Object-oriented Petri nets (OPNs) is extended into stochastic object-oriented Petri nets (SOPNs) by associating the OPN of an object with stochastic transitions and introducing stochastic places. The stochastic transi...Object-oriented Petri nets (OPNs) is extended into stochastic object-oriented Petri nets (SOPNs) by associating the OPN of an object with stochastic transitions and introducing stochastic places. The stochastic transition of the SOPNs of a production resources can be used to model its reliability, while the SOPN of a production resource can describe its performance with reliability considered. The SOPN model of a case production system is built to illustrate the relationship between the system's performances and the failures of individual production resources.展开更多
In this paper, data streams are classified into four types conforming to a standardized infrastructure of communication networks for a substation automation system (SAS) based on IEC61850 system. The data exchanged ...In this paper, data streams are classified into four types conforming to a standardized infrastructure of communication networks for a substation automation system (SAS) based on IEC61850 system. The data exchanged on the net are demonstrated to be stochastic according to investigation on the Ethemet communication principles. Four generalized stochastic Petri nets (GSPN) based models for performance analysis of communication networks of IEC61850 system are developed based on the three-level structure of SAS, different time requirements of the four data streams and different networks topology for different voltage level. The GSPN-based model associated with immediate and exponential transitions is proven to be theoretically isomorphic with Markov chain; hence we apply the mathematic methods of performance evaluation contained in Markov chain to the GSPN models proposed. The computer simulation of the model including only sample value data streams shows that it can meet performance evaluation needs of communication networks of IEC61850 system. Further researches should be focused on the pe^ormance of the other three models to explain clear how those different data streams are interrelated to and interact on each other.展开更多
In order to model effectively hybrid systems,a new modeling method of extended Petri nets,which is called extended object-orient hybrid Petri net (EOHPN),is proposed.To deal with the complexity of hybrid systems, ob...In order to model effectively hybrid systems,a new modeling method of extended Petri nets,which is called extended object-orient hybrid Petri net (EOHPN),is proposed.To deal with the complexity of hybrid systems, object-oriented abstraction mechanisms such as encapsulation and classifications are merged into EOHPN models.To combine the continuous part and discrete part of hybrid systems and to reduce the complexity of hybrid systems,a hybrid Petri net is introduced and extended with object-oriented modeling technology.Development of object models is suggested on the basis of the defined EOHPN.Finally, an application-oriented case is presented to illustrate that how the proposed EOHPN is used to model hybrid systems.The resulting model validates that the EOHPNs can deal with the modeling complexity of hybrid systems.展开更多
基金This project is supported by National Natural Science Foundation of China (No.50085003).
文摘Object-oriented Petri nets (OPNs) is extended into stochastic object-oriented Petri nets (SOPNs) by associating the OPN of an object with stochastic transitions and introducing stochastic places. The stochastic transition of the SOPNs of a production resources can be used to model its reliability, while the SOPN of a production resource can describe its performance with reliability considered. The SOPN model of a case production system is built to illustrate the relationship between the system's performances and the failures of individual production resources.
文摘In this paper, data streams are classified into four types conforming to a standardized infrastructure of communication networks for a substation automation system (SAS) based on IEC61850 system. The data exchanged on the net are demonstrated to be stochastic according to investigation on the Ethemet communication principles. Four generalized stochastic Petri nets (GSPN) based models for performance analysis of communication networks of IEC61850 system are developed based on the three-level structure of SAS, different time requirements of the four data streams and different networks topology for different voltage level. The GSPN-based model associated with immediate and exponential transitions is proven to be theoretically isomorphic with Markov chain; hence we apply the mathematic methods of performance evaluation contained in Markov chain to the GSPN models proposed. The computer simulation of the model including only sample value data streams shows that it can meet performance evaluation needs of communication networks of IEC61850 system. Further researches should be focused on the pe^ormance of the other three models to explain clear how those different data streams are interrelated to and interact on each other.
基金The National Key Laboratory Program ( No.51458060104JW0316)the National High Technology Research and De-velopment Program of China (863 Program) (No.2003AA414120).
文摘In order to model effectively hybrid systems,a new modeling method of extended Petri nets,which is called extended object-orient hybrid Petri net (EOHPN),is proposed.To deal with the complexity of hybrid systems, object-oriented abstraction mechanisms such as encapsulation and classifications are merged into EOHPN models.To combine the continuous part and discrete part of hybrid systems and to reduce the complexity of hybrid systems,a hybrid Petri net is introduced and extended with object-oriented modeling technology.Development of object models is suggested on the basis of the defined EOHPN.Finally, an application-oriented case is presented to illustrate that how the proposed EOHPN is used to model hybrid systems.The resulting model validates that the EOHPNs can deal with the modeling complexity of hybrid systems.