved transport properties (TPs) are mainly attributed to the suppressed diffuse electron scattering by means of the introduction of NiFe nanoparticles.
文摘This work was carried out to synthesis a silica matrix by sol-gel technique,which used as host to Kiton Red laser dye doped with silica nanoparticles,which also prepared by sol-gel technique,to obtain KRSiO2 nanoparticles confined in silica xerogel matrix.The rods at different pH values were successfully synthesized.The different values of pH cause different size of obtained nanoparticles,these nanoparticles act as scatter centers in the matrix.Amplified spontaneous emission(ASE),threshold pumping energy(Eth),and mean free path(lt)for photons in the rods have been reported.the results show that the values of bandwidth at full width half-maximum(FWHM)and the threshold energy are about 8.7nm and 12 mJ respectively.
文摘It is shown that the linear resistivity dependence on temperature for metals above the Debye’s temperature mainly is caused by electron-electron scattering of randomly moving electrons. The electron mean free path in metals at this temperature range is in inverse proportion to the effective density of randomly moving electrons, i.e. it is in inverse proportion both to the temperature, and to the density-of-states at the Fermi surface. The general relationships for estimation of the average diffusion coefficient, the average velocity, mean free length and average relaxation time of randomly moving electrons at the Fermi surface at temperatures above the Debye’s temperature are presented. The effective electron scattering cross-sections for different metals also are estimated. The calculation results of resistivity dependence on temperature in the range of temperature from 1 K to 900 K for Au, Cu, Mo, and Al also are presented and compared with the experimental data. Additionally in temperature range from 1 K to 900 K for copper, the temperature dependences of the mean free path, average diffusion coefficient, average drift mobility, average Hall mobility, average relaxation time of randomly moving electrons, and their resultant phonon mediated scattering cross-section are presented.
基金Project partially supported by the Higher Education Commission of Pakistan through indigenous PhD program
文摘Secondary electron yields for Ar^+ impact on 6LiF, 7LiF and MgF2 thin films grown on aluminum substrates are measured each as a function of target temperature and projectile energy. Remarkably different behaviours of the electron yields for LiF and MgF2 films are observed in a temperature range from 25 ℃ to 300 ℃. The electron yield of LiF is found to sharply increase with target temperature and to be saturated at about 175 ℃. But the target temperature has no effect on the electron yield of MgF2. It is also found that for the ion energies greater than 4 keV, the electron yield of 6LiF is consistently high as compared with that of 7LiF that may be due to the enhanced contribution of recoiling 6Li atoms to the secondary electron generation. A comparison between the electron yields of MgF2 and LiF reveales that above a certain ion energy the electron yield of MgF2 is considerably low as compared with that of LiF. We suggest that the short inelastic mean free path of electrons in MgF2 can be one of the reasons for its low electron yield.
文摘In principle, the free fatty acids, diterpene fatty acid esters and triglycerides from green coffee oil can be separated effectively, by a suitable separation process, due to the differences between molar mass and vapor pressures. In addition, in the case of component separation by molecular distillation, boiling point is replaced by evaporation rate at a given temperature. Several experiments and theoretical analyses have been carried out to identify the impact of important parameters (mean free path, evaporation rate, relative volatility and Knudsen number), which determine the performance of these processes and degree of separation. In this work, a process development based on molecular distillation, for the enrichment of coffee diterpenes from green coffee oil is presented. The distillates were enriched in diterpene fatty acid esters and free fatty acids, while the residues were enriched in high molar mass triglycerides.
文摘Nuclear chain reactions are, by now, commonly used in the nuclear reactors, and thus it seems that there is no basic problem in fission processes from the scientific point of view. However, the criticality accident that occurred in JCO in 1999 suggests that one should carefully examine this accident from the nuclear physics point of view. Indeed the chain nuclear reactions should have taken place in the small area of space with 45 cm diameter disk times 30 cm height tank. In fact, when people carry the uranium nitrate solution into sedimentation tank, then this solution with uranium should get into the critical state at the 45? of uranium nitrate solution. The root cause of the accident should not be very simple from the nuclear physics point, and it should be quite important to examine why the uranium nitrate solution with 45? could have become critical.
文摘We mainly investigated the effect of metallic wire grid on its optical property. At first, we give one simple model to deduce an expression which can describe the relationship of the optical property with the width of metallic wire grid. This expression could be used to calculate the reflectance of the metallic wire grid. We also give the corresponding computer simulation. Our simulation shows that the reflectance would increase when the width of metallic wire grid increase. The wider the metallic wire grid is, the higher the reflectance is. The reflectance would reach the maximum value only when the width is over the free path of electronic.
基金supported by the National Natural Science Foundation of China(Grant Nos.91123009 and 10975115)the Natural Science Foundation of Fujian Province of China(Grant No.2012J06002)
文摘The isotope labeled graphene was synthesized in the concentration of 13 C carbon atom in 1%, 25%, 50%, 75% and 99%. The isotope effect on the phonon behavior in graphene was investigated based on the micro-Raman analysis of 13 C isotope labeled graphene samples. We found that the phonon scattering is affected by the isotopic carbon atom as a point defect. Based on the experiment results, the Klemens-Callaway model and uncertainty principle were used to obtain the mean free path of the G and D phonons. The results agree with the thermal conductivity measurement by non-contact optical method and with other theoretical calculations.
基金the UK’s Engineering and Physical Sciences Research Council(EPSRC)via grant no.EP/N016602/1.
文摘We investigate the gas flows near to solid surfaces in terms of the local spatial variation in the molecular mean free path(MFP).Molecular dynamics(MD)is the appropriate scientific tool for obtaining molecularly-accurate dynamic information in micro and nano-scale gas flows,and has been used to evaluate the molecular mean free path of gases.In the calibration procedure,the viscosity of a gas in the homogeneous case can be recovered in our MD simulations and reach good agreement with the theoretical prediction and data from NIST.In surface-bounded gas flows,if the collisions between gas molecules and walls are counted,a spatially-varying mean free path is presented,and for the first time we have observed that the distribution of the free paths deviates from the exponential one and spikes appear in their distributions at larger Kn,i.e.in the transition flow regime.Based on elementary kinetic theory,the effective viscosity of the gas derived from the mean free path has been incorporated into the framework of the continuum-fluid dynamics equations,and micro-Couette flows are performed to demonstrate this potential application.
文摘We consider the area-preserving mean curvature flow with free Neumann boundaries. We show that a rotationally symmetric n-dimensional hypersurface in R^(n+1)between two parallel hyperplanes will converge to a cylinder with the same area under this flow. We use the geometric properties and the maximal principle to obtain gradient and curvature estimates, leading to long-time existence of the flow and convergence to a constant mean curvature surface.
基金financially supported by the National Natural Science Foundation of China(No.51101021)。
文摘In order to improve the wear resistance of coarse-grained WC-Co cemented carbides,the fine WC powder were used to reinforce the metallic binder.These WC-Co-based cemented carbides having bimodal WC grain size distributions were synthesized by liquid phase sintering.For comparison,the cemented carbides having unimodal WC grain size distributions were synthesized.The microstructure,hardness,fracture toughness and wear resistance of these cemented carbides were investigated.The results show that adding fine WC powder is an effective method to improve the wear resistance of coarsegrained WC-Co cemented carbides.The WC size,mean free path and fracture toughness decrease with the addition of fine WC powder,while the hardness exhibits an opposite trend.The impact-wear coefficient of bimodal distribution cemented carbides is noticeably lower than that of the unimodal one with the same hardness,which means that the cemented carbides with bimodal grain structure have better combination of hardness and impact-abrasive wear resistance.The impact-abrasive wear mechanism of the bimodal cemented carbides is that the fine WC grains prevent abrasive wear and the coarse WC grains prevent impact wear.
基金the National Natural Science Foundation of China(No.51676121)
文摘Yttria-stabilized zirconia(YSZ) is widely used as thermal barrier coatings(TBCs) to reduce heat transfer between hot gases and metallic components in gas-turbine engines. Porous structure can generally reduce the lattice thermal conductivity of bulk material, so porous YSZ can be potentially used as TBCs with better thermal performance. In this work, we investigate the thermal conductivity of nanoporous YSZ using the nonequilibrium molecular dynamics(NEMD) simulation, and comprehensively discuss the effects of cross-sectional area, pore size, structure length, porosity, Y_2O_3 concentration and temperature on the thermal conductivity. To compare with the results of the NEMD simulation, we solve the heat diffusion equation and the gray Boltzmann transport equation(BTE) to calculate the thermal conductivity of the same porous structure. From the results,we find that the thermal conductivity of YSZ has a weak dependence on the structure length at the length range from 10 to 26 nm, which indicates that the majority of heat carriers have very short mean free path(MFP) but there exists small percentage(about 3%) of phonons with longer MFP(larger than 10 nm) contributing to the thermal conductivity. The thermal conductivity predicted by NEMD simulation is smaller than that of solving heat diffusion equation(diffusive limit) with the same porous structure. It shows that the presence of pores affects phonon scattering and further affects the thermal conductivity of nanoporous YSZ. The results agree well with the solution of gray BTE with a average MFP of 0.6 nm. The thermal conductivity of nanoporous YSZ weakly depends on the Y_2O_3 concentration and temperature, which shows the phonons with very short MFP play the major contribution to the thermal conductivity. The results help to better understand the heat transfer in porous YSZ structure and develop better TBCs.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC0100602)National Natural Science Foundation of China(Grant Nos.81930048,81671726,and 81627805)+2 种基金Guangdong Science and Technology Commission(Grant Nos.2019BT02X105,and 2019A1515011374)Hong Kong Research Grant Council(Grant Nos.15217721,R5029-19,and C7074-21GF)Hong Kong Innovation and Technology Commission(Grant Nos.GHP/043/19SZ and GHP/044/19GD).
文摘High-resolution optical imaging through or within thick scattering media is a long sought after yet unreached goal.In the past decade,the thriving technique developments in wavefront measurement and manipulation do not significantly push the boundary forward.The optical diffusion limit is still a ceiling.In this work,we propose that a scattering medium can be conceptualized as an assembly of randomly packed pinhole cameras and the corresponding speckle pattern as a superposition of randomly shifted pinhole images.The concept is demonstrated through both simulation and experiments,confirming the new perspective to interpret the mechanism of information transmission through scattering media under incoherent illumination.We also analyze the efficiency of single-pinhole and dual-pinhole channels.While in infancy,the proposed method reveals a new perspective to understand imaging and information transmission through scattering media.
文摘This paper extends the flux scattering method to study the carrier transport property in nanoscale MOSFETs with special emphasis on the low-field mobility and the transport mechanism transition. A unified analytical expression for the low-field mobility is proposed, which covers the entire regime from drift-diffusion transport to quasi-ballistic transport in 1-D, 2-D and 3-D MOSFETs. Two key parameters, namely the long-channel low-field mobility (λ0) and the low-field mean free path (λ0), are obtained from the experimental data, and the transport mechanism transition in MOSFETs is further discussed both experimentally and theoretically. Our work shows that λ0 is available to characterize the inherent transition of the carrier transport mechanism rather than the low-field mobility. The mobility reduces in the MOSFET with the shrinking of the channel length; however, λ0 is nearly a constant, and λ0 can be used as the "entry criterion" to determine whether the device begins to operate under quasi-ballistic transport to some extent.