With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as ...With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.展开更多
To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal(GHBC)and to calibrate the meso-parameters,the numerical tests were conducted to simulate the laboratory triaxial compressio...To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal(GHBC)and to calibrate the meso-parameters,the numerical tests were conducted to simulate the laboratory triaxial compression tests by PFC3D,with the parallel bond model employed as the particle contact constitutive model.First,twenty simulation tests were conducted to quantify the relationship between the macro–meso parameters.Then,nine orthogonal simulation tests were performed using four meso-mechanical parameters in a three-level to evaluate the sensitivity of the meso-mechanical parameters.Furthermore,the calibration method of the meso-parameters were then proposed.Finally,the contact force chain,the contact force and the contact number were examined to investigate the saturation effect on the meso-mechanical behavior of GHBC.The results show that:(1)The elastic modulus linearly increases with the bonding stiffness ratio and the friction coefficient while exponentially increasing with the normal bonding strength and the bonding radius coefficient.The failure strength increases exponentially with the increase of the friction coefficient,the normal bonding strength and the bonding radius coefficient,and remains constant with the increase of bond stiffness ratio;(2)The friction coefficient and the bond radius coefficient are most sensitive to the elastic modulus and the failure strength;(3)The number of the force chains,the contact force,and the bond strength between particles will increase with the increase of the hydrate saturation,which leads to the larger failure strength.展开更多
The data of modified isochronal testing of gas well is just used to calculate gas well deliverability. Fully utilizing well test data make it possible to obtain formation parameters, such as gas well deliverability, e...The data of modified isochronal testing of gas well is just used to calculate gas well deliverability. Fully utilizing well test data make it possible to obtain formation parameters, such as gas well deliverability, effective permeability and skin factor at the same time. Based on transient flow theory, the pressure drawdown equation of gas unsteady seepage can be deducted. One simulated case is used to illustrate the applicability of the proposed method. The result of analyzed case shows that the proposed method can provide accurate estimate of formation permeability and skin factor compared with the method of Homer curves.展开更多
The factors influencing the permeability coefficient of gravelly soils used for the development of embankment dams(core wall)are analyzed.Such factors include(but are not limited to)soil size,anisotropy,density and bo...The factors influencing the permeability coefficient of gravelly soils used for the development of embankment dams(core wall)are analyzed.Such factors include(but are not limited to)soil size,anisotropy,density and boundary effects.A review of the literature is conducted and new directions of research are proposed.In such a framework,it is shown that gravelly soil with controlled density and vertical stress should be used to optimize the measurement of the vertical and horizontal permeability coefficients,respectively.展开更多
In this paper, the mechanical properties of gas hydrate-bearing sediments (GHBS) were summarized and the instability mechanism of submarine hydrate-bearing slope (SHBS) was analyzed under the background of the test pr...In this paper, the mechanical properties of gas hydrate-bearing sediments (GHBS) were summarized and the instability mechanism of submarine hydrate-bearing slope (SHBS) was analyzed under the background of the test production of gas hydrate in the northern part of the South China Sea. The strength reduction finite element method (SRFEM) was introduced to the stability analysis of submarine slopes for the safety of the test production. Two schemes were designed to determine the physical and mechanical parameters of four target wells. Through the division of the hydrate dissociation region and the design of four working conditions, the range and degree of hydrate dissociation at different stages during the test production were simulated. Based on the software ABAQUS, 37 FEM models of SHBS were set up to analyze and assess the stability of the submarine slopes in the area of the test production. Necessary information such as safety factors, deformation, and displacement were obtained at different stages and under different working conditions. According to the calculation results, the submarine slope area is stable before the test production, and the safety factors almost remains the same during and after the test production. All these indicate that the test production has no obvious influence on the area of the test production and the submarine slopes in the area are stable during and after the test production.展开更多
Double packer equipment for hydraulic test can be used to measure pressure of test zone directly, and it is frequently used to perform many kinds of hydraulic tests and take groundwater sample from borehole. The test ...Double packer equipment for hydraulic test can be used to measure pressure of test zone directly, and it is frequently used to perform many kinds of hydraulic tests and take groundwater sample from borehole. The test method of this equipment mainly includes the test design, implementation, interpretation and synthetic analysis. By adopting the double packer equipment for hydraulic test, the parameter distribution of rock permeability along borehole can be acquired, as well as the connectivity, water conductivity and water bearing capacity of the disclosed structure and the chemical characteristics of the deep groundwater. It is a necessary method for the research and evaluation of the complex hypotonicity terrace site selection under geological conditions. This method is not only suitable for the geological disposal of high level radioactive waste, but also can be used in the site selection of underground facilities such as storage of petroleum and carbon dioxide. Meanwhile, it has a good application prospect in other hydrogeological investigation fields.展开更多
Horizontal well drilling and multi-stage hydraulic fracturing are key technologies for the development of shale gas reservoirs.Instantaneous acquisition of hydraulic fracture parameters is crucial for evaluating fract...Horizontal well drilling and multi-stage hydraulic fracturing are key technologies for the development of shale gas reservoirs.Instantaneous acquisition of hydraulic fracture parameters is crucial for evaluating fracturing effectiveness,optimizing processes,and predicting gas productivity.This paper establishes a transient flow model for shale gas wells based on the boundary element method,achieving the characterization of stimulated reservoir volume for a single stage.By integrating pressure monitoring data following the pumping shut-in period of hydraulic fracturing for well testing interpretation,a workflow for inverting fracture parameters of shale gas wells is established.This new method eliminates the need for prolonged production testing and can interpret parameters of individual hydraulic fracture segments,offering significant advantages over the conventional pressure transient analysismethod.The practical application of thismethodology was conducted on 10 shale gaswellswithin the Changning shale gas block of Sichuan,China.The results show a high correlation between the interpreted single-stage total length and surface area of hydraulic fractures and the outcomes of gas production profile tests.Additionally,significant correlations are observed between these parameters and cluster number,horizontal stress difference,and natural fracture density.This demonstrates the effectiveness of the proposed fracture parameter inversion method and the feasibility of field application.The findings of this study aim to provide solutions and references for the inversion of fracture parameters in shale gas wells.展开更多
In recent years,many trials have been made to use the Rate Transient Analysis(RTA)techniques as a method to describe the gas condensate reservoirs.The problem with using these techniques is the multi-phase behavior of...In recent years,many trials have been made to use the Rate Transient Analysis(RTA)techniques as a method to describe the gas condensate reservoirs.The problem with using these techniques is the multi-phase behavior of the gas condensate reservoirs.Therefore,the Pressure Transient Analysis(PTA)is commonly used in this case to analyze the reservoir parameters.In this paper,we are going to compare the results of both PTA and RTA of three wells in gas condensate reservoirs.The comparison showed a great match between the results of the two mentioned techniques for the first time using a reference GOR of 75,000 SCF/STB.Therefore,we concluded that we could depend on RTA instead of PTA to spare the cost associated with the PTA in the gas condensate reservoirs.展开更多
基金National Natural Science Foundation of China(52004117,52174117 and 52074146)Postdoctoral Science Foundation of China(2021T140290 and 2020M680975)Basic scientific research project of Liaoning Provincial Department of Education(JYTZD2023073).
文摘With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.
基金National Natural Science Foundation Joint Fund Project(U21A20111)National Natural Science Foundation of China(51974112,51674108).
文摘To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal(GHBC)and to calibrate the meso-parameters,the numerical tests were conducted to simulate the laboratory triaxial compression tests by PFC3D,with the parallel bond model employed as the particle contact constitutive model.First,twenty simulation tests were conducted to quantify the relationship between the macro–meso parameters.Then,nine orthogonal simulation tests were performed using four meso-mechanical parameters in a three-level to evaluate the sensitivity of the meso-mechanical parameters.Furthermore,the calibration method of the meso-parameters were then proposed.Finally,the contact force chain,the contact force and the contact number were examined to investigate the saturation effect on the meso-mechanical behavior of GHBC.The results show that:(1)The elastic modulus linearly increases with the bonding stiffness ratio and the friction coefficient while exponentially increasing with the normal bonding strength and the bonding radius coefficient.The failure strength increases exponentially with the increase of the friction coefficient,the normal bonding strength and the bonding radius coefficient,and remains constant with the increase of bond stiffness ratio;(2)The friction coefficient and the bond radius coefficient are most sensitive to the elastic modulus and the failure strength;(3)The number of the force chains,the contact force,and the bond strength between particles will increase with the increase of the hydrate saturation,which leads to the larger failure strength.
文摘The data of modified isochronal testing of gas well is just used to calculate gas well deliverability. Fully utilizing well test data make it possible to obtain formation parameters, such as gas well deliverability, effective permeability and skin factor at the same time. Based on transient flow theory, the pressure drawdown equation of gas unsteady seepage can be deducted. One simulated case is used to illustrate the applicability of the proposed method. The result of analyzed case shows that the proposed method can provide accurate estimate of formation permeability and skin factor compared with the method of Homer curves.
基金The work is supported by National Key Research and Development Program of China(No.2017YFC0404803)Guizhou High-Level Innovative Talents Project[2018](No.5630)+2 种基金Guizhou Science and Support[2019](No.2869)State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(No.SKL2020ZY09)Science and Technology Project of Huaneng Group Headquarters(HNKJ17-H18).
文摘The factors influencing the permeability coefficient of gravelly soils used for the development of embankment dams(core wall)are analyzed.Such factors include(but are not limited to)soil size,anisotropy,density and boundary effects.A review of the literature is conducted and new directions of research are proposed.In such a framework,it is shown that gravelly soil with controlled density and vertical stress should be used to optimize the measurement of the vertical and horizontal permeability coefficients,respectively.
基金This work is funded by National Key R&D Project (2017YFC0307605)the China Geological Survey (DD20160217,DD20190218)+1 种基金the National Natural Science Foundation of China (11572165)we would like to extend our sincere appreciation for these.
文摘In this paper, the mechanical properties of gas hydrate-bearing sediments (GHBS) were summarized and the instability mechanism of submarine hydrate-bearing slope (SHBS) was analyzed under the background of the test production of gas hydrate in the northern part of the South China Sea. The strength reduction finite element method (SRFEM) was introduced to the stability analysis of submarine slopes for the safety of the test production. Two schemes were designed to determine the physical and mechanical parameters of four target wells. Through the division of the hydrate dissociation region and the design of four working conditions, the range and degree of hydrate dissociation at different stages during the test production were simulated. Based on the software ABAQUS, 37 FEM models of SHBS were set up to analyze and assess the stability of the submarine slopes in the area of the test production. Necessary information such as safety factors, deformation, and displacement were obtained at different stages and under different working conditions. According to the calculation results, the submarine slope area is stable before the test production, and the safety factors almost remains the same during and after the test production. All these indicate that the test production has no obvious influence on the area of the test production and the submarine slopes in the area are stable during and after the test production.
文摘Double packer equipment for hydraulic test can be used to measure pressure of test zone directly, and it is frequently used to perform many kinds of hydraulic tests and take groundwater sample from borehole. The test method of this equipment mainly includes the test design, implementation, interpretation and synthetic analysis. By adopting the double packer equipment for hydraulic test, the parameter distribution of rock permeability along borehole can be acquired, as well as the connectivity, water conductivity and water bearing capacity of the disclosed structure and the chemical characteristics of the deep groundwater. It is a necessary method for the research and evaluation of the complex hypotonicity terrace site selection under geological conditions. This method is not only suitable for the geological disposal of high level radioactive waste, but also can be used in the site selection of underground facilities such as storage of petroleum and carbon dioxide. Meanwhile, it has a good application prospect in other hydrogeological investigation fields.
基金funded by the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance,grant numbers“2020CX020202,2020CX030202 and 2020CX010403”.
文摘Horizontal well drilling and multi-stage hydraulic fracturing are key technologies for the development of shale gas reservoirs.Instantaneous acquisition of hydraulic fracture parameters is crucial for evaluating fracturing effectiveness,optimizing processes,and predicting gas productivity.This paper establishes a transient flow model for shale gas wells based on the boundary element method,achieving the characterization of stimulated reservoir volume for a single stage.By integrating pressure monitoring data following the pumping shut-in period of hydraulic fracturing for well testing interpretation,a workflow for inverting fracture parameters of shale gas wells is established.This new method eliminates the need for prolonged production testing and can interpret parameters of individual hydraulic fracture segments,offering significant advantages over the conventional pressure transient analysismethod.The practical application of thismethodology was conducted on 10 shale gaswellswithin the Changning shale gas block of Sichuan,China.The results show a high correlation between the interpreted single-stage total length and surface area of hydraulic fractures and the outcomes of gas production profile tests.Additionally,significant correlations are observed between these parameters and cluster number,horizontal stress difference,and natural fracture density.This demonstrates the effectiveness of the proposed fracture parameter inversion method and the feasibility of field application.The findings of this study aim to provide solutions and references for the inversion of fracture parameters in shale gas wells.
文摘In recent years,many trials have been made to use the Rate Transient Analysis(RTA)techniques as a method to describe the gas condensate reservoirs.The problem with using these techniques is the multi-phase behavior of the gas condensate reservoirs.Therefore,the Pressure Transient Analysis(PTA)is commonly used in this case to analyze the reservoir parameters.In this paper,we are going to compare the results of both PTA and RTA of three wells in gas condensate reservoirs.The comparison showed a great match between the results of the two mentioned techniques for the first time using a reference GOR of 75,000 SCF/STB.Therefore,we concluded that we could depend on RTA instead of PTA to spare the cost associated with the PTA in the gas condensate reservoirs.