期刊文献+
共找到2,703篇文章
< 1 2 136 >
每页显示 20 50 100
Appropriate Combination of Crossover Operator and Mutation Operator in Genetic Algorithms for the Travelling Salesman Problem
1
作者 Zakir Hussain Ahmed Habibollah Haron Abdullah Al-Tameem 《Computers, Materials & Continua》 SCIE EI 2024年第5期2399-2425,共27页
Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes... Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances. 展开更多
关键词 Travelling salesman problem genetic algorithms crossover operator mutation operator comprehensive sequential constructive crossover insertion mutation
下载PDF
Solving the Generalized Traveling Salesman Problem Using Sequential Constructive Crossover Operator in Genetic Algorithm
2
作者 Zakir Hussain Ahmed Maha Ata Al-Furhood +1 位作者 Abdul Khader Jilani Saudagar Shakir Khan 《Computer Systems Science & Engineering》 2024年第5期1113-1131,共19页
The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is h... The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is highly expensive,we will develop genetic algorithms(GAs)to obtain heuristic solutions to the problem.In GAs,as the crossover is a very important process,the crossovermethods proposed for the traditional TSP could be adapted for the GTSP.The sequential constructive crossover(SCX)and three other operators are adapted to use in GAs to solve the GTSP.The effectiveness of GA using SCX is verified on some GTSP Library(GTSPLIB)instances first and then compared against GAs using the other crossover methods.The computational results show the success of the GA using SCX for this problem.Our proposed GA using SCX,and swap mutation could find average solutions whose average percentage of excesses fromthe best-known solutions is between 0.00 and 14.07 for our investigated instances. 展开更多
关键词 Generalized travelling salesman problem NP-HARD genetic algorithms sequential constructive crossover swap mutation
下载PDF
An Improved Heuristic Recursive Strategy Based on Genetic Algorithm for the Strip Rectangular Packing Problem 被引量:4
3
作者 ZHANG De-Fu CHEN Sheng-Da LIU Yan-Juan 《自动化学报》 EI CSCD 北大核心 2007年第9期911-916,共6页
与基因算法结合的改进启发式的递归的策略在这份报纸被介绍。第一,这个方法寻找一些矩形,它有一样的长度或宽度,到没有浪费空间,形成一些层,然后,计算留下包装顺序的高度使用启发式的递归的策略并且使用基因算法的进化能力减少高... 与基因算法结合的改进启发式的递归的策略在这份报纸被介绍。第一,这个方法寻找一些矩形,它有一样的长度或宽度,到没有浪费空间,形成一些层,然后,计算留下包装顺序的高度使用启发式的递归的策略并且使用基因算法的进化能力减少高度。基准问题的几个班上的计算结果证明了介绍算法能与已知的进化启发规则竞争。它特别为大测试问题更好表现。 展开更多
关键词 改良式 启发式 递归策略 遗传算法 矩形封装
下载PDF
Use the Power of a Genetic Algorithm to Maximize and Minimize Cases to Solve Capacity Supplying Optimization and Travelling Salesman in Nested Problems
4
作者 Ali Abdulhafidh Ibrahim Hajar Araz Qader Nour Ai-Huda Akram Latif 《Journal of Computer and Communications》 2023年第3期24-31,共8页
Using Genetic Algorithms (GAs) is a powerful tool to get solution to large scale design optimization problems. This paper used GA to solve complicated design optimization problems in two different applications. The ai... Using Genetic Algorithms (GAs) is a powerful tool to get solution to large scale design optimization problems. This paper used GA to solve complicated design optimization problems in two different applications. The aims are to implement the genetic algorithm to solve these two different (nested) problems, and to get the best or optimization solutions. 展开更多
关键词 genetic algorithm Capacity Supplying Optimization Traveling Salesman problem Nested problems
下载PDF
二维矩形Strip Packing问题的算法研究与改进
5
作者 蔡家尧 王磊 《计算机技术与发展》 2024年第7期138-146,共9页
二维矩形Strip Packing问题的约束条件及目标函数与基本型二维矩形Packing问题类似,都是在有限的矩形容器中,有效地摆放各个矩形块,以最大化容器利用率为目标。为了解决这一NP-hard问题,该文在邓见凯、王磊提出的拟人型全局优化算法的... 二维矩形Strip Packing问题的约束条件及目标函数与基本型二维矩形Packing问题类似,都是在有限的矩形容器中,有效地摆放各个矩形块,以最大化容器利用率为目标。为了解决这一NP-hard问题,该文在邓见凯、王磊提出的拟人型全局优化算法的基础上进行了深入的算法研究与改进。针对Strip Packing问题特点,提出了QHG(Quasi-Human Group)算法,其核心改进涵盖了多个方面,包括扩充初始点集合、删除和替换评价标准以及扩大邻域空间搜索范围。和单个局部极小值点的迭代相比,对局部极小值点集合进行迭代所生成布局优度更高,跳坑策略用于跳出局部极小值点,将搜索引向有希望的区域,优美度枚举有望进一步提高布局优度。通过这些措施,QHG算法更好地模拟人类决策过程,提高了全局搜索的效率。为评估QHG算法性能,对8组标准问题实例(C组、N组、NT组、CX组、NP组、ZDF组、2sp组、bwmv组)进行了大量实验。实验结果表明,QHG算法生成的布局优度优于当前国际文献中的几种较先进算法,展现了其在Strip Packing问题上的卓越性能。 展开更多
关键词 Strip packing问题 组合优化 全局优化 算法 拟人
下载PDF
Genetic Crossover Operators for the Capacitated Vehicle Routing Problem 被引量:1
6
作者 Zakir Hussain Ahmed Naif Al-Otaibi +1 位作者 Abdullah Al-Tameem Abdul Khader Jilani Saudagar 《Computers, Materials & Continua》 SCIE EI 2023年第1期1575-1605,共31页
We study the capacitated vehicle routing problem(CVRP)which is a well-known NP-hard combinatorial optimization problem(COP).The aim of the problem is to serve different customers by a convoy of vehicles starting from ... We study the capacitated vehicle routing problem(CVRP)which is a well-known NP-hard combinatorial optimization problem(COP).The aim of the problem is to serve different customers by a convoy of vehicles starting from a depot so that sum of the routing costs under their capacity constraints is minimized.Since the problem is very complicated,solving the problem using exact methods is almost impossible.So,one has to go for the heuristic/metaheuristic methods and genetic algorithm(GA)is broadly applied metaheuristic method to obtain near optimal solution to such COPs.So,this paper studies GAs to find solution to the problem.Generally,to solve a COP,GAs start with a chromosome set named initial population,and then mainly three operators-selection,crossover andmutation,are applied.Among these three operators,crossover is very crucial in designing and implementing GAs,and hence,numerous crossover operators were developed and applied to different COPs.There are two major kinds of crossover operators-blind crossovers and distance-based crossovers.We intend to compare the performance of four blind crossover and four distance-based crossover operators to test the suitability of the operators to solve the CVRP.These operators were originally proposed for the standard travelling salesman problem(TSP).First,these eight crossovers are illustrated using same parent chromosomes for building offspring(s).Then eight GAs using these eight crossover operators without any mutation operator and another eight GAs using these eight crossover operators with a mutation operator are developed.These GAs are experimented on some benchmark asymmetric and symmetric instances of numerous sizes and various number of vehicles.Our study revealed that the distance-based crossovers are much superior to the blind crossovers.Further,we observed that the sequential constructive crossover with and without mutation operator is the best one for theCVRP.This estimation is validated by Student’s t-test at 95%confidence level.We further determined a comparative rank of the eight crossovers for the CVRP. 展开更多
关键词 Vehicle routing problem NP-HARD genetic algorithm sequential constructive crossover MUTATION
下载PDF
Dendritic Cell Algorithm with Grouping Genetic Algorithm for Input Signal Generation
7
作者 Dan Zhang Yiwen Liang Hongbin Dong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2025-2045,共21页
The artificial immune system,an excellent prototype for developingMachine Learning,is inspired by the function of the powerful natural immune system.As one of the prevalent classifiers,the Dendritic Cell Algorithm(DCA... The artificial immune system,an excellent prototype for developingMachine Learning,is inspired by the function of the powerful natural immune system.As one of the prevalent classifiers,the Dendritic Cell Algorithm(DCA)has been widely used to solve binary problems in the real world.The classification of DCA depends on a data preprocessing procedure to generate input signals,where feature selection and signal categorization are themain work.However,the results of these studies also show that the signal generation of DCA is relatively weak,and all of them utilized a filter strategy to remove unimportant attributes.Ignoring filtered features and applying expertise may not produce an optimal classification result.To overcome these limitations,this study models feature selection and signal categorization into feature grouping problems.This study hybridizes Grouping Genetic Algorithm(GGA)with DCA to propose a novel DCA version,GGA-DCA,for accomplishing feature selection and signal categorization in a search process.The GGA-DCA aims to search for the optimal feature grouping scheme without expertise automatically.In this study,the data coding and operators of GGA are redefined for grouping tasks.The experimental results show that the proposed algorithm has significant advantages over the compared DCA expansion algorithms in terms of signal generation. 展开更多
关键词 Dendritic cell algorithm combinatorial optimization grouping problems grouping genetic algorithm
下载PDF
A Dynamic Maintenance Strategy for Multi-Component Systems Using a Genetic Algorithm
8
作者 Dongyan Shi Hui Ma Chunlong Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1899-1923,共25页
In multi-component systems,the components are dependent,rather than degenerating independently,leading to changes inmaintenance schedules.In this situation,this study proposes a grouping dynamicmaintenance strategy.Co... In multi-component systems,the components are dependent,rather than degenerating independently,leading to changes inmaintenance schedules.In this situation,this study proposes a grouping dynamicmaintenance strategy.Considering the structure of multi-component systems,the maintenance strategy is determined according to the importance of the components.The strategy can minimize the expected depreciation cost of the system and divide the system into optimal groups that meet economic requirements.First,multi-component models are grouped.Then,a failure probability model of multi-component systems is established.The maintenance parameters in each maintenance cycle are updated according to the failure probability of the components.Second,the component importance indicator is introduced into the grouping model,and the optimization model,which aimed at a maximum economic profit,is established.A genetic algorithm is used to solve the non-deterministic polynomial(NP)-complete problem in the optimization model,and the optimal grouping is obtained through the initial grouping determined by random allocation.An 11-component series and parallel system is used to illustrate the effectiveness of the proposed strategy,and the influence of the system structure and the parameters on the maintenance strategy is discussed. 展开更多
关键词 Condition-based maintenance predictive maintenance maintenance strategy genetic algorithm NP-complete problems
下载PDF
Improved genetic algorithm for nonlinear programming problems 被引量:8
9
作者 Kezong Tang Jingyu Yang +1 位作者 Haiyan Chen Shang Gao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期540-546,共7页
An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w... An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms. 展开更多
关键词 genetic algorithm(GA) nonlinear programming problem constraint handling non-dominated solution optimization problem.
下载PDF
Solution for integer linear bilevel programming problems using orthogonal genetic algorithm 被引量:9
10
作者 Hong Li Li Zhang Yongchang Jiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第3期443-451,共9页
An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorith... An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm. 展开更多
关键词 integer linear bilevel programming problem integer optimization genetic algorithm orthogonal experiment design
下载PDF
A Hybrid Genetic Algorithm for the Traveling Salesman Problem with Pickup and Delivery 被引量:10
11
作者 Fang-Geng Zhao Jiang-Sheng Sun +1 位作者 Su-Jian Li Wei-Min Liu 《International Journal of Automation and computing》 EI 2009年第1期97-102,共6页
In this paper, a hybrid genetic algorithm (GA) is proposed for the traveling salesman problem (TSP) with pickup and delivery (TSPPD). In our algorithm, a novel pheromone-based crossover operator is advanced that... In this paper, a hybrid genetic algorithm (GA) is proposed for the traveling salesman problem (TSP) with pickup and delivery (TSPPD). In our algorithm, a novel pheromone-based crossover operator is advanced that utilizes both local and global information to construct offspring. In addition, a local search procedure is integrated into the GA to accelerate convergence. The proposed GA has been tested on benchmark instances, and the computational results show that it gives better convergence than existing heuristics. 展开更多
关键词 genetic algorithm (GA) pheromone-based crossover local search pickup and delivery traveling salesman problem(TSP).
下载PDF
Orthogonal genetic algorithm for solving quadratic bilevel programming problems 被引量:4
12
作者 Hong Li Yongchang Jiao Li Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期763-770,共8页
A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encod... A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations. 展开更多
关键词 orthogonal genetic algorithm quadratic bilevel programming problem Karush-Kuhn-Tucker conditions orthogonal experimental design global optimal solution.
下载PDF
GLOBAL OPTIMIZATION OF PUMP CONFIGURATION PROBLEM USING EXTENDED CROWDING GENETIC ALGORITHM 被引量:3
13
作者 ZhangGuijun WuTihua YeRong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期247-252,共6页
An extended crowding genetic algorithm (ECGA) is introduced for solvingoptimal pump configuration problem, which was presented by T. Westerlund in 1994. This problem hasbeen found to be non-convex, and the objective f... An extended crowding genetic algorithm (ECGA) is introduced for solvingoptimal pump configuration problem, which was presented by T. Westerlund in 1994. This problem hasbeen found to be non-convex, and the objective function contained several local optima and globaloptimality could not be ensured by all the traditional MINLP optimization method. The concepts ofspecies conserving and composite encoding are introduced to crowding genetic algorithm (CGA) formaintain the diversity of population more effectively and coping with the continuous and/or discretevariables in MINLP problem. The solution of three-levels pump configuration got from DICOPT++software (OA algorithm) is also given. By comparing with the solutions obtained from DICOPT++, ECPmethod, and MIN-MIN method, the ECGA algorithm proved to be very effective in finding the globaloptimal solution of multi-levels pump configuration via using the problem-specific information. 展开更多
关键词 Pump configuration problem Extended crowding genetic algorithm Speciesconserving Composite encoding Global optimization
下载PDF
Solving flexible job shop scheduling problem by a multi-swarm collaborative genetic algorithm 被引量:8
14
作者 WANG Cuiyu LI Yang LI Xinyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期261-271,共11页
The flexible job shop scheduling problem(FJSP),which is NP-hard,widely exists in many manufacturing industries.It is very hard to be solved.A multi-swarm collaborative genetic algorithm(MSCGA)based on the collaborativ... The flexible job shop scheduling problem(FJSP),which is NP-hard,widely exists in many manufacturing industries.It is very hard to be solved.A multi-swarm collaborative genetic algorithm(MSCGA)based on the collaborative optimization algorithm is proposed for the FJSP.Multi-population structure is used to independently evolve two sub-problems of the FJSP in the MSCGA.Good operators are adopted and designed to ensure this algorithm to achieve a good performance.Some famous FJSP benchmarks are chosen to evaluate the effectiveness of the MSCGA.The adaptability and superiority of the proposed method are demonstrated by comparing with other reported algorithms. 展开更多
关键词 flexible job shop scheduling problem(FJSP) collaborative genetic algorithm co-evolutionary algorithm
下载PDF
An Improved Genetic Algorithm for Solving the Mixed⁃Flow Job⁃Shop Scheduling Problem with Combined Processing Constraints 被引量:4
15
作者 ZHU Haihua ZHANG Yi +2 位作者 SUN Hongwei LIAO Liangchuang TANG Dunbing 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第3期415-426,共12页
The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.... The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.Targeting this problem,the process state model of a mixed-flow production line is analyzed.On this basis,a mathematical model of a mixed-flow job-shop scheduling problem with combined processing constraints is established based on the traditional FJSP.Then,an improved genetic algorithm with multi-segment encoding,crossover,and mutation is proposed for the mixed-flow production line problem.Finally,the proposed algorithm is applied to the production workshop of missile structural components at an aerospace institute to verify its feasibility and effectiveness. 展开更多
关键词 mixed-flow production flexible job-shop scheduling problem(FJSP) genetic algorithm ENCODING
下载PDF
A Genetic Algorithm for the Split Delivery Vehicle Routing Problem 被引量:8
16
作者 Joseph Hubert Wilck IV Tom M. Cavalier 《American Journal of Operations Research》 2012年第2期207-216,共10页
The Split Delivery Vehicle Routing Problem (SDVRP) allows customers to be assigned to multiple routes. Two hybrid genetic algorithms are developed for the SDVRP and computational results are given for thirty-two data ... The Split Delivery Vehicle Routing Problem (SDVRP) allows customers to be assigned to multiple routes. Two hybrid genetic algorithms are developed for the SDVRP and computational results are given for thirty-two data sets from previous literature. With respect to the total travel distance and computer time, the genetic algorithm compares favorably versus a column generation method and a two-phase method. 展开更多
关键词 VEHICLE ROUTING problem TRANSPORTATION genetic algorithm
下载PDF
Genetic Algorithm Based on Duality Principle for Bilevel Programming Problem in Steel-making Production 被引量:2
17
作者 林硕 栾方军 +3 位作者 韩忠华 吕希胜 周晓锋 刘炜 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第7期742-747,共6页
Steel-making and continuous/ingot casting are the key processes of modern iron and steel enterprises. Bilevel programming problems(BLPPs) are the optimization problems with hierarchical structure. In steel-making prod... Steel-making and continuous/ingot casting are the key processes of modern iron and steel enterprises. Bilevel programming problems(BLPPs) are the optimization problems with hierarchical structure. In steel-making production, the plan is not only decided by the steel-making scheduling, but also by the transportation equipment.This paper proposes a genetic algorithm to solve continuous and ingot casting scheduling problems. Based on the characteristics of the problems involved, a genetic algorithm is proposed for solving the bilevel programming problem in steel-making production. Furthermore, based on the simplex method, a new crossover operator is designed to improve the efficiency of the genetic algorithm. Finally, the convergence is analyzed. Using actual data the validity of the proposed algorithm is proved and the application results in the steel plant are analyzed. 展开更多
关键词 Steel-making genetic algorithm Bilevel problem SCHEDULING
下载PDF
Efficient Multiobjective Genetic Algorithm for Solving Transportation, Assignment, and Transshipment Problems 被引量:2
18
作者 Sayed A. Zaki Abd Allah A. Mousa +1 位作者 Hamdy M. Geneedi Adel Y. Elmekawy 《Applied Mathematics》 2012年第1期92-99,共8页
This paper presents an efficient genetic algorithm for solving multiobjective transportation problem, assignment, and transshipment Problems. The proposed approach integrates the merits of both genetic algorithm (GA) ... This paper presents an efficient genetic algorithm for solving multiobjective transportation problem, assignment, and transshipment Problems. The proposed approach integrates the merits of both genetic algorithm (GA) and local search (LS) scheme. The algorithm maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on clustering algorithm. The use clustering algorithm makes the algorithms practical by allowing a decision maker to control the resolution of the Pareto set approximation. To increase GAs’ problem solution power, local search technique is implemented as neighborhood search engine where it intends to explore the less-crowded area in the current archive to possibly obtain more nondominated solutions. The inclusion of local search and clustering algorithm speeds-up the search process and also helps in obtaining a fine-grained value for the objective functions. Finally, we report numerical results in order to establish the actual computational burden of the proposed algorithm and to assess its performances with respect to classical approaches for solving MOTP. 展开更多
关键词 TRANSPORTATION problem genetic algorithms Local Search Cluster algorithm
下载PDF
A Time-Dependent Vehicle Routing Problem with Time Windows for E-Commerce Supplier Site Pickups Using Genetic Algorithm 被引量:3
19
作者 Suresh Nanda Kumar Ramasamy Panneerselvam 《Intelligent Information Management》 2015年第4期181-194,共14页
The VRP is classified as an NP-hard problem. Hence exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. To ge... The VRP is classified as an NP-hard problem. Hence exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. To get solutions in determining routes which are realistic and very close to the actual solution, we use heuristics and metaheuristics which are of the combinatorial optimization type. A literature review of VRPTW, TDVRP, and a metaheuristic such as the genetic algorithm was conducted. In this paper, the implementation of the VRPTW and its extension, the time-dependent VRPTW (TDVRPTW) has been carried out using the model as well as metaheuristics such as the genetic algorithm (GA). The algorithms were implemented, using Matlab and HeuristicLab optimization software. A plugin was developed using Visual C# and DOT NET framework 4.5. Results were tested using Solomon’s 56 benchmark instances classified into groups such as C1, C2, R1, R2, RC1, RC2, with 100 customer nodes, 25 vehicles and each vehicle capacity of 200. The results were comparable to the earlier algorithms developed and in some cases the current algorithm yielded better results in terms of total distance travelled and the average number of vehicles used. 展开更多
关键词 Vehicle Routing problem EXACT Methods HEURISTICS Metaheuristics VRPTW TDVRPTW Optimization genetic algorithms Matlab HeuristicLab C# DOT NET
下载PDF
A Personified Annealing Algorithm for Circles Packing Problem 被引量:5
20
作者 ZHANGDe-Fu LIXin 《自动化学报》 EI CSCD 北大核心 2005年第4期590-595,共6页
Circles packing problem is an NP-hard problem and is di?cult to solve. In this paper, ahybrid search strategy for circles packing problem is discussed. A way of generating new configurationis presented by simulating t... Circles packing problem is an NP-hard problem and is di?cult to solve. In this paper, ahybrid search strategy for circles packing problem is discussed. A way of generating new configurationis presented by simulating the moving of elastic objects, which can avoid the blindness of simulatedannealing search and make iteration process converge fast. Inspired by the life experiences of people,an e?ective personified strategy to jump out of local minima is given. Based on the simulatedannealing idea and personification strategy, an e?ective personified annealing algorithm for circlespacking problem is developed. Numerical experiments on benchmark problem instances show thatthe proposed algorithm outperforms the best algorithm in the literature. 展开更多
关键词 包装问题 模拟技术 退火算法 弹性物体
下载PDF
上一页 1 2 136 下一页 到第
使用帮助 返回顶部