By the complete discrimination system for polynomial method, we obtained the classification of single traveling wave solutions to the generalized strong nonlinear Boussinesq equation without dissipation terms in p=1.
In this paper, the invariant subspaces of the generalized strongly dispersive DGH equation are given, and the exact solutions of the strongly dispersive DGH equation are obtained. Firstly, transform nonlinear partial ...In this paper, the invariant subspaces of the generalized strongly dispersive DGH equation are given, and the exact solutions of the strongly dispersive DGH equation are obtained. Firstly, transform nonlinear partial differential Equation (PDE) into ordinary differential Equation (ODE) systems by using the invariant subspace method. Secondly, combining with the dynamical system method, we use the invariant subspaces which have been obtained to construct the exact solutions of the equation. In the end, the figures of the exact solutions are given.展开更多
文摘By the complete discrimination system for polynomial method, we obtained the classification of single traveling wave solutions to the generalized strong nonlinear Boussinesq equation without dissipation terms in p=1.
文摘In this paper, the invariant subspaces of the generalized strongly dispersive DGH equation are given, and the exact solutions of the strongly dispersive DGH equation are obtained. Firstly, transform nonlinear partial differential Equation (PDE) into ordinary differential Equation (ODE) systems by using the invariant subspace method. Secondly, combining with the dynamical system method, we use the invariant subspaces which have been obtained to construct the exact solutions of the equation. In the end, the figures of the exact solutions are given.