Cryogenic valves play a crucial role in the production and transportation of liquefied natural gas(LNG),and are primarily responsible for efficiently controlling the inflow and outflow of LNG and regulating pressure.H...Cryogenic valves play a crucial role in the production and transportation of liquefied natural gas(LNG),and are primarily responsible for efficiently controlling the inflow and outflow of LNG and regulating pressure.However,due to their operation in low-temperature and high-humidity environments,crucial components such as drip trays are susceptible to frosting,which may lead to LNG leakage,thereby causing severe safety incidents.In this study,the user-defined function(UDF)is employed to redevelop Fluent,which integrates the frost growth model with the Eulerian multiphase flow model,to conduct a quantitative analysis of frosting on drip trays of cryogenic valves.The effects of environmental parameters,such as wind speed,ambient temperature,air humidity,and cold surface temperature on the growth of the frost layer were analyzed.This study reveals a limiting wind speed between 1 m/s and 2 m/s.Upon reaching this limit speed,the growth of the frost layer reaches its maximum,and further increases in the wind speed have no significant effect on the growth of the frost layer.Furthermore,the influence of the change in the flow field on droplet impingement and freezing during the growth of the frost layer is considered through the coupling method of the kinematic characteristics of water droplets and the collection coefficient of water droplets.This study identifies the influence of different parameters on the droplet impact efficiency,leading to the modification of the frost layer on the drip tray.展开更多
The frost deterioration and deformation of porous rock are commonly investigated under uniform freeze-thaw(FT)conditions.However,the unidirectional FT condition,which is also prevalent in engineering practice,has rece...The frost deterioration and deformation of porous rock are commonly investigated under uniform freeze-thaw(FT)conditions.However,the unidirectional FT condition,which is also prevalent in engineering practice,has received limited attention.Therefore,a comparative study on frost deformation and microstructure evolution of porous rock under both uniform and unidirectional FT conditions was performed.Firstly,frost deformation experiments of rock were conducted under cyclic uniform and unidirectional FT action,respectively.Results illustrate that frost deformation of saturated rock exhibits isotropic characteristics under uniform FT cycles,while it shows anisotropic characteristics under unidirectional FT condition with both the frost heaving strain and residual strain along FT direction much higher than those perpendicular to FT direction.Moreover,the peak value and residual value of cumulative frost strain vary as logarithmic functions with cycle number under both uniform and unidirectional FT conditions.Subsequently,the microstructure evolution of rock suffered cyclic uniform and unidirectional FT action were measured.Under uniform FT cycles,newly generated pores uniformly distribute in rock and pore structure of rock remains isotropic in micro scale,and thus the frost deformation shows isotropic characteristics in macro scale.Under unidirectional FT cycles,micro-cracks or pore belts generate with their orientation nearly perpendicular to the FT direction,and rock structure gradually becomes anisotropic in micro scale,resulting in the anisotropic characteristics of frost deformation in macro scale.展开更多
The contents of waste glass powder(WGP)(0%,10%,15%,20%,25%)and water-binder ratio(W/C)(0.24,0.26,0.28)were used as influencing factors,and the quality loss rate(Δm)and compressive strength loss rate(Δfc)were used as...The contents of waste glass powder(WGP)(0%,10%,15%,20%,25%)and water-binder ratio(W/C)(0.24,0.26,0.28)were used as influencing factors,and the quality loss rate(Δm)and compressive strength loss rate(Δfc)were used as characterization parameters.The Ca/Si ratio and main element contents of C-S-H gels with different WGP content were investigated by energy dispersive spectrometry(EDS).The pore structure evolution characteristics of WGP composite cementing materials were investigated by low field nuclear magnetic resonance(NMR).UsingΔfc as the index of frost resistance degradation and Weibull function,the frost resistance degradation of glass doped pervious concrete(WGP-PC)was modeled.The results show that,with WGP,for the same number of cycles,Δm andΔfc decrease and increase with the increase of WGP.Under the same WGP content,Δm andΔfc decrease first and then increase with the increase of W/C.After 100 freeze-thaw cycles,the samples with WGP content of 20%and W/C of 0.26 have the best freeze-resistance.Microscopic tests show that with the increase of WGP content,the Ca/Si ratio of C-S-H gel decreases at first and then increases with the increase of WGP content.The extreme value of Ca/Si is 2.36 when WGP is added by 20%.The pore volume of hardened paste with 20%WGP content decreased by 18.6%compared with that of cement system without WGP.The overall compactness of the specimen was improved.On the basis of the test data,a life prediction model was established according to Weibull function.The experiment showed thatΔfc could be used as a durability degradation index,and the slope of the reliability curve became gentle after WGP was added,which reduced the damage degradation rate of PC.W/C was 0.26.It's about 5000 hours.展开更多
Climate change differentially influences the frozen ground,a major dynamic component of the cryosphere,on a local and regional scale.Under the warming climate with pronounced effects reported at higher altitudes,the c...Climate change differentially influences the frozen ground,a major dynamic component of the cryosphere,on a local and regional scale.Under the warming climate with pronounced effects reported at higher altitudes,the characterization of the frozen ground is very important in the Upper Indus Basin(UIB),an important and critical region with respect to climate and hydro-glaciological dynamics.In this study,the efficiency and reliability of the surface frost number model are assessed in delineating the spatial extent of different classes of frozen ground in the region.The daily MODIS land surface temperature(LST)with ground surface temperature(GST)and surface geomorphological expressions as ground validation datasets are used jointly in efficiently determining the extent of different classes of frozen ground(continuous and discontinuous permafrost and seasonal frost).The LST and GST resonate with each other in the annual cycle of temperature variation,however,with mean annual LST exhibiting an offset(cold bias)of 5 to 7℃relative to mean GST.This study shows that the highest permafrost extent is observed in areas where the lowest thinning rates of glacier ice are reported and vice versa.The surface frost number model categorizes an area of 38%±3%and 15%±3%in the UIB as permafrost and seasonal frost,respectively.Based on the altitude model,the lower limit of alpine permafrost is approximated at a mean altitude of 4919±590 m a.s.l.in the UIB.The present study acts as preliminary work in the data sparse and inaccessible regions of the UIB in characterizing the frozen and unfrozen ground and may act as a promising input data source in glaciohydro-meteorological models for the Himalaya and Karakoram.In addition,the study also underlines the consideration of this derelict cryospheric climatic variable in defining and accounting for the sustainable development of socio-economic systems through its intricate ramification on agricultural activity,landscape stability and infrastructure.展开更多
Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work in...Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work investigated the effects of soil temperature and volumetric water content on the transient frost heave ratio during the freezing of saturated silty clay in an open system and analyzed the relationships between the transient frost heave ratio and freezing rate and between temperature gradient and frost heave rate.The results show that the frost heave ratio,frost heave rate,and freezing rate are positively correlated with the temperature gradient since the temperature gradient drives the water migration during freezing,indicating the transient temperature gradient could be used to evaluate the frost heave of saturated silty clay.The transient freezing rate and transient frost heave ratio are logarithmically related to the transient frost heave ratio and transient temperature gradient,respectively.The effects of transient temperature gradient on frost heave are the principal mechanism responsible for different frost heave characteristics and uneven frost heave along a subgrade of the same soil type.展开更多
In areas with seasonal freezing,when the tunnel lining concrete is saturated with water infiltrating the interior,the lining and the surrounding rocks will simultaneously freeze.However,the current calculation of the ...In areas with seasonal freezing,when the tunnel lining concrete is saturated with water infiltrating the interior,the lining and the surrounding rocks will simultaneously freeze.However,the current calculation of the frost heaving force fails to consider the synchronous damage to the lining and surrounding rocks under freeze-thaw cycles.Therefore,as per the elastic calculation model of the frost heaving force and model of steady-state heat transfer of circular tunnels,this study introduces the frost heaving rate of lining and surrounding rocks.First,the analytical solution of frost heaving force is obtained for simultaneous frost heaving of lining and surrounding rocks under any steady-state temperature field.Then,based on the fracture theory and meso-damage mechanics,the damage variables of lining and surrounding rocks under freeze-thaw cycles are extracted,representing their elastic modulus and porosity.Finally,the formula of frost heaving force for synchronous damage to the lining and surrounding rocks at any steady-state temperature field is obtained.The calculation results demonstrate that the lower the temperature inside the lining,the greater the frost heaving force.With the increasing number of freeze-thaw cycles,frost heaving force tends to gradually increase initially,reaching a peak value at 85 freeze-thaw cycles,decreasing to 80%of the peak value at 140 cycles before reaching a constant value.The lining participates in frost heaving,increasing the frost heaving force.The initial increase rate of frost heaving force is 15.7%.Changing the fitting coefficients s1 and s2 of the lining and surrounding rocks can effectively control the magnitude of the frost heaving force in the tunnels.展开更多
In extreme cold regions,a thermal insulation layer(TIL)is commonly employed to mitigate the detrimental effects of frost heaving forces in tunnels.Optimizing the laying scheme of TIL,specifically minimizing frost heav...In extreme cold regions,a thermal insulation layer(TIL)is commonly employed to mitigate the detrimental effects of frost heaving forces in tunnels.Optimizing the laying scheme of TIL,specifically minimizing frost heaving forces,holds considerable importance in the prevention of frost damage.This research developed a two-dimensional unsteady temperature field of circular tunnels by using the difference method(taking the off-wall laying method as an example)based on the law of conservation of energy.Then,the frozen circle and water migration coefficient were introduced to establish the relationship between the temperature field and frost heaving forces,and a reliable methodology for calculating these forces under the specific conditions of TIL installation was developed.Then(i)the influence of the air layer thickness of the off-wall laying method,(ii)different laying methods of TIL,(iii)the TIL thickness,(iv)the thermal conductivity of the TIL,and(v)the freeze-thaw cycles on the frost heaving force were investigated.The results showed that the frost heaving force served as a reliable and effective metric for evaluating the insulation effect in tunnels.In order to avoid frost damage in compliance with the design requirements,the insulation effects from various laying methods were established,in descending efficacy order as follows:off-wall laying,double layer laying,surface laying,and sandwich laying.Our findings revealed that the optimal thickness for the air layer in the offwall laying method was 0.10 m.The insulation effect of materials with a thermal conductivity below 0.047 W/(m·℃)was furthermore found to be good.Under freeze-thaw cycle conditions,it is concluded that to prevent frost damage,the TIL thickness should be the sum of the thickness r1 of the first freeze-thaw cycle without frost heaving forces and an additional reserve value 0.06r1 of the TIL thickness.展开更多
The rapid development of traffic engineering in cold regions and its consequent problems need to be considered.In this paper,the dynamic response characteristics of the tunnel portal section in cold regions with harmo...The rapid development of traffic engineering in cold regions and its consequent problems need to be considered.In this paper,the dynamic response characteristics of the tunnel portal section in cold regions with harmonic load acting on the lining were studied in the frequency domain.The lining is in close contact with the frozen soil,and there is relative movement between the frozen and unfrozen soil due to the phase change.The analytical solution of the vibration of tunnel portal section caused by the harmonic load acting on the lining was derived under the consideration of the anisotropy frost heave of overlying soil.Based on the continuity conditions and boundary conditions,the undetermined coefficients were obtained,and the analytical solutions for different medium displacements and stresses of the cold-region tunnel system were acquired.The vertical pressure coefficient was equivalently simplified as a variable that could be used to replace the thickness of the overlying soil above the tunnel.The analysis of the parameter model shows that the change of the medium parameters(lining,frozen,and unfrozen soil)affects the circumferential stresses,the radial displacements and their peak frequencies of the soil.For example,the increase of density ratio of tunnel lining to frozen soil decreases the radial stresses of the frozen and unfrozen soil;the increase of volumetric frost heaving strain of the frozen soil increases the radial displacements of the frozen surface and decreases the stability of the frozen surface;the increasing of thickness of the frozen soil significantly reduces the radial displacement of unfrozen soil at dimensionless radius η=4.5 compared with that of frozen soil at η=1.5.展开更多
Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the me...Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the mechanical and frost heave behavior of silty clay in cold regions,and the direct shear test and one-dimensional frost heave test were employed in studying improvement effects.Moreover,improvement mechanisms of PVA and PP fiber were analyzed based on test results.The main findings are as follows.(1)Both PP and PVA can heighten the strength of silty clay and suppress frost heave,but the PVA solution has a more decisive influence on improving mechanical properties than PP fiber.(2)The improvement mechanism of the PVA solution is cementing.The improvement effect of 2%PVA solution is the best,which can increase the shear strength by approximately 40%–60%at different stress levels and decrease the frost heave ratio from 0.89%to 0.16%at optimal water content.(3)For 2%PVA improved samples,0.25%PP fiber can further increase soil cohesion by approximately 20–30 kPa at different stress levels and further decrease the frost heave ratio from 0.16%to 0.07%at optimal water content.The improvement effect is neglectable when the PP fiber content exceeds 0.25%.Overall,2%PVA with 0.25%PP fiber is the optimum combination to improve silty clay in cold regions.展开更多
Climate change has an impact on various climatic variables. In this study our focus is mainly on temperature characteristics of climate parameter. In temperate and humid regions like southern Ontario, the effect of cl...Climate change has an impact on various climatic variables. In this study our focus is mainly on temperature characteristics of climate parameter. In temperate and humid regions like southern Ontario, the effect of climate change on Frost-free days in winter is distinctive. The average annual temperature is going upward but the extreme increase is in the winter temperature. Winter average temperature is going up by about 2˚C. However, extreme daily minimum temperature is going up by more than 3˚C. This climate effect has a great impact on the nature of precipitation and length of frost-free days. The snowfall over winter months is decreasing and the rainfall is increasing. However, the number of frost-free days during late fall months, early winter months, late winter months and early spring months are increasing. This result reveals an increase in length of the growing season. This research focuses on the effect of change in climatic variables on Frost-free days in Southern Ontario. Therefore, special attention should be given to the effect of change in climate Frost-free conditions on length of crop growing in winter season for potential investigation.展开更多
The frost growth on cold surfaces in evaporators is an undesirable phenomenon which becomes a problem for the thermal efficiency of the refrigeration systems because the ice layer acts as a thermal insulation,drastica...The frost growth on cold surfaces in evaporators is an undesirable phenomenon which becomes a problem for the thermal efficiency of the refrigeration systems because the ice layer acts as a thermal insulation,drastically reducing the rate of heat transfer in the system.Its accumulation implies an increase in energy demand and a decrease in the performance of various components involved in the refrigeration process,reducing its efficiency and making it necessary to periodically remove the frost,resulting in expenses for the defrost process.In the present work,a numerical-experimental analysis was performed in order to understand the formation process of porous ice in flat plates with different surface treatments and parameters.This understanding is of utmost importance to minimize the formation of porous ice on cold surfaces and improve equipment efficiency and performance.In this context,a low-cost experimental apparatus was developed,enabling an experimental analysis of the phenomenon under study.The environmental conditions evaluated are the temperature of the cold surface,roomtemperature,humidity,and air velocity.The material of the surfaces under study are aluminum,copper,and brass with different surface finishes,designated as smooth,grooved(hydrophilic),and varnished(hydrophobic).The numerical-experimental analysis demonstrates measurements and simulations of the thickness,surface temperature,and growth rate of the porous ice layer as a function of the elapsed time.The numerical results were in good agreement with the experimental results,indicating that the varnished surface,with hydrophobic characteristics,presents greater difficulty in providing the phenomenon.Therefore,the results showed that application of a coating allowed a significant reduction on the frost formation process contributing to the improvement of thermal efficiency and performance of refrigeration systems.展开更多
[Objective]The aim was to understand the change characteristics of sugarcane traits and evaluate the cold tolerance of sugarcane varieties under the drought and frost conditions.[Method] The experiment was carried out...[Objective]The aim was to understand the change characteristics of sugarcane traits and evaluate the cold tolerance of sugarcane varieties under the drought and frost conditions.[Method] The experiment was carried out in Ziyuan County,Guangxi Province where the frost occurred often with 21 domestic and abroad sugarcane varieties(elites).[Result] There were significant changes in the brix,green leaf number and photosynthetic rate of sugarcane before and after light frost and decreased more in cold-sensitive varieties.However,the correlation was only significant between the damage rate of stem length and internode,percentage of green leaves after heavy frost in relation to sugarcane brix and brix changes after light frost.Further analysis showed that the evaluation for cold tolerance of sugarcane would be more simple and reliable with traits of the damage rate of stem length and percentage of upper green leaves.The evaluation for varieties indicated that if it was not carried out for cold-tolerance identification in breeding program,the percentage of sugarcane varieties with good cold-tolerance will be lower than30%,and higher than 60% with poor cold-tolerance in subtropical and tropical regions.[Conclusion] This study had provided theoretical basis for the cold-resistant evaluation of sugar cane and the breeding of the varieties of cold-resistant.展开更多
Automated over-tree sprinkler irrigation systems were developed and tested in two orchards located in two separate locations in southern Iran (a 0.17 ha peach orchard and a 0.24 ha orange orchard) to protect peach b...Automated over-tree sprinkler irrigation systems were developed and tested in two orchards located in two separate locations in southern Iran (a 0.17 ha peach orchard and a 0.24 ha orange orchard) to protect peach blossoms and orange trees leaves and fruits from low temperature damage. The experiment used a system that monitored the trees and air temperatures using two thermistors. The water application rate by the irrigation system was determined by an energy balance as implemented by the software FROSTPRO, In the peach orchard, the system was tested during three frost events during the spring of 2003 and three other events during the spring of 2004. The system successfully kept peach flowers above the critical temperature, i.e., -4.0℃ in spring 2004 (control block -4.12℃, and sprinkled block +0.5℃) during all events. Similar results were obtained in the orange orchard during three frost events in the winter of 2004, during which the tree temperatures were at least 2.5℃ above the critical temperature. Results from field tests show that the system can effectively protect the peach blossoms from damage. Determination done after the frost events showed a 12% blossom kill in the sprinkled blocks while in the unsprinkled control block a 41.5% blossom kill. Calculations indicated that when using variable application rates, the amount of water used can be reduced by 54.3%. Spatial distribution of minimum temperatures during the three frosts was also studied in Jahrom, Iran. Results showed a significant temperature control in the experimental block, especially in the central part of the orchard, but the block margins (about 3.6% of the total area) were at the risk of low temperature due to the wind drift effects.展开更多
Ground temperatures from four of the seven extensively studied highway cross-sections near Gulkana/Glennallen,Alaska during 1954;962,were chosen to better understand the impacts of highway construction on warm permafr...Ground temperatures from four of the seven extensively studied highway cross-sections near Gulkana/Glennallen,Alaska during 1954;962,were chosen to better understand the impacts of highway construction on warm permafrost.Both the thawing of permafrost and seasonal frost action impacted on road surface stability for about 6 years until the maximum summer thaw reached about 3 m in depth.Seasonal frost action caused most of the ensuing stability problems.Unusually warm summers and the lengths of time required to re-freeze the active layer were far more important than the average annual air temperatures in determining the temperatures of the underlying shallow permafrost,or the development of taliks.The hypothesized climate warming would slightly and gradually deepen the active layer and the developed under-lying talik,but its effect would be obscured by unusually warm summers,by warmer than usual winters,and by the vari-able lengths of time of the zero curtains.At least one period of climate mini-cooling in the deeper permafrost during the early 20th century was noted.展开更多
Seasonally cold climate and resulting frost action set great demands to railway track substructure in order to maintain Irack geomelry. Chal- lenges culminate on high-speed lines, where the tolerances for roughness ar...Seasonally cold climate and resulting frost action set great demands to railway track substructure in order to maintain Irack geomelry. Chal- lenges culminate on high-speed lines, where the tolerances for roughness are the tightest. Problems may result in highly increased Irack maintenance and need for temporary speed reslrictions. The causes of frost action can be associated with subsoil, subballast or ballast. The major concern in frost protection is to avoid the freezing of frost susceptible subsoil by using sufficient thickness of subballast and relying on non-fi'ost-susctible subballast material. This paper provides an overview of the main research findings on the role of ballast, subballast and subsoil in frost acedon. In new comlruclion the material specificalions, design procedures and construction methods have been developed to ensure adequate performance of Irack subscatt, but special challenges exist in managing existing Wacks that were not designed for modem requirements. In order to perform cost-effective and sustainable track maintenance, it is necessary to recognize the problem areas and define the root-causes of problems. For locating the problem sections and defining the causes of defects, a sophisticated analysis based on integration of track geometry and ground penetrating radar (GPR) data has been developed and is summarized in this paper,展开更多
The building of railways on seasonally frozen ground is inevitable as China pursues economic development and the improvement of its citizens'living standards.However,railway construction in seasonally frozen soil ...The building of railways on seasonally frozen ground is inevitable as China pursues economic development and the improvement of its citizens'living standards.However,railway construction in seasonally frozen soil areas is often faced with frost heave,leading to uneven subgrades which seriously threaten traffic safety.This article summarizes extant research results on frost heave mechanism,frost heave factors,and anti-frost measures of railway subgrades in seasonally frozen soil areas.展开更多
[Objective]The research aimed to study variation characteristics of large-scale frost in the east region of the Yellow River of Gansu in recent 40 years.[Method]Based on daily minimum temperature data at 15 meteorolog...[Objective]The research aimed to study variation characteristics of large-scale frost in the east region of the Yellow River of Gansu in recent 40 years.[Method]Based on daily minimum temperature data at 15 meteorological stations over the east region of the Yellow River of Gansu from 1969 to 2008,according to common climatic statistical index of the frost,variation characteristics of the large-scale frost and continuous frost in the east region of the Yellow River of Gansu in recent 40 years were studied.[Result]Since the 1990s,average last frost date in the east region of the Yellow River of Gansu obviously advanced,and first frost date started to obviously postpone.Advancing time of the last frost date was longer than postponing time of the first frost date.Average frost-free period also obviously prolonged.Extremely early first frost date and extremely late last frost date mainly happened in the 1970s and the 1980s.Extremely late first frost date and extremely early last frost date mainly happened after the middle period of the 1990s.Extremely long frost-free period gradually started to appear frequently.In recent 40 years,the continuous frost gradually decreased,and the intensity also declined.[Conclusion]The research was favorable for understanding change characteristics of the frost and climate in the east region of the Yellow River of Gansu,and had important guidance significance for improving prediction capability of the abnormal frost disaster,effectively preventing frost disaster and improving crop yield in the area.展开更多
基金officially supported by the National Natural Science Foundation of China(Grant Nos.42276225,51879125)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX23_2208)。
文摘Cryogenic valves play a crucial role in the production and transportation of liquefied natural gas(LNG),and are primarily responsible for efficiently controlling the inflow and outflow of LNG and regulating pressure.However,due to their operation in low-temperature and high-humidity environments,crucial components such as drip trays are susceptible to frosting,which may lead to LNG leakage,thereby causing severe safety incidents.In this study,the user-defined function(UDF)is employed to redevelop Fluent,which integrates the frost growth model with the Eulerian multiphase flow model,to conduct a quantitative analysis of frosting on drip trays of cryogenic valves.The effects of environmental parameters,such as wind speed,ambient temperature,air humidity,and cold surface temperature on the growth of the frost layer were analyzed.This study reveals a limiting wind speed between 1 m/s and 2 m/s.Upon reaching this limit speed,the growth of the frost layer reaches its maximum,and further increases in the wind speed have no significant effect on the growth of the frost layer.Furthermore,the influence of the change in the flow field on droplet impingement and freezing during the growth of the frost layer is considered through the coupling method of the kinematic characteristics of water droplets and the collection coefficient of water droplets.This study identifies the influence of different parameters on the droplet impact efficiency,leading to the modification of the frost layer on the drip tray.
基金This research was supported by the National Natural Science Foundation of China(52108370)Jiangxi Provincial Natural Science Foundation(No.20212BAB214062,20224BAB204061).
文摘The frost deterioration and deformation of porous rock are commonly investigated under uniform freeze-thaw(FT)conditions.However,the unidirectional FT condition,which is also prevalent in engineering practice,has received limited attention.Therefore,a comparative study on frost deformation and microstructure evolution of porous rock under both uniform and unidirectional FT conditions was performed.Firstly,frost deformation experiments of rock were conducted under cyclic uniform and unidirectional FT action,respectively.Results illustrate that frost deformation of saturated rock exhibits isotropic characteristics under uniform FT cycles,while it shows anisotropic characteristics under unidirectional FT condition with both the frost heaving strain and residual strain along FT direction much higher than those perpendicular to FT direction.Moreover,the peak value and residual value of cumulative frost strain vary as logarithmic functions with cycle number under both uniform and unidirectional FT conditions.Subsequently,the microstructure evolution of rock suffered cyclic uniform and unidirectional FT action were measured.Under uniform FT cycles,newly generated pores uniformly distribute in rock and pore structure of rock remains isotropic in micro scale,and thus the frost deformation shows isotropic characteristics in macro scale.Under unidirectional FT cycles,micro-cracks or pore belts generate with their orientation nearly perpendicular to the FT direction,and rock structure gradually becomes anisotropic in micro scale,resulting in the anisotropic characteristics of frost deformation in macro scale.
基金Funded by the National Natural Science Foundation of China(No.52468037)the Foster Foundation of ISMI,Gansu Province(No.GII2022-P03)the Gansu Provincial Department of Education(No.2024QB-028)。
文摘The contents of waste glass powder(WGP)(0%,10%,15%,20%,25%)and water-binder ratio(W/C)(0.24,0.26,0.28)were used as influencing factors,and the quality loss rate(Δm)and compressive strength loss rate(Δfc)were used as characterization parameters.The Ca/Si ratio and main element contents of C-S-H gels with different WGP content were investigated by energy dispersive spectrometry(EDS).The pore structure evolution characteristics of WGP composite cementing materials were investigated by low field nuclear magnetic resonance(NMR).UsingΔfc as the index of frost resistance degradation and Weibull function,the frost resistance degradation of glass doped pervious concrete(WGP-PC)was modeled.The results show that,with WGP,for the same number of cycles,Δm andΔfc decrease and increase with the increase of WGP.Under the same WGP content,Δm andΔfc decrease first and then increase with the increase of W/C.After 100 freeze-thaw cycles,the samples with WGP content of 20%and W/C of 0.26 have the best freeze-resistance.Microscopic tests show that with the increase of WGP content,the Ca/Si ratio of C-S-H gel decreases at first and then increases with the increase of WGP content.The extreme value of Ca/Si is 2.36 when WGP is added by 20%.The pore volume of hardened paste with 20%WGP content decreased by 18.6%compared with that of cement system without WGP.The overall compactness of the specimen was improved.On the basis of the test data,a life prediction model was established according to Weibull function.The experiment showed thatΔfc could be used as a durability degradation index,and the slope of the reliability curve became gentle after WGP was added,which reduced the damage degradation rate of PC.W/C was 0.26.It's about 5000 hours.
基金the National Mission on Himalayan Studies(NMHS),Ministry of Environment,Forest and Climate Change(MoEFCC)for the financial support under the research project number(GBPNI/NMHS-2019-20/MG)。
文摘Climate change differentially influences the frozen ground,a major dynamic component of the cryosphere,on a local and regional scale.Under the warming climate with pronounced effects reported at higher altitudes,the characterization of the frozen ground is very important in the Upper Indus Basin(UIB),an important and critical region with respect to climate and hydro-glaciological dynamics.In this study,the efficiency and reliability of the surface frost number model are assessed in delineating the spatial extent of different classes of frozen ground in the region.The daily MODIS land surface temperature(LST)with ground surface temperature(GST)and surface geomorphological expressions as ground validation datasets are used jointly in efficiently determining the extent of different classes of frozen ground(continuous and discontinuous permafrost and seasonal frost).The LST and GST resonate with each other in the annual cycle of temperature variation,however,with mean annual LST exhibiting an offset(cold bias)of 5 to 7℃relative to mean GST.This study shows that the highest permafrost extent is observed in areas where the lowest thinning rates of glacier ice are reported and vice versa.The surface frost number model categorizes an area of 38%±3%and 15%±3%in the UIB as permafrost and seasonal frost,respectively.Based on the altitude model,the lower limit of alpine permafrost is approximated at a mean altitude of 4919±590 m a.s.l.in the UIB.The present study acts as preliminary work in the data sparse and inaccessible regions of the UIB in characterizing the frozen and unfrozen ground and may act as a promising input data source in glaciohydro-meteorological models for the Himalaya and Karakoram.In addition,the study also underlines the consideration of this derelict cryospheric climatic variable in defining and accounting for the sustainable development of socio-economic systems through its intricate ramification on agricultural activity,landscape stability and infrastructure.
基金supported by the National Natural Science Foundation of China(No.51808128)the Natural Science Foundation of Fujian Province(No.2022J01091)。
文摘Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work investigated the effects of soil temperature and volumetric water content on the transient frost heave ratio during the freezing of saturated silty clay in an open system and analyzed the relationships between the transient frost heave ratio and freezing rate and between temperature gradient and frost heave rate.The results show that the frost heave ratio,frost heave rate,and freezing rate are positively correlated with the temperature gradient since the temperature gradient drives the water migration during freezing,indicating the transient temperature gradient could be used to evaluate the frost heave of saturated silty clay.The transient freezing rate and transient frost heave ratio are logarithmically related to the transient frost heave ratio and transient temperature gradient,respectively.The effects of transient temperature gradient on frost heave are the principal mechanism responsible for different frost heave characteristics and uneven frost heave along a subgrade of the same soil type.
基金the support of the National Natural Science Foundation of China(Grant Nos.42207199,52179113,42272333)Zhejiang Postdoctoral Scientific Research Project(Grant Nos.ZJ2022155,ZJ2022156)。
文摘In areas with seasonal freezing,when the tunnel lining concrete is saturated with water infiltrating the interior,the lining and the surrounding rocks will simultaneously freeze.However,the current calculation of the frost heaving force fails to consider the synchronous damage to the lining and surrounding rocks under freeze-thaw cycles.Therefore,as per the elastic calculation model of the frost heaving force and model of steady-state heat transfer of circular tunnels,this study introduces the frost heaving rate of lining and surrounding rocks.First,the analytical solution of frost heaving force is obtained for simultaneous frost heaving of lining and surrounding rocks under any steady-state temperature field.Then,based on the fracture theory and meso-damage mechanics,the damage variables of lining and surrounding rocks under freeze-thaw cycles are extracted,representing their elastic modulus and porosity.Finally,the formula of frost heaving force for synchronous damage to the lining and surrounding rocks at any steady-state temperature field is obtained.The calculation results demonstrate that the lower the temperature inside the lining,the greater the frost heaving force.With the increasing number of freeze-thaw cycles,frost heaving force tends to gradually increase initially,reaching a peak value at 85 freeze-thaw cycles,decreasing to 80%of the peak value at 140 cycles before reaching a constant value.The lining participates in frost heaving,increasing the frost heaving force.The initial increase rate of frost heaving force is 15.7%.Changing the fitting coefficients s1 and s2 of the lining and surrounding rocks can effectively control the magnitude of the frost heaving force in the tunnels.
基金the financial support provided by the National Natural Science Foundation of China(Nos.52078061,51878074)the Huaihua University Scientific Research Project,China(No.HHUY 2022-26)+1 种基金the Postgraduate Research and Innovation-funded Project of Hunan Province,China(No.CX20220885)。
文摘In extreme cold regions,a thermal insulation layer(TIL)is commonly employed to mitigate the detrimental effects of frost heaving forces in tunnels.Optimizing the laying scheme of TIL,specifically minimizing frost heaving forces,holds considerable importance in the prevention of frost damage.This research developed a two-dimensional unsteady temperature field of circular tunnels by using the difference method(taking the off-wall laying method as an example)based on the law of conservation of energy.Then,the frozen circle and water migration coefficient were introduced to establish the relationship between the temperature field and frost heaving forces,and a reliable methodology for calculating these forces under the specific conditions of TIL installation was developed.Then(i)the influence of the air layer thickness of the off-wall laying method,(ii)different laying methods of TIL,(iii)the TIL thickness,(iv)the thermal conductivity of the TIL,and(v)the freeze-thaw cycles on the frost heaving force were investigated.The results showed that the frost heaving force served as a reliable and effective metric for evaluating the insulation effect in tunnels.In order to avoid frost damage in compliance with the design requirements,the insulation effects from various laying methods were established,in descending efficacy order as follows:off-wall laying,double layer laying,surface laying,and sandwich laying.Our findings revealed that the optimal thickness for the air layer in the offwall laying method was 0.10 m.The insulation effect of materials with a thermal conductivity below 0.047 W/(m·℃)was furthermore found to be good.Under freeze-thaw cycle conditions,it is concluded that to prevent frost damage,the TIL thickness should be the sum of the thickness r1 of the first freeze-thaw cycle without frost heaving forces and an additional reserve value 0.06r1 of the TIL thickness.
基金funded by National Natural Science Foundation of China(Grant No.51978039)the Fundamental Research Funds for the Central Universities(Grant No.2021YJS115)。
文摘The rapid development of traffic engineering in cold regions and its consequent problems need to be considered.In this paper,the dynamic response characteristics of the tunnel portal section in cold regions with harmonic load acting on the lining were studied in the frequency domain.The lining is in close contact with the frozen soil,and there is relative movement between the frozen and unfrozen soil due to the phase change.The analytical solution of the vibration of tunnel portal section caused by the harmonic load acting on the lining was derived under the consideration of the anisotropy frost heave of overlying soil.Based on the continuity conditions and boundary conditions,the undetermined coefficients were obtained,and the analytical solutions for different medium displacements and stresses of the cold-region tunnel system were acquired.The vertical pressure coefficient was equivalently simplified as a variable that could be used to replace the thickness of the overlying soil above the tunnel.The analysis of the parameter model shows that the change of the medium parameters(lining,frozen,and unfrozen soil)affects the circumferential stresses,the radial displacements and their peak frequencies of the soil.For example,the increase of density ratio of tunnel lining to frozen soil decreases the radial stresses of the frozen and unfrozen soil;the increase of volumetric frost heaving strain of the frozen soil increases the radial displacements of the frozen surface and decreases the stability of the frozen surface;the increasing of thickness of the frozen soil significantly reduces the radial displacement of unfrozen soil at dimensionless radius η=4.5 compared with that of frozen soil at η=1.5.
基金supported by the National Natural Science Foundation of China (41731281,42071078)the National Key Basic Research Program of China (No.2012CB026104)Science and Technology Project of Qinghai,China (2021-GX-121).
文摘Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the mechanical and frost heave behavior of silty clay in cold regions,and the direct shear test and one-dimensional frost heave test were employed in studying improvement effects.Moreover,improvement mechanisms of PVA and PP fiber were analyzed based on test results.The main findings are as follows.(1)Both PP and PVA can heighten the strength of silty clay and suppress frost heave,but the PVA solution has a more decisive influence on improving mechanical properties than PP fiber.(2)The improvement mechanism of the PVA solution is cementing.The improvement effect of 2%PVA solution is the best,which can increase the shear strength by approximately 40%–60%at different stress levels and decrease the frost heave ratio from 0.89%to 0.16%at optimal water content.(3)For 2%PVA improved samples,0.25%PP fiber can further increase soil cohesion by approximately 20–30 kPa at different stress levels and further decrease the frost heave ratio from 0.16%to 0.07%at optimal water content.The improvement effect is neglectable when the PP fiber content exceeds 0.25%.Overall,2%PVA with 0.25%PP fiber is the optimum combination to improve silty clay in cold regions.
文摘Climate change has an impact on various climatic variables. In this study our focus is mainly on temperature characteristics of climate parameter. In temperate and humid regions like southern Ontario, the effect of climate change on Frost-free days in winter is distinctive. The average annual temperature is going upward but the extreme increase is in the winter temperature. Winter average temperature is going up by about 2˚C. However, extreme daily minimum temperature is going up by more than 3˚C. This climate effect has a great impact on the nature of precipitation and length of frost-free days. The snowfall over winter months is decreasing and the rainfall is increasing. However, the number of frost-free days during late fall months, early winter months, late winter months and early spring months are increasing. This result reveals an increase in length of the growing season. This research focuses on the effect of change in climatic variables on Frost-free days in Southern Ontario. Therefore, special attention should be given to the effect of change in climate Frost-free conditions on length of crop growing in winter season for potential investigation.
文摘The frost growth on cold surfaces in evaporators is an undesirable phenomenon which becomes a problem for the thermal efficiency of the refrigeration systems because the ice layer acts as a thermal insulation,drastically reducing the rate of heat transfer in the system.Its accumulation implies an increase in energy demand and a decrease in the performance of various components involved in the refrigeration process,reducing its efficiency and making it necessary to periodically remove the frost,resulting in expenses for the defrost process.In the present work,a numerical-experimental analysis was performed in order to understand the formation process of porous ice in flat plates with different surface treatments and parameters.This understanding is of utmost importance to minimize the formation of porous ice on cold surfaces and improve equipment efficiency and performance.In this context,a low-cost experimental apparatus was developed,enabling an experimental analysis of the phenomenon under study.The environmental conditions evaluated are the temperature of the cold surface,roomtemperature,humidity,and air velocity.The material of the surfaces under study are aluminum,copper,and brass with different surface finishes,designated as smooth,grooved(hydrophilic),and varnished(hydrophobic).The numerical-experimental analysis demonstrates measurements and simulations of the thickness,surface temperature,and growth rate of the porous ice layer as a function of the elapsed time.The numerical results were in good agreement with the experimental results,indicating that the varnished surface,with hydrophobic characteristics,presents greater difficulty in providing the phenomenon.Therefore,the results showed that application of a coating allowed a significant reduction on the frost formation process contributing to the improvement of thermal efficiency and performance of refrigeration systems.
基金Supported by National Science and Technology Support Program(2008BADB8B01,2007BAD30B02,2007BAD30B05)Modern Agricultural Technology System Special Fund Project(nycytx-024-01-03)Guangxi Scientific and Technological Project(0782004-2,0782004-5)~~
文摘[Objective]The aim was to understand the change characteristics of sugarcane traits and evaluate the cold tolerance of sugarcane varieties under the drought and frost conditions.[Method] The experiment was carried out in Ziyuan County,Guangxi Province where the frost occurred often with 21 domestic and abroad sugarcane varieties(elites).[Result] There were significant changes in the brix,green leaf number and photosynthetic rate of sugarcane before and after light frost and decreased more in cold-sensitive varieties.However,the correlation was only significant between the damage rate of stem length and internode,percentage of green leaves after heavy frost in relation to sugarcane brix and brix changes after light frost.Further analysis showed that the evaluation for cold tolerance of sugarcane would be more simple and reliable with traits of the damage rate of stem length and percentage of upper green leaves.The evaluation for varieties indicated that if it was not carried out for cold-tolerance identification in breeding program,the percentage of sugarcane varieties with good cold-tolerance will be lower than30%,and higher than 60% with poor cold-tolerance in subtropical and tropical regions.[Conclusion] This study had provided theoretical basis for the cold-resistant evaluation of sugar cane and the breeding of the varieties of cold-resistant.
文摘Automated over-tree sprinkler irrigation systems were developed and tested in two orchards located in two separate locations in southern Iran (a 0.17 ha peach orchard and a 0.24 ha orange orchard) to protect peach blossoms and orange trees leaves and fruits from low temperature damage. The experiment used a system that monitored the trees and air temperatures using two thermistors. The water application rate by the irrigation system was determined by an energy balance as implemented by the software FROSTPRO, In the peach orchard, the system was tested during three frost events during the spring of 2003 and three other events during the spring of 2004. The system successfully kept peach flowers above the critical temperature, i.e., -4.0℃ in spring 2004 (control block -4.12℃, and sprinkled block +0.5℃) during all events. Similar results were obtained in the orange orchard during three frost events in the winter of 2004, during which the tree temperatures were at least 2.5℃ above the critical temperature. Results from field tests show that the system can effectively protect the peach blossoms from damage. Determination done after the frost events showed a 12% blossom kill in the sprinkled blocks while in the unsprinkled control block a 41.5% blossom kill. Calculations indicated that when using variable application rates, the amount of water used can be reduced by 54.3%. Spatial distribution of minimum temperatures during the three frosts was also studied in Jahrom, Iran. Results showed a significant temperature control in the experimental block, especially in the central part of the orchard, but the block margins (about 3.6% of the total area) were at the risk of low temperature due to the wind drift effects.
文摘Ground temperatures from four of the seven extensively studied highway cross-sections near Gulkana/Glennallen,Alaska during 1954;962,were chosen to better understand the impacts of highway construction on warm permafrost.Both the thawing of permafrost and seasonal frost action impacted on road surface stability for about 6 years until the maximum summer thaw reached about 3 m in depth.Seasonal frost action caused most of the ensuing stability problems.Unusually warm summers and the lengths of time required to re-freeze the active layer were far more important than the average annual air temperatures in determining the temperatures of the underlying shallow permafrost,or the development of taliks.The hypothesized climate warming would slightly and gradually deepen the active layer and the developed under-lying talik,but its effect would be obscured by unusually warm summers,by warmer than usual winters,and by the vari-able lengths of time of the zero curtains.At least one period of climate mini-cooling in the deeper permafrost during the early 20th century was noted.
基金Finnish Transport Agency for enabling the research
文摘Seasonally cold climate and resulting frost action set great demands to railway track substructure in order to maintain Irack geomelry. Chal- lenges culminate on high-speed lines, where the tolerances for roughness are the tightest. Problems may result in highly increased Irack maintenance and need for temporary speed reslrictions. The causes of frost action can be associated with subsoil, subballast or ballast. The major concern in frost protection is to avoid the freezing of frost susceptible subsoil by using sufficient thickness of subballast and relying on non-fi'ost-susctible subballast material. This paper provides an overview of the main research findings on the role of ballast, subballast and subsoil in frost acedon. In new comlruclion the material specificalions, design procedures and construction methods have been developed to ensure adequate performance of Irack subscatt, but special challenges exist in managing existing Wacks that were not designed for modem requirements. In order to perform cost-effective and sustainable track maintenance, it is necessary to recognize the problem areas and define the root-causes of problems. For locating the problem sections and defining the causes of defects, a sophisticated analysis based on integration of track geometry and ground penetrating radar (GPR) data has been developed and is summarized in this paper,
基金the Foundation for Excellent Youth Scholars of"Northwest Institute of Eco-Environment and Resources",CAS(grant number:FEYS2019002)the Research Project of State Key Laboratory of Frozen Soil Engineering(grant number:SKLFSE-ZQ-52)the Open Project of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University(grant number:KF2020-02)。
文摘The building of railways on seasonally frozen ground is inevitable as China pursues economic development and the improvement of its citizens'living standards.However,railway construction in seasonally frozen soil areas is often faced with frost heave,leading to uneven subgrades which seriously threaten traffic safety.This article summarizes extant research results on frost heave mechanism,frost heave factors,and anti-frost measures of railway subgrades in seasonally frozen soil areas.
基金Supported by National Science and Technology Support Plan(2009BAC53B02)National Natural Science Fund Item (41075103)Special Item of the Public Welfare Industry (Meteorology) Science and Research (GYHY201106034,GYHY201006023)
文摘[Objective]The research aimed to study variation characteristics of large-scale frost in the east region of the Yellow River of Gansu in recent 40 years.[Method]Based on daily minimum temperature data at 15 meteorological stations over the east region of the Yellow River of Gansu from 1969 to 2008,according to common climatic statistical index of the frost,variation characteristics of the large-scale frost and continuous frost in the east region of the Yellow River of Gansu in recent 40 years were studied.[Result]Since the 1990s,average last frost date in the east region of the Yellow River of Gansu obviously advanced,and first frost date started to obviously postpone.Advancing time of the last frost date was longer than postponing time of the first frost date.Average frost-free period also obviously prolonged.Extremely early first frost date and extremely late last frost date mainly happened in the 1970s and the 1980s.Extremely late first frost date and extremely early last frost date mainly happened after the middle period of the 1990s.Extremely long frost-free period gradually started to appear frequently.In recent 40 years,the continuous frost gradually decreased,and the intensity also declined.[Conclusion]The research was favorable for understanding change characteristics of the frost and climate in the east region of the Yellow River of Gansu,and had important guidance significance for improving prediction capability of the abnormal frost disaster,effectively preventing frost disaster and improving crop yield in the area.