Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and t...Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and temperature and pore water salinity.With these assumptions,the BSR depth can be used to estimate the geothermal gradient(GTG)based on the availability of in-situ temperature measurements.This calculation is done assuming a 1D conductive model based on available in-situ temperature measurement at site NGHP-01-17 in the study area.However,in the presence of seafloor topography,the conductive temperature field in the subsurface is affected by lateral refraction of heat,which focuses heat in topographic lows and away from topographic highs.The 1D estimate of GTG in the Andaman Forearc Basin has been validated by drilling results from the NGHP-01 expedition.2D analytic modeling to estimate the effects of topography is performed earlier along selected seismic profiles in the study area.The study extended to estimate the effect of topography in 3D using a numerical model.The corrected GTG data allow us to determine GTG values free of topographic effect.The difference between the estimated GTG and values corrected for the 3D topographic effect varies up to~5℃/km.These conclude that the topographic correction is relatively small compared to other uncertainties in the 1D model and that apparent GTG determined with the 1D model captures the major features,although the correction is needed prior to interpreting subtle features of the derived GTG maps.展开更多
In the last few decades, addressing the global challenge of implementation of strategies for renewable energy and energy efficiency has become crucial.Morocco, since 2009, has made a steadfast commitment to sustainabi...In the last few decades, addressing the global challenge of implementation of strategies for renewable energy and energy efficiency has become crucial.Morocco, since 2009, has made a steadfast commitment to sustainability, with a particular focus on advancing the development of renewable energy resources. A comprehensive strategy has been formulated, centering on utilizing the country's energy potential to drive progress in this vital sector. Morocco is considered a country with abundant thermal water, indicating deep reservoirs with significant hydrothermal potential. Geothermal zones were selected based on the abundance of hot springs where water temperatures were high and geothermal gradients were significant. The abundance and importance of hot springs, combined with recent volcanism and ongoing non-tectonic activity linked to alpine orogeny, strongly suggest that these regions are promising reservoirs for geothermal energy. This great potential also extends to neighboring countries. In northeast and south Morocco, the temperature of thermal water ranges from 26 to 54℃. This study serves as an inclusive review of the geothermal potentialities in Morocco.展开更多
The Xianshuihe fault(XSHF) zone, characterized by intense tectonic activity, is located at the southwest boundary of the Bayan Har block, where several major earthquakes have occurred, including the 2008 Wenchuan an...The Xianshuihe fault(XSHF) zone, characterized by intense tectonic activity, is located at the southwest boundary of the Bayan Har block, where several major earthquakes have occurred, including the 2008 Wenchuan and the 2013 Lushan earthquakes. This study analysed underground temperature sequence data for four years at seven measuring points at different depths(maximum depth: 18.9 m) in the southeastern section of the XSHF zone. High-frequency atmospheric noise was removed from the temperature sequences to obtain relatively stable temperature fields and heat fluxes near the measurement points. Our measurements show that the surrounding bedrock at(the seven stations distributed in the fault zone) had heat flux values range from-41.0 to 206 m W/m^2, with a median value of 54.3 m W/m^2. The results indicate a low heat flux in the northern section of DaofuKangting and a relatively high heat flux in the southern section of Kangting, which is consistent with the temperature distributions of the hot springs near the fault. Furthermore, our results suggest that the heat transfer in this field results primarily from stable underground heat conduction. In addition, the underground hydrothermal activity is also an obvious factor controlling the geothermal gradient.展开更多
The pressure gradient of the lithosphere is a key to explaining various geological processes, and varies also in time and space similar to the geothermal gradient. In this paper a correlation formula of geothermal gra...The pressure gradient of the lithosphere is a key to explaining various geological processes, and varies also in time and space similar to the geothermal gradient. In this paper a correlation formula of geothermal gradients and pressure gradients was built with the thermocomprestion coefficients. Based on this formula, the article has studied the relation between the pressure gradients and the geothermal gradients in the lithosphere, and the results indicate that the pressure gradient in the lithosphere is nonlinear, and its minimum value is the lithostatic gradient, and that the pressure gradient of the lithosphere will increase obviously with the contribution of both geothermal and gravity, and could be twice times more than the lithostatic gradient.展开更多
Analysis of high resolution of aeromagnetic data was carried out over Lamurde, Adamawa state north-eastern Nigeria to determine the Curie point depth (CPD), heat flow and geothermal gradient. The aeromagnetic data use...Analysis of high resolution of aeromagnetic data was carried out over Lamurde, Adamawa state north-eastern Nigeria to determine the Curie point depth (CPD), heat flow and geothermal gradient. The aeromagnetic data used for this work was obtained at Nigerian geological survey agency, the total magnetic intensity was processed to produce the residual magnetic map which was divided into 4 overlapping blocks, each block was subjected to spectral analyses to obtain depths to the top boundary and centroid, while depth to bottom of the magnetic sources was calculated using empirical formula. The depths values obtained were then used to assess the CPD, heat flow and geothermal gradient in the area. The result shows that the CPD varies between 9.62 and 10.92 km with an average of 10.45 k, the heat flow varies between 150.73 and 132.78 mWm−20⋅°C−1 with an average of 139.12 mWm−20⋅°C−1 and the geothermal gradient in the study area varies between 12.16 and 15.67 °C/km with an average of 13.39 °C/km. In view of the above results, the high heat flow may be responsible for maturation of hydrocarbon in Benue Trough as well as responsible for the lead Zinc Mineralization. Again by implication, Lamurde area can be a good area for geothermal reservoir exploration for an alternative source for power generation.展开更多
Information on geothermal gradient and heat flow within the subsurface is critical in the quest for geothermal energy exploration. In a bid to ascertain the thermal potential of Nigeria sector of the Chad Basin for en...Information on geothermal gradient and heat flow within the subsurface is critical in the quest for geothermal energy exploration. In a bid to ascertain the thermal potential of Nigeria sector of the Chad Basin for energy generation, subsurface temperature information from 19 oil wells, 24 water boreholes drilled to depths beyond 100 metres and atmospheric temperature from the Chad basin were utilized in calculating geothermal gradient of the area. Selected ditch cuttings from the wells were subjected to thermal conductivity test using Thermal Conductivity Scanner (TCS) at the Polish Geological Institute Laboratory in Warsaw. The terrestrial heat flow was calculated according to the Fourier’s law as a simple product of the geothermal gradient and the mean thermal conductivity. Results obtained indicated geothermal gradient range of 2.81<sup> °</sup>C/100 m to 5.88<sup> °</sup>C/100 m with an average of 3.71<sup> °</sup>C/100 m. The thermal conductivity values from the different representative samples range from 0.58 W/m*K to 4.207 W/m*K with an average of 1.626 W/m*K. The work presented a heat flow value ranging from 45 mW/m<sup>2</sup> to about 90 mW/m<sup>2</sup> in the Nigerian sector of the Chad Basin.展开更多
Owing to the lack o f terrestrial heat flow data, studying lithospheric thermal structure and geodynamics of the Yingen-Ejinaqi Basin in Inner Mongolia is limited. In this paper, the terrestrial heat flow o f the Chag...Owing to the lack o f terrestrial heat flow data, studying lithospheric thermal structure and geodynamics of the Yingen-Ejinaqi Basin in Inner Mongolia is limited. In this paper, the terrestrial heat flow o f the Chagan sag in the YingenEjinaqi Basin were calculated by 193 system steady-state temperature measurements of 4 wells, and newly measuring 62 rock thermal conductivity and 20 heat production rate data on basis o f the original 107 rock thermal conductivity and 70 heat production data. The results show that the average thermal conductivity and heat production rate are 2.11 ±0.28 W/(m.K) and2.42±0.25 nW/m^3 in the Lower Cretaceous o f the Chagan sag. The average geothermal gradient from the Lower Suhongtu 2 Formation to the Suhongtu 1 Fonnation is 37.6 °C/km, and that o f the Bayingebi 2 Formation is 27.4 °C/km. Meanwhile, the average terrestrial heat flow in the Chagan sag is 70.6 mW/m^2. On the above results, it is clear that there is an obvious negative correlation between the thermal conductivity o f the stratum and its geothermal gradient. Moreover, it reveals that there is a geothermal state between tectonically stable and active areas. This work may provide geothermal parameters for further research o f lithospheric thermal structure and geodynamics in the Chagan sag.展开更多
Geothermal energy is considered as one of the new-green-free renewable energy resources that Jordan is blessed with. Geothermal energy installation in Jordan will have a positive impact on the economy, it will reduce ...Geothermal energy is considered as one of the new-green-free renewable energy resources that Jordan is blessed with. Geothermal energy installation in Jordan will have a positive impact on the economy, it will reduce the national energy bill. Shallow geothermal systems are likely to be promising for future utilization in the country. Therefore, further evaluations of geothermal energy resources are highly recommended. Distributed efforts have been done to evaluate the potential of geothermal resources utilization in Jordan. A comprehensive geothermal resources assessment has not yet been conducted in the country. The present work evaluates the potential of four geothermal fields in Jordan. Geothermal gradient map shows that Jordan has two high geothermal gradient fields with higher than 4.5°C/100m and other two moderate geothermal gradient fields with a range of 3.5 - 4.5°C/100m. It has been found that the water temperature in some fields reaches about 68.5°C. Five possible heat source hypotheses were discussed. Geothermal potential in Jordan is expected to evolve as a result of NS trending Dead Sea Rift activities. With the presence of faults parallel with geothermal gradient anomalies in each evaluated field, this hypothesis becomes the most effective to explain the heat source. It is of utmost importance to consider the geothermal energy potential for future utilization in Jordan. An integrated geothermal potential map will be very helpful for energy policies and future strategies planning in the country.展开更多
Forward modelling of gravity and magnetic data was done simultaneously to show the correlation between gravity and magnetic anomalies on a measured heat flux region. The results were used to characterize the heat sour...Forward modelling of gravity and magnetic data was done simultaneously to show the correlation between gravity and magnetic anomalies on a measured heat flux region. The results were used to characterize the heat source structures in Eburru area. Modelling was done using Oasis montaj geosoft software which is an iteration process where the gravity and magnetic anomalies were calculated and compared to the observed residual anomaly until there was a fit. The start model was constructed based on depths from Euler deconvolution and models constrained using stratigraphy data from the existing wells in the study area. <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Forward modelling of gravity and magnetic data revealed intrusions within the Earth’s subsurface with depth to the top of the sources ranging from </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">739 m</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> to </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">5811 m</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. The density of the sources ranges between </span></span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;">3.0 g/cm</span><sup><span style="font-family:Verdana;">3</span></sup></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> and </span></span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;">3.2 g/cm</span><sup><span style="font-family:Verdana;">3</span></sup></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> while their magnetic susceptibility was zero. This implies that intrusions from the mantle with a magnetic susceptibility of zero have temperatures exceeding the curie temperature of rocks. The density of the intrusions modelled was higher than 2.67 </span></span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;">g/cm</span><sup><span style="font-family:Verdana;">3</span></sup></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, the average crustal density, hence it explains the observed positive gravity anomaly. </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The results also revealed that areas with high heat flux have shallow heat sources and if the heat sources are deep, then there must be a good heat transfer mechanism to the surface.</span></span></span></span>展开更多
The aim of this study is to estimate the variations in curie point depth, geothermal gradient and heat flux from the frequency analysis of magnetic data in order to evaluate the geothermal potential of the Kaladi loca...The aim of this study is to estimate the variations in curie point depth, geothermal gradient and heat flux from the frequency analysis of magnetic data in order to evaluate the geothermal potential of the Kaladi locality and its surroundings. For this purpose, the magnetic field map was first reduced to equator (RTE). The centroid method was used to divide the RTE grid into a set of 40 blocks. The spectral analysis applied to each block allowed determining the depth to top (Z<sub>t</sub>), center (Z<sub>0</sub>) and bottom (Z<sub>b</sub><sub> </sub>also called curie point depth or CPD) of the magnetic sources. Knowing the different CPD, the geothermal gradient associated with each block was calculated. The heat flow was then calculated from the geothermal gradient associated with the anomaly block considered. From the set of values obtained for each block, maps of geothermal gradient and heat flow variations were established. Analysis of these maps shows that the sectors that could be favourable for geothermal exploration are the north of Kaladi and the Goro-Bembara corridor, because they show variations in the geothermal gradient and heat flow between 0.4 and 0.8℃/m and between 1.2 and 2 mW/m<sup>2</sup> respectively. In addition, the superposition of the different hot springs highlighted in previous studies with areas of high geothermal gradient and heat flow values supports this analysis. The proposed models can be used as background documents for any geothermal exploration project in the study area.展开更多
Extracting geothermal energy from the oil-producing fields is an experimental venture globally.The exploitation and utilization of geothermal energy can partly reduce the larger dependence on conventional non-renewabl...Extracting geothermal energy from the oil-producing fields is an experimental venture globally.The exploitation and utilization of geothermal energy can partly reduce the larger dependence on conventional non-renewable energy sources like oil,gas,coal,and other fossil fuels,and has a bright prospect.The Upper Assam Basin is a mature petroliferous basin of NE India,where there are several hundred low production,high water cut,or abandoned oil and gas wells that can be retrofitted as geothermal wells instead of drilling new ones.This will help bridge the gap of growing energy demand and limited supply in energy-deficient state like Assam.Situated away from the active plate boundaries and in lack of active volcanism,the Upper Assam Basin remains a low-to-medium enthalpy geothermal fluid regime.The deeper reservoir in this regard can,therefore,be the best candidate for the introspection of the potential geothermal energy reservoir reconnaissance.The selection of a deeper horizon considered in the present case has been the stratified reservoirs of the Lakadong-Therria(Lk-Th)Formation,Sylhet Group of the Lower Eocene age occurring at a variable depth of 3400 me 4600 m.The Lk-Th Formation possesses a fair-quality reservoir with lateral continuity and favourable petrophysical properties.In this study,representative gamma-ray(GR)and resistivity(R)logs were examined to work out lithology,and bed boundary demarcation,etc.The total Formation thickness varies from 97 to 157 m;the individual sand body thickness is up to 6 m.Other reservoir parameters,e.g.,porosity(φ=8-33%),water saturation(S_(w)=4.57-95.15%),geothermal gradient(2.71℃/100m to 3.92 C/100 m at 4300 m and 3608 m)respectively,and theoretical estimate of high heat flux in the range 70e100 mW/m^(2)/s,are the necessary yard-stick to measure the subsurface geothermal reserves.Efficient energy extraction will have the potential in facilitating energy utilization for industrial purposes,especially in tea processing units present nearby oilfields and also for power generation by the binary mechanism.展开更多
With the depletion of coal resources due to excessive exploitation and the increasing adjustment of the national energy structure, in response to the call of national policy, some mines are forced to close, and the re...With the depletion of coal resources due to excessive exploitation and the increasing adjustment of the national energy structure, in response to the call of national policy, some mines are forced to close, and the reuse of abandoned mine resources plays an important role in the sustainable development of mining industry. This paper analyzes the general situation of abandoned mines in Huainan and Huaibei, elaborates the research methods of geothermal temperature and calculation methods of geothermal reserves in abandoned mines, analyzes and studies the utilization prospect of geothermal resources in abandoned mines in Huainan and Huaibei, and draws the following conclusions: the temperature of geothermal resources in abandoned mines in Huainan and Huaibei is 25℃- 60℃, which belongs to the moderate-hot water and warm water resources in low-temperature geothermal resources, and can be used for geothermal heating, industrial geothermal and entertainment industries. Based on the previous experience in geothermal resource utilization mode, this paper provides theoretical and technical support for the demonstration project of resource utilization and development of abandoned mines in the Huainan and Huaibei mining areas.展开更多
井内连续变化的地层温度会对智能完井系统液压控制管线内流体流动造成较大的影响.为了解决现有的连续方程、运动方程不能精确求解变温环境下液压管线内流体流动特性的问题,根据能量方程的定义,分析流体微元以及所采用的32号液压油特性,...井内连续变化的地层温度会对智能完井系统液压控制管线内流体流动造成较大的影响.为了解决现有的连续方程、运动方程不能精确求解变温环境下液压管线内流体流动特性的问题,根据能量方程的定义,分析流体微元以及所采用的32号液压油特性,推导出一个特定形式的能量方程,再联立现有的连续方程、运动方程,得到一个新方程组,并利用特征线法(method of characteristics,MOC)结合MATLAB软件对新方程组进行计算求解.若干恒温条件与2种连续变温条件下的仿真结果显示,新方程组均比旧方程组求解精度高,验证了所推导的能量方程的合理性与准确性,证明其能用于恒温与变温环境下液压管线内流体流动问题的计算求解,进而推广至智能完井系统液压控制管线等问题的计算求解,对智能完井井下流量控制阀开启状态进行判断.研究结果可为智能完井系统液压控制等研究提供参考.展开更多
文摘Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and temperature and pore water salinity.With these assumptions,the BSR depth can be used to estimate the geothermal gradient(GTG)based on the availability of in-situ temperature measurements.This calculation is done assuming a 1D conductive model based on available in-situ temperature measurement at site NGHP-01-17 in the study area.However,in the presence of seafloor topography,the conductive temperature field in the subsurface is affected by lateral refraction of heat,which focuses heat in topographic lows and away from topographic highs.The 1D estimate of GTG in the Andaman Forearc Basin has been validated by drilling results from the NGHP-01 expedition.2D analytic modeling to estimate the effects of topography is performed earlier along selected seismic profiles in the study area.The study extended to estimate the effect of topography in 3D using a numerical model.The corrected GTG data allow us to determine GTG values free of topographic effect.The difference between the estimated GTG and values corrected for the 3D topographic effect varies up to~5℃/km.These conclude that the topographic correction is relatively small compared to other uncertainties in the 1D model and that apparent GTG determined with the 1D model captures the major features,although the correction is needed prior to interpreting subtle features of the derived GTG maps.
文摘In the last few decades, addressing the global challenge of implementation of strategies for renewable energy and energy efficiency has become crucial.Morocco, since 2009, has made a steadfast commitment to sustainability, with a particular focus on advancing the development of renewable energy resources. A comprehensive strategy has been formulated, centering on utilizing the country's energy potential to drive progress in this vital sector. Morocco is considered a country with abundant thermal water, indicating deep reservoirs with significant hydrothermal potential. Geothermal zones were selected based on the abundance of hot springs where water temperatures were high and geothermal gradients were significant. The abundance and importance of hot springs, combined with recent volcanism and ongoing non-tectonic activity linked to alpine orogeny, strongly suggest that these regions are promising reservoirs for geothermal energy. This great potential also extends to neighboring countries. In northeast and south Morocco, the temperature of thermal water ranges from 26 to 54℃. This study serves as an inclusive review of the geothermal potentialities in Morocco.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No.4147408641174084)+2 种基金the CAS/CAFEA international partnership program for creative research teams (KZZD-EW-TZ-19)funded by the Special Fund for Seismic Scientific Research (200808011,2004DIB3J1290)the State Key Laboratory of Earthquake Dynamics,Institute of Geology (LED2009A07)
文摘The Xianshuihe fault(XSHF) zone, characterized by intense tectonic activity, is located at the southwest boundary of the Bayan Har block, where several major earthquakes have occurred, including the 2008 Wenchuan and the 2013 Lushan earthquakes. This study analysed underground temperature sequence data for four years at seven measuring points at different depths(maximum depth: 18.9 m) in the southeastern section of the XSHF zone. High-frequency atmospheric noise was removed from the temperature sequences to obtain relatively stable temperature fields and heat fluxes near the measurement points. Our measurements show that the surrounding bedrock at(the seven stations distributed in the fault zone) had heat flux values range from-41.0 to 206 m W/m^2, with a median value of 54.3 m W/m^2. The results indicate a low heat flux in the northern section of DaofuKangting and a relatively high heat flux in the southern section of Kangting, which is consistent with the temperature distributions of the hot springs near the fault. Furthermore, our results suggest that the heat transfer in this field results primarily from stable underground heat conduction. In addition, the underground hydrothermal activity is also an obvious factor controlling the geothermal gradient.
基金the Scientific Project of Ministry of Land and Resource of Chinathe National Natural Science Foundation of Chinathe Doctoral Station Foundation of Ministry of Education of China
文摘The pressure gradient of the lithosphere is a key to explaining various geological processes, and varies also in time and space similar to the geothermal gradient. In this paper a correlation formula of geothermal gradients and pressure gradients was built with the thermocomprestion coefficients. Based on this formula, the article has studied the relation between the pressure gradients and the geothermal gradients in the lithosphere, and the results indicate that the pressure gradient in the lithosphere is nonlinear, and its minimum value is the lithostatic gradient, and that the pressure gradient of the lithosphere will increase obviously with the contribution of both geothermal and gravity, and could be twice times more than the lithostatic gradient.
文摘Analysis of high resolution of aeromagnetic data was carried out over Lamurde, Adamawa state north-eastern Nigeria to determine the Curie point depth (CPD), heat flow and geothermal gradient. The aeromagnetic data used for this work was obtained at Nigerian geological survey agency, the total magnetic intensity was processed to produce the residual magnetic map which was divided into 4 overlapping blocks, each block was subjected to spectral analyses to obtain depths to the top boundary and centroid, while depth to bottom of the magnetic sources was calculated using empirical formula. The depths values obtained were then used to assess the CPD, heat flow and geothermal gradient in the area. The result shows that the CPD varies between 9.62 and 10.92 km with an average of 10.45 k, the heat flow varies between 150.73 and 132.78 mWm−20⋅°C−1 with an average of 139.12 mWm−20⋅°C−1 and the geothermal gradient in the study area varies between 12.16 and 15.67 °C/km with an average of 13.39 °C/km. In view of the above results, the high heat flow may be responsible for maturation of hydrocarbon in Benue Trough as well as responsible for the lead Zinc Mineralization. Again by implication, Lamurde area can be a good area for geothermal reservoir exploration for an alternative source for power generation.
文摘Information on geothermal gradient and heat flow within the subsurface is critical in the quest for geothermal energy exploration. In a bid to ascertain the thermal potential of Nigeria sector of the Chad Basin for energy generation, subsurface temperature information from 19 oil wells, 24 water boreholes drilled to depths beyond 100 metres and atmospheric temperature from the Chad basin were utilized in calculating geothermal gradient of the area. Selected ditch cuttings from the wells were subjected to thermal conductivity test using Thermal Conductivity Scanner (TCS) at the Polish Geological Institute Laboratory in Warsaw. The terrestrial heat flow was calculated according to the Fourier’s law as a simple product of the geothermal gradient and the mean thermal conductivity. Results obtained indicated geothermal gradient range of 2.81<sup> °</sup>C/100 m to 5.88<sup> °</sup>C/100 m with an average of 3.71<sup> °</sup>C/100 m. The thermal conductivity values from the different representative samples range from 0.58 W/m*K to 4.207 W/m*K with an average of 1.626 W/m*K. The work presented a heat flow value ranging from 45 mW/m<sup>2</sup> to about 90 mW/m<sup>2</sup> in the Nigerian sector of the Chad Basin.
基金funded by the National Natural Science Foundation of China (grant no. 41374089, 41402219)the Foundation of the Geoscience Young Science Foundation of Liu Baojun (Grant No. DMSM2017003)+1 种基金the Sichuan Science & Technology Foundation (Grant No. 2016JQ0043)the State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing (Grant No. PRP/open-1705)
文摘Owing to the lack o f terrestrial heat flow data, studying lithospheric thermal structure and geodynamics of the Yingen-Ejinaqi Basin in Inner Mongolia is limited. In this paper, the terrestrial heat flow o f the Chagan sag in the YingenEjinaqi Basin were calculated by 193 system steady-state temperature measurements of 4 wells, and newly measuring 62 rock thermal conductivity and 20 heat production rate data on basis o f the original 107 rock thermal conductivity and 70 heat production data. The results show that the average thermal conductivity and heat production rate are 2.11 ±0.28 W/(m.K) and2.42±0.25 nW/m^3 in the Lower Cretaceous o f the Chagan sag. The average geothermal gradient from the Lower Suhongtu 2 Formation to the Suhongtu 1 Fonnation is 37.6 °C/km, and that o f the Bayingebi 2 Formation is 27.4 °C/km. Meanwhile, the average terrestrial heat flow in the Chagan sag is 70.6 mW/m^2. On the above results, it is clear that there is an obvious negative correlation between the thermal conductivity o f the stratum and its geothermal gradient. Moreover, it reveals that there is a geothermal state between tectonically stable and active areas. This work may provide geothermal parameters for further research o f lithospheric thermal structure and geodynamics in the Chagan sag.
文摘Geothermal energy is considered as one of the new-green-free renewable energy resources that Jordan is blessed with. Geothermal energy installation in Jordan will have a positive impact on the economy, it will reduce the national energy bill. Shallow geothermal systems are likely to be promising for future utilization in the country. Therefore, further evaluations of geothermal energy resources are highly recommended. Distributed efforts have been done to evaluate the potential of geothermal resources utilization in Jordan. A comprehensive geothermal resources assessment has not yet been conducted in the country. The present work evaluates the potential of four geothermal fields in Jordan. Geothermal gradient map shows that Jordan has two high geothermal gradient fields with higher than 4.5°C/100m and other two moderate geothermal gradient fields with a range of 3.5 - 4.5°C/100m. It has been found that the water temperature in some fields reaches about 68.5°C. Five possible heat source hypotheses were discussed. Geothermal potential in Jordan is expected to evolve as a result of NS trending Dead Sea Rift activities. With the presence of faults parallel with geothermal gradient anomalies in each evaluated field, this hypothesis becomes the most effective to explain the heat source. It is of utmost importance to consider the geothermal energy potential for future utilization in Jordan. An integrated geothermal potential map will be very helpful for energy policies and future strategies planning in the country.
文摘Forward modelling of gravity and magnetic data was done simultaneously to show the correlation between gravity and magnetic anomalies on a measured heat flux region. The results were used to characterize the heat source structures in Eburru area. Modelling was done using Oasis montaj geosoft software which is an iteration process where the gravity and magnetic anomalies were calculated and compared to the observed residual anomaly until there was a fit. The start model was constructed based on depths from Euler deconvolution and models constrained using stratigraphy data from the existing wells in the study area. <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Forward modelling of gravity and magnetic data revealed intrusions within the Earth’s subsurface with depth to the top of the sources ranging from </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">739 m</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> to </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">5811 m</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. The density of the sources ranges between </span></span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;">3.0 g/cm</span><sup><span style="font-family:Verdana;">3</span></sup></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> and </span></span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;">3.2 g/cm</span><sup><span style="font-family:Verdana;">3</span></sup></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> while their magnetic susceptibility was zero. This implies that intrusions from the mantle with a magnetic susceptibility of zero have temperatures exceeding the curie temperature of rocks. The density of the intrusions modelled was higher than 2.67 </span></span></span></span><span><span><span><span style="font-family:""><span style="font-family:Verdana;">g/cm</span><sup><span style="font-family:Verdana;">3</span></sup></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, the average crustal density, hence it explains the observed positive gravity anomaly. </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The results also revealed that areas with high heat flux have shallow heat sources and if the heat sources are deep, then there must be a good heat transfer mechanism to the surface.</span></span></span></span>
文摘The aim of this study is to estimate the variations in curie point depth, geothermal gradient and heat flux from the frequency analysis of magnetic data in order to evaluate the geothermal potential of the Kaladi locality and its surroundings. For this purpose, the magnetic field map was first reduced to equator (RTE). The centroid method was used to divide the RTE grid into a set of 40 blocks. The spectral analysis applied to each block allowed determining the depth to top (Z<sub>t</sub>), center (Z<sub>0</sub>) and bottom (Z<sub>b</sub><sub> </sub>also called curie point depth or CPD) of the magnetic sources. Knowing the different CPD, the geothermal gradient associated with each block was calculated. The heat flow was then calculated from the geothermal gradient associated with the anomaly block considered. From the set of values obtained for each block, maps of geothermal gradient and heat flow variations were established. Analysis of these maps shows that the sectors that could be favourable for geothermal exploration are the north of Kaladi and the Goro-Bembara corridor, because they show variations in the geothermal gradient and heat flow between 0.4 and 0.8℃/m and between 1.2 and 2 mW/m<sup>2</sup> respectively. In addition, the superposition of the different hot springs highlighted in previous studies with areas of high geothermal gradient and heat flow values supports this analysis. The proposed models can be used as background documents for any geothermal exploration project in the study area.
文摘Extracting geothermal energy from the oil-producing fields is an experimental venture globally.The exploitation and utilization of geothermal energy can partly reduce the larger dependence on conventional non-renewable energy sources like oil,gas,coal,and other fossil fuels,and has a bright prospect.The Upper Assam Basin is a mature petroliferous basin of NE India,where there are several hundred low production,high water cut,or abandoned oil and gas wells that can be retrofitted as geothermal wells instead of drilling new ones.This will help bridge the gap of growing energy demand and limited supply in energy-deficient state like Assam.Situated away from the active plate boundaries and in lack of active volcanism,the Upper Assam Basin remains a low-to-medium enthalpy geothermal fluid regime.The deeper reservoir in this regard can,therefore,be the best candidate for the introspection of the potential geothermal energy reservoir reconnaissance.The selection of a deeper horizon considered in the present case has been the stratified reservoirs of the Lakadong-Therria(Lk-Th)Formation,Sylhet Group of the Lower Eocene age occurring at a variable depth of 3400 me 4600 m.The Lk-Th Formation possesses a fair-quality reservoir with lateral continuity and favourable petrophysical properties.In this study,representative gamma-ray(GR)and resistivity(R)logs were examined to work out lithology,and bed boundary demarcation,etc.The total Formation thickness varies from 97 to 157 m;the individual sand body thickness is up to 6 m.Other reservoir parameters,e.g.,porosity(φ=8-33%),water saturation(S_(w)=4.57-95.15%),geothermal gradient(2.71℃/100m to 3.92 C/100 m at 4300 m and 3608 m)respectively,and theoretical estimate of high heat flux in the range 70e100 mW/m^(2)/s,are the necessary yard-stick to measure the subsurface geothermal reserves.Efficient energy extraction will have the potential in facilitating energy utilization for industrial purposes,especially in tea processing units present nearby oilfields and also for power generation by the binary mechanism.
文摘With the depletion of coal resources due to excessive exploitation and the increasing adjustment of the national energy structure, in response to the call of national policy, some mines are forced to close, and the reuse of abandoned mine resources plays an important role in the sustainable development of mining industry. This paper analyzes the general situation of abandoned mines in Huainan and Huaibei, elaborates the research methods of geothermal temperature and calculation methods of geothermal reserves in abandoned mines, analyzes and studies the utilization prospect of geothermal resources in abandoned mines in Huainan and Huaibei, and draws the following conclusions: the temperature of geothermal resources in abandoned mines in Huainan and Huaibei is 25℃- 60℃, which belongs to the moderate-hot water and warm water resources in low-temperature geothermal resources, and can be used for geothermal heating, industrial geothermal and entertainment industries. Based on the previous experience in geothermal resource utilization mode, this paper provides theoretical and technical support for the demonstration project of resource utilization and development of abandoned mines in the Huainan and Huaibei mining areas.
文摘井内连续变化的地层温度会对智能完井系统液压控制管线内流体流动造成较大的影响.为了解决现有的连续方程、运动方程不能精确求解变温环境下液压管线内流体流动特性的问题,根据能量方程的定义,分析流体微元以及所采用的32号液压油特性,推导出一个特定形式的能量方程,再联立现有的连续方程、运动方程,得到一个新方程组,并利用特征线法(method of characteristics,MOC)结合MATLAB软件对新方程组进行计算求解.若干恒温条件与2种连续变温条件下的仿真结果显示,新方程组均比旧方程组求解精度高,验证了所推导的能量方程的合理性与准确性,证明其能用于恒温与变温环境下液压管线内流体流动问题的计算求解,进而推广至智能完井系统液压控制管线等问题的计算求解,对智能完井井下流量控制阀开启状态进行判断.研究结果可为智能完井系统液压控制等研究提供参考.