期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Preparation of functional coating on magnesium alloy with hydrophilic polymers and bioactive peptides for improved corrosion resistance and biocompatibility 被引量:1
1
作者 Lingchuang Bai Yahui Wang +5 位作者 Lan Chen Jun Wang Jingan Li Shijie Zhu Liguo Wang Shaokang Guan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第7期1957-1971,共15页
Biodegradable magnesium alloy stents(MAS)have great potential in the treatment of cardiovascular diseases.However,too fast degradation and the poor biocompatibility are still two key problems for the clinical utility ... Biodegradable magnesium alloy stents(MAS)have great potential in the treatment of cardiovascular diseases.However,too fast degradation and the poor biocompatibility are still two key problems for the clinical utility of MAS.In the present work,a functional coating composed of hydrophilic polymers and bioactive peptides was constructed on magnesium alloy to improve its corrosion resistance and biocompatibility in vitro and in vivo.Mg-Zn-Y-Nd(ZE21B)alloy modified with the functional coating exhibited moderate surface hydrophilicity and enhanced corrosion resistance.The favourable hemocompatibility of ZE21B alloy with the functional coating was confirmed by the in vitro blood experiments.Moreover,the modified ZE21B alloy could selectively promote the adhesion,proliferation,and migration of endothelial cells(ECs),but suppress these behaviors of smooth muscle cells(SMCs).Furthermore,the modified ZE21B alloy wires could alleviate intimal hyperplasia,enhance corrosion resistance and re-endothelialization in vivo transplantation experiment.These results collectively demonstrated that the functional coating improved the corrosion resistance and biocompatibility of ZE21B alloy.This functional coating provides new insight into the design and development of novel biodegradable stents for biomedical engineering. 展开更多
关键词 Magnesium alloy stent functional coating Corrosion resistance BIOCOMPATIBILITY Hemocompatibility ENDOTHELIALIZATION
下载PDF
Review:Fabrication and Application of Zwitterion-based Functional Coatings
2
作者 Jinyan Tan Shuxue Zhou +1 位作者 A.Catarina C.Esteves Limin Wu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第6期9-26,共18页
Zwitterion-based materials by virtue of their special physical and chemical characteristics have attracted researchers to utilize them for fabricating functional coatings. The simultaneous presence of positive and neg... Zwitterion-based materials by virtue of their special physical and chemical characteristics have attracted researchers to utilize them for fabricating functional coatings. The simultaneous presence of positive and negative charges renders the zwitterion-based materials with electrostatically induced hydration properties, which enables a high resistance towards oily pollutants, nonspecific protein adsorption, bacterial adhesion and biofilm formation. This review starts from the working mechanism of zwitterions and covers the fabrication strategies of zwitterion-based functional coatings, namely the zwitterion-bearing binder route, the zwitterion-bearing additive route and the post-generation of coatings containing zwitterionic precursors. The applications of zwitterion-based functional coatings are discussed, including medical implants, marine antifouling and oil-resistant coatings, with focus on the relevant mechanisms of the zwitterion-containing coatings for a specific performance. Finally, some comments and perspectives on the current situation and future development of zwitterion-based functional coatings are given. 展开更多
关键词 zwitterionic materials functional coatings medical implant coatings marine antifouling coatings oil-resistant coatings amphiphilic coatings degradable coatings
下载PDF
Micro-nano structured functional coatings deposited by liquid plasma spraying 被引量:8
3
作者 Yuchun HUAN Kaidi WU +3 位作者 Changjiu LI Hanlin LIAO Marc DEBLIQUY Chao ZHANG 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2020年第5期517-534,共18页
Inspired by the micro-nano structure on the surface of biological materials or living organisms,micro-nano structure has been widely investigated in the field of functional coatings.Due to its large specific surface a... Inspired by the micro-nano structure on the surface of biological materials or living organisms,micro-nano structure has been widely investigated in the field of functional coatings.Due to its large specific surface area,porosity,and dual-scale structure,it has recently attracted special attention.The typical fabrication processes of micro-nano structured coatings include sol-gel,hydrothermal synthesis,chemical vapor deposition,etc.This paper presents the main features of a recent deposition and synthesis technique,liquid plasma spraying(LPS).LPS is an important technical improvement of atmospheric plasma spraying.Compared with atmospheric plasma spraying,LPS is more suitable for preparing functional coatings with micro-nano structure.Micro-nano structured coatings are mainly classified into hierarchical-structure and binary-structure.The present study reviews the preparation technology,structural characteristics,functional properties,and potential applications of LPS coatings with a micro-nano structure.The micro-nano structured coatings obtained through tailoring the structure will present excellent performances. 展开更多
关键词 liquid plasma spraying(LPS) composite spraying micro-nano structure functional coatings
原文传递
Cracked elastic substrate strip with functionally graded coating under thermal-mechanical loading
4
作者 苗福生 刘俊俏 李星 《Journal of Southeast University(English Edition)》 EI CAS 2012年第4期451-456,共6页
This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop acro... This paper investigates the functionally graded coating bonded to an elastic strip with a crack under thermal- mechanical loading. Considering some new boundary conditions, it is assumed that the temperature drop across the crack surface is the result of the thermal conductivity index which controls heat conduction through the crack region. By the Fourier transforms, the thermal-elastic mixed boundary value problems are reduced to a system of singular integral equations which can be approximately solved by applying the Chebyshev polynomials. The numerical computation methods for the temperature, the displacement field and the thermal stress intensity factors (TSIFs) are presented. The normal temperature distributions (NTD) with different parameters along the crack surface are analyzed by numerical examples. The influence of the crack position and the thermal-elastic non- homogeneous parameters on the TSIFs of modes I and 11 at the crack tip is presented. Results show that the variation of the thickness of the graded coating has a significant effect on the temperature jump across the crack surfaces when keeping the thickness of the substrate constant, and the thickness of functionally graded material (FGM) coating has a significant effect on the crack in the substrate. The results can be expected to be used for the purpose of gaining better understanding of the thermal-mechanical behavior of graded coatings. 展开更多
关键词 thermal-mechanical loading singular integral equations functionally graded coating thermal stress intensity factors (TSIFs)
下载PDF
Extracellular matrix and nitric oxide based functional coatings for vascular stents 被引量:1
5
作者 Quhan Cheng Muhammad Shafiq +3 位作者 Muhammad Rafique Li Shen Xiumei Mo Kai Wang 《Engineered Regeneration》 2022年第2期149-153,共5页
Cardiovascular diseases cause huge morbidity and mortality worldwide.Recently,vascular stents have been most frequently used to treat cardiovascular diseases thanks to their effectiveness at dilating blood vessels and... Cardiovascular diseases cause huge morbidity and mortality worldwide.Recently,vascular stents have been most frequently used to treat cardiovascular diseases thanks to their effectiveness at dilating blood vessels and main-taining the circulation of blood.However,stent expansion leads to endothelium injury posing thrombogenic and in-stent restenosis(ISR).In addition,the bioinertness and an acute lack of endothelium-like function on the surface of implanted vascular stents compromise their performance.Functional coatings of vascular stents to mimic endothelium-and extracellular matrix(ECM)-like functions could prevent thrombosis,inhibit the over-growth of smooth muscle cells(SMCs),and promote the rapid restoration of native endothelium,hence effec-tively suppressing stent-related complications.Noticeably,ECM-based coatings including a multitude of bioactive molecular,such as growth factors,heparin,hyaluronic acid(HA)and so on,have been proven to play important effects on regulating ECs/SMCs behavior and improving blood compatibility of stents.Additionally,nitric oxide(NO),which is fundamental to the endothelium-mediated anti-thrombogenesity,anti-intimal hyperplasia and anti-inflammation,has been leveraged to improve vascular stent functions.Therefore,this review will highlight different strategies and biological role of ECM and NO based functional coatings on vascular stent.Lastly,some potential important factors for stents development are suggested as well. 展开更多
关键词 Vascular stent Nitric oxide Extracellular matrix functional coating
下载PDF
A promoting nitric oxide-releasing coating containing copper ion on ZE21B alloy for potential vascular stent application
6
作者 Qianying Jia Qinggong Jia +4 位作者 Shijie Zhu Yufeng Zheng Yoji Mine Kazuki Takashima Shaokang Guan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4542-4561,共20页
Magnesium-based biodegradable metals as cardiovascular stents have shown a lot of excellent performance, which have been used to treat coronary artery diseases. However, the excessive degradation rate, imperfect bioco... Magnesium-based biodegradable metals as cardiovascular stents have shown a lot of excellent performance, which have been used to treat coronary artery diseases. However, the excessive degradation rate, imperfect biocompatibility and delayed re-endothelialization still lead to a considerable challenge for its application. In this work, to overcome these shortcomings, a compound of catalyzing nitric oxide(NO) generation containing copper ions(Cu^(2+)) and hyaluronic acid(HA), an important component of the extracellular matrix, were covalently immobilized on a hydrofluoric acid(HF)-pretreated ZE21B alloy via amination layer for improving its corrosion resistance and endothelialization. Specifically,the Cu^(2+) chelated firmly with a cyclen 1,4,7,10-tetraazacyclododecane-N’, N’’, N’’’, N-tetraacetic acid(DOTA) could form a stability of hybrid coating, avoiding the explosion of Cu^(2+). The chelated Cu^(2+) enabled the catalytic generation of NO and promoted the adhesion and proliferation of endothelial cells(ECs) in vascular micro-environment. In this case, the synergistic effect of NO-generation and endothelial glycocalyx molecules of HA lead to efficient ECs promotion and smooth muscle cells(SMCs) inhibition. Meanwhile, the blood compatibility also had achieved a marked improvement. Moreover, the standard electrochemical measurements indicated that the functionalized ZE21B alloy had better anti-corrosion ability. In a conclusion, the dual-functional coating displays a great potential in the field of biodegradable magnesium-based implantable cardiovascular stents. 展开更多
关键词 ZE21B alloy functional coating Hyaluronic acid Nitric oxide Cardiovascular stent
下载PDF
Co-electrodeposition and properties evaluation of functionally gradient nickel coated ZrO_2 composite coating 被引量:1
7
作者 B.BOSTANI N.PARVINI AHMADI +1 位作者 S.YAZDANI R.ARGHAVANIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第1期66-76,共11页
For the first time,functionally electroless nickel plated ZrO2(NCZ)graded Ni-NCZ composite coating has been successfully co-electrodeposited from a bath with gradually increasing of stirring rate.Studies showed that c... For the first time,functionally electroless nickel plated ZrO2(NCZ)graded Ni-NCZ composite coating has been successfully co-electrodeposited from a bath with gradually increasing of stirring rate.Studies showed that co-electrodeposition in a bath with stirring rate of250r/min results in the maximum co-electrodeposited particle content and the best particle distribution.To produce NCZ graded Ni-NCZ composite coating,the stirring rate was continuously increased from0to250r/min.The electroplated coating had a continuous gradient increasing of co-electrodeposited NCZ content from substrate towards the surface.The results showed that with increasing the co-electrodeposited NCZ particles content in Ni matrix,microhardness increases from interface towards the surface of the coating.Little crystallite size of Ni matrix and higher co-electrodeposited hard particles content were recognized as the reasons of microhardness increasing.Bend test revealed that the functionally graded composite coating shows more excellent adhesion to the substrate compared with the ordinary distributed Ni-NCZ on the same substrate.This result is attributed to lower mechanical mismatch between coating and substrate in the functionally graded composite coating with respect to the uniformly distributed one.The results of wear resistance measurements reveal that wear resistance of functionally graded Ni-NCZ is higher than that of ordinary distributed composite coating. 展开更多
关键词 co-electrodeposition functionally graded composite coating MICROHARDNESS wear resistance adhesion
下载PDF
Characterization of functionally graded ZrO_2 thermal barrier coatings sprayed by supersonic plasma spray with dual powder feed ports 被引量:1
8
作者 韩志海 王海军 +1 位作者 周世魁 徐滨士 《Journal of Central South University》 SCIE EI CAS 2005年第S2期257-260,共4页
The functionally graded thermal barrier coatings (FG-TBCs) with 80%ZrO2-13%CeO2-7%Y2O3 (C-YSZ)/NiCoCrAlY were prepared using a recently developed supersonic plasma spraying(S-PS) with dual powder feed ports syst... The functionally graded thermal barrier coatings (FG-TBCs) with 80%ZrO2-13%CeO2-7%Y2O3 (C-YSZ)/NiCoCrAlY were prepared using a recently developed supersonic plasma spraying(S-PS) with dual powder feed ports system. The thermal shock experiment of FG-TBCs specimens was carried out by means of the automatic thermal cycle device, in which the samples were heated to 1200℃ by oxygen-acetylene flame jet then water-quenched to ambient temperature. The temperature—time curves of specimens and photographs can be watched on-line and recorded by a computer during the test. The results show that the totally 1mm-thick FG-TBCs have excellent thermal shock resistance due to the fact that the coatings have no any peeling-off after 200 thermal cycles. The microstructures and morphologies of FG-TBCs were characterized and analyzed by SEM. 展开更多
关键词 supersonic plasma spray (S-PS) dual powder feed ports functionally graded thermal barrier coatings (FG-TBCs) thermal shock
下载PDF
Scalable and Heavy Foam Functionalization by Electrode-Inspired Sticky Jammed Fluids for Efficient Indoor Air-Quality Management
9
作者 Yuan Ji Lei Jing +4 位作者 Zhuxi Ni Bo Yin Mingbo Yang Wei Yang Yu Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期175-184,共10页
Functionalization of polymer foams by surface coating is of great interest for advanced flow-interactive materials working with well-controlled 3D open channels.However,realizing heavy functional coating via a fast an... Functionalization of polymer foams by surface coating is of great interest for advanced flow-interactive materials working with well-controlled 3D open channels.However,realizing heavy functional coating via a fast and recyclable way remains a big challenge.Here,inspired by the battery electrodes,we propose a scalable mechanic-assisted heavy coating strategy based on the design of sticky jammed fluid(SJF)to conquer the above challenge.Similar to the electrode slurry,the SJF is dominated by a high concentration of active material(≥20 wt%of active carbon,for instance)uniformly dispersed in a protein binder solution.Due to the sticky and solidrich nature of the SJF,one can realize a high coating efficiency of 60 wt%gain per coating.The critical factors controlling the coating processing and quality are further identified and discussed.Furthermore,the functionalized foam is demonstrated as a high-performance shape-customizable toxic gas remover,which can absorb formaldehyde very efficiently at different circumstances,including static adsorption,flow-based filtration,and source interception.Finally,the foam skeleton and the active materials are easily recycled by a facile solvent treatment.This study may inspire new scalable way for fast,heavy,and customizable functionalization of polymeric foams. 展开更多
关键词 air filtration conductive foam catalysis functional polymer foams microadhesion-guided technology surface coating and functionalization
下载PDF
Three-Component Model for Bidirectional Reflection Distribution Function of Thermal Coating Surfaces 被引量:2
10
作者 刘宏 朱京平 +2 位作者 王凯 王秀红 徐蓉 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第6期33-36,共4页
We present a bidirectional reflection distribution function (BRDF) model for thermal coating surfaces based on a three-component reflection assumption, in which the specular reflection is given according to the micr... We present a bidirectional reflection distribution function (BRDF) model for thermal coating surfaces based on a three-component reflection assumption, in which the specular reflection is given according to the microfacet theory and Snell's law, the multiple reflection is considered Nth cosine distributed, and the volume scattering is uniformly distributed in reflection angles according to the experimental results. This model describes the reflection characteristics of thermal coating surfaces more completely and reasonably. Simulation and measurement results of two thermal coating samples SR107 and S781 are given to validate that this three-component model significantly improves the modeling accuracy for thermal coating surfaces compared with the existing BRDF models. 展开更多
关键词 for in BRDF Three-Component Model for Bidirectional Reflection Distribution Function of Thermal coating Surfaces of
原文传递
Acid/Base Treatment of Monolithic Activated Carbon for Coating Silver with Tunable Morphology 被引量:1
11
作者 程辞 WANG Fei +3 位作者 赵斌元 宁月生 LAI Yijian WANG Lei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期760-765,共6页
Silver coatings on the exterior surface of monolithic activated carbon(MAC) with different morphology were prepared by directly immersing MAC into [Ag(NH3)2]NO3 solution. Acid and base treatments were employed to ... Silver coatings on the exterior surface of monolithic activated carbon(MAC) with different morphology were prepared by directly immersing MAC into [Ag(NH3)2]NO3 solution. Acid and base treatments were employed to modify the surface oxygenic groups of MAC, respectively. The MACs' Brunauer-EmmettTeller(BET) surface area, surface groups, and silver coating morphology were characterized by N2 adsorption, elemental analysis(EA), X-ray photoelectron spectroscopy(XPS), and scanning electron microscopy(SEM), respectively. The coating morphology was found to be closely related to the surface area and surface functional groups of MAC. For a raw MAC which contained a variety of oxygenic groups, HNO3 treatment enhanced the relative amount of highly oxidized groups such as carboxyl and carbonates, which disfavored the deposition of silver particles. By contrast, Na OH treatment significantly improved the amount of carbonyl groups, which in turn improved the deposition amount of silver. Importantly, lamella silver was produced on raw MAC while Na OH treatment resulted in granular particles because of the capping effect of carbonyl groups. At appropriate [Ag(NH3)2]NO3 concentrations, silver nanoparticles smaller than 100 nm were homogeneously dispersed on Na OH-treated MAC. The successful tuning of the size and morphology of silver coatings on MAC is promising for novel applications in air purification and for antibacterial or aesthetic purposes. 展开更多
关键词 monolithic activated carbon silver coating morphology functional groups surface modification
原文传递
Thermal Residual Stresses in Multilayered Coatings
12
作者 Xiancheng ZHANG Binshi XU +1 位作者 Haidou WANG Yixiong WU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第4期599-605,共7页
The mechanical integrity and reliability of coated devices are strongly affected by the residual stresses in thin films and coatings. However, due to the metallurgical complexity of materials, it is rather difficult t... The mechanical integrity and reliability of coated devices are strongly affected by the residual stresses in thin films and coatings. However, due to the metallurgical complexity of materials, it is rather difficult to obtain a closed-form solution of residual stresses within multilayered coatings (e.g. functionally graded coatings, FGCs). In this paper,an analytical model is developed to predict the distribution of residual stresses within multilayered coatings. The advantage of this model is that the solution of residual stresses is independent of the number of layers. Specific results are obtained by calculating elastic thermal stresses in ZrO2/NiCoCrAIY FGCs, which consist of different material layers. Furthermore, the residual stress distribution near the edges and the stress-induced failure modes of coating are also analyzed. The topics discussed provide some insights into the development of a methodology for designing fail-safe coating systems. 展开更多
关键词 Multilayered coatings Thermal stress functionally graded coatings Stress distribution Stress-induced failure
下载PDF
Design of DLC/Titanium Alloy Bio-Functionally Gradient Coat
13
作者 杨云志 陈治清 《Rare Metals》 SCIE EI CAS CSCD 1999年第1期28-33,共6页
The material design is used to direct the magnetron cosputtering process. At first, according to the particularity of functionally gradient coat (FGC) the thermal elastic stress analysis for FGC was carried out based ... The material design is used to direct the magnetron cosputtering process. At first, according to the particularity of functionally gradient coat (FGC) the thermal elastic stress analysis for FGC was carried out based on the plane stress hypothesis. It is obtained that the peak value of plane thermal stress within FGC is only determined by the physical properties of materials of FGC and substrate, the composition distribution coefficient only influences the distribution and trend of plane thermal stress. And the plane thermal stress criterion for design of FGC was presented. Then the plane thermal stress of diamond like carbon/titanium alloy FGC was calculated. 展开更多
关键词 functionally gradient coat Plane thermal stress calculation
下载PDF
Recent advances in interfacial modification of zinc anode for aqueous rechargeable zinc ion batteries 被引量:5
14
作者 Qing Wen Hao Fu +8 位作者 Ru-de Cui He-Zhang Chen Rui-Han Ji Lin-Bo Tang Cheng Yan Jing Mao Ke-Hua Dai Xia-Hui Zhang Jun-Chao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期287-303,I0009,共18页
To tackle energy crisis and achieve sustainable development, aqueous rechargeable zinc ion batteries have gained widespread attention in large-scale energy storage for their low cost, high safety, high theoretical cap... To tackle energy crisis and achieve sustainable development, aqueous rechargeable zinc ion batteries have gained widespread attention in large-scale energy storage for their low cost, high safety, high theoretical capacity, and environmental compatibility in recent years. However, zinc anode in aqueous zinc ion batteries is still facing several challenges such as dendrite growth and side reactions(e.g., hydrogen evolution), which cause poor reversibility and the failure of batteries. To address these issues, interfacial modification of Zn anodes has received great attention by tuning the interaction between the anode and the electrolyte. Herein, we present recent advances in the interfacial modification of zinc anode in this review. Besides, the challenges of reported approaches of interfacial modification are also discussed.Finally, we provide an outlook for the exploration of novel zinc anode for aqueous zinc ion batteries.We hope that this review will be helpful in designing and fabricating dendrite-free and hydrogenevolution-free Zn anodes and promoting the practical application of aqueous rechargeable zinc ion batteries. 展开更多
关键词 Zinc ion batteries Zinc anode Interfacial modification functional coating
下载PDF
Adhesion Improvement of Zirconium Coating on Polyurethane Modified by Plasmas
15
作者 高毅 郝晓飞 刘际伟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第2期157-161,共5页
In order to improve the adhesion of the middle frequency magnetic sputtered zirconium coating on a polyurethane film,an anode layer source was used to pretreat the polyurethane film with nitrogen and oxygen ions.SEMs ... In order to improve the adhesion of the middle frequency magnetic sputtered zirconium coating on a polyurethane film,an anode layer source was used to pretreat the polyurethane film with nitrogen and oxygen ions.SEMs and AFM roughness profiles of treated samples and the contrast groups were obtained.Besides,XPS survey spectrums and high resolution spectrums were also investigated.The adhesion test revealed that ion bombardment could improve the adhesion to the polyurethane coating substrate.A better etching result of oxygen ions versus nitrogen predicts a higher bonding strength of zirconium coating on polyurethane and,indeed,the highest bonding strengths are for oxygen ion bombardment upto 13.3 MPa.As demonstrated in X-ray photoelectron spectroscopy,the oxygen ion also helps to introduce more active groups,and,therefore,it achieves a high value of adhesion strength. 展开更多
关键词 anode layer source polyurethane(PU) zirconium coating adhesion functional groups
下载PDF
In situ formation of LDH-based nanocontainers on the surface of AZ91 magnesium alloy and detailed investigation of their crystal structure
16
作者 Tatsiana Shulha M.Serdechnova +8 位作者 M.H.Iuzviuk I.A.Zobkalo P.Karlova N.Scharnagl D.C.F.Wieland S.V.Lamaka A.A.Yaremchenko C.Blawert M.L.Zheludkevich 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第5期1268-1285,共18页
In the presented work, the possibility of direct synthesis of LDH(layered double hydroxide) on the AZ91 surface in the presence of a chelating agent(diethylenetriaminepentaacetic acid-DTPA) is reported. Conversion lay... In the presented work, the possibility of direct synthesis of LDH(layered double hydroxide) on the AZ91 surface in the presence of a chelating agent(diethylenetriaminepentaacetic acid-DTPA) is reported. Conversion layer of LDH nanocontainers were formed under ambient pressure conditions without carbonate addition in the electrolyte. The obtained LDH was characterized using experimental(SEM,XRD, TGA, XPS, Raman, etc.) and computational methods(thermodynamic calculation, modeling of possible LDH crystal structures). A comparison of three possible LDHs(LDH-OH,-NO_(3) and-CO_(3)) was performed. Based on the experimental results and crystal simulation approach, it was confirmed, that the mixed LDH-OH/CO_(3) is grown on the surface in the presence of DTPA pentasodium salt. 展开更多
关键词 Layered double hydroxides Magnesium alloy Chelating agent functional coating
下载PDF
Superior anti-corrosion and self-healing bi-functional polymer composite coatings with polydopamine modified mesoporous silica/graphene oxide 被引量:6
17
作者 Yanqi Ma Haowei Huang +8 位作者 Hongda Zhou Michael Graham James Smith Xinxin Sheng Ying Chen Li Zhang Xinya Zhang Elena Shchukina Dmitry Shchukin 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第36期95-104,共10页
In this article,graphene oxide(GO)and benzotriazole-loaded mesoporous silica nanoparticles(BTA/MSNs)are combined on micro scale through the in situ polymerization of polydopamine(PDA),preparing a selfhealing bi-functi... In this article,graphene oxide(GO)and benzotriazole-loaded mesoporous silica nanoparticles(BTA/MSNs)are combined on micro scale through the in situ polymerization of polydopamine(PDA),preparing a selfhealing bi-functional GO(fGO)used as nano-fillers for anti-corrosion enhancement of waterborne epoxy(WEP)coatings.Scanning electronic microscopy(SEM)images show that the BTA/MSNs are uniformly distributed on the surface of high aspect ratio GO nanosheets to endow GO nanocontainer characteristics.UV-vis profiles demonstrate that fGO has p H-controlled release function.Modulus at lowest frequency is generally used for comparing the corrosion resistance of organic coatings.Modulus at lowest frequency(1.42×10^(5)Ωcm^(2))after 30 days immersion in 3.5 wt.%Na Cl solution revealed 2 orders of magnitude higher that of blank WEP(1.17×10^(7)Ωcm^(2)).With artificial cracks on its coatings,fGO/WEP had no obvious rust compared with blank WEP after 240 h of immersion.We anticipate that self-healing and physical barrier bi-functional nanocontainers improve the traditional anticorrosion coating efficiency with better,longer-lasting performance for shipping,oil drilling or bridge maintenance. 展开更多
关键词 Mesoporous silica Graphene oxide ANTI-CORROSION SELF-HEALING functional composite coatings
原文传递
Cracking in orthotropic half-plane with a functionally graded coating under anti-plane loading
18
作者 M. M. Monfared M. Ayatollahi 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2015年第2期210-220,共11页
This investigation evaluates, by the dislocation method, the dynamic stress intensity factors of cracked orthotropic half-plane and functionally graded material coating of a coating- substrate material due to the acti... This investigation evaluates, by the dislocation method, the dynamic stress intensity factors of cracked orthotropic half-plane and functionally graded material coating of a coating- substrate material due to the action of anti-plane traction on the crack surfaces. First, by using the complex Fourier transform, the dislocation problem can be solved and the stress fields are obtained with Cauchy singularity at the location of dislocation. The dislocation solution is utilized to derive integral equations for multiple interacting cracks in the orthotropic half-plane with functionally graded orthotropic coating. Several examples are solved and dynamic stress intensity factors are obtained. 展开更多
关键词 orthotropic half-plane multiple cracks functionally graded coating
原文传递
Biliary stents for active materials and surface modification:Recent advances and future perspectives
19
作者 Yuechuan Li Kunshan Yuan +8 位作者 Chengchen Deng Hui Tang Jinxuan Wang Xiaozhen Dai Bing Zhang Ziru Sun Guiying Ren Haijun Zhang Guixue Wang 《Bioactive Materials》 SCIE CSCD 2024年第12期587-612,共26页
Demand for biliary stents has expanded with the increasing incidence of biliary disease.The implantation of plastic or self-expandable metal stents can be an effective treatment for biliary strictures.However,these st... Demand for biliary stents has expanded with the increasing incidence of biliary disease.The implantation of plastic or self-expandable metal stents can be an effective treatment for biliary strictures.However,these stents are nondegradable and prone to restenosis.Surgical removal or replacement of the nondegradable stents is necessary in cases of disease resolution or restenosis.To overcome these shortcomings,improvements were made to the materials and surfaces used for the stents.First,this paper reviews the advantages and limitations of nondegradable stents.Second,emphasis is placed on biodegradable polymer and biodegradable metal stents,along with functional coatings.This also encompasses tissue engineering&3D-printed stents were highlighted.Finally,the future perspectives of biliary stents,including pro-epithelialization coatings,multifunctional coated stents,biodegradable shape memory stents,and 4D bioprinting,were discussed. 展开更多
关键词 Biliary stent BIODEGRADABLE functional coatings Tissue engineering&3D-printed stent Shape memory
原文传递
LDH sealing for PEO coated friction stir welded AZ31/AA5754 materials
20
作者 Tatsiana Shulha Maria Serdechnova +4 位作者 Ting Wu Thymoty Naacke Gert Wiese Carsten Blawert Mikhail L.Zheludkevich 《Nano Materials Science》 EI CAS 2024年第4期428-442,共15页
The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion.Layered double hydroxides(LDHs)can be an example of such coatings,which were previo... The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion.Layered double hydroxides(LDHs)can be an example of such coatings,which were previously successfully obtained in situ on individual materials.In addition,the possibility of LDH growth(including LDH growth in the presence of chelating agents)on the surface of plasma electrolytic oxidation(PEO)-coated metals was previously shown.This PEO+LDH combination could improve both corrosion and mechanical characteristics of the system.The possibility of LDHs formation in situ on the surface of PEO-coated friction stir welded(FSW)magnesium-aluminum materials(AZ31/AA5754 system was selected as a model one)was demonstrated in the presence of 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid(DHPTA)as a chelating agent,which was selected based on analysis of respective metal-ligand compounds stability.LDHs growth was achieved under ambient pressure without addition of carbonates in the electrolyte.The effectiveness of the resulting coating is shown both for corrosion resistance and hardness. 展开更多
关键词 Layered double hydroxides(LDHs) Plasma electrolytic oxidation(PEO) Chelating agent Welded magnesium-aluminum materials functional coatings
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部