This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 yea...This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 years,significant glacier retreats,driven by rising temperatures and changing precipitation patterns,have led to the formation and expansion of several proglacial lakes.Fieldwork combined with satellite data and meteorological analysis was used to assess the dynamics of glacier and lake area changes,with particular focus on the flood events of July 2021.The research reveals a substantial reduction in glacier area,particularly in the Khukhnuruu E complex,where glacier area decreased by 19.3%.The study highlights the influence of increasing temperatures and summer precipitation,which have accelerated ice melt,contributing to the expansion and eventual breaching of lakes.Additionally,lake area changes were influenced by the steepness of the terrain,with steeper slopes exacerbating peak discharge during floods.Of the studied seven lakes(Lake 1 to Lake 7),Lake 1 experienced the most dramatic reduction,with a decrease in area by 73.51%and volume by 84.84%,followed by Lake 7.This study underscores the region's vulnerability to climate-induced hazards and stresses the need for a comprehensive early warning system and disaster preparedness measures to mitigate future risks.展开更多
Glacial lakes,intimately linked to glacier termini,are crucial landscape features of the Qinghai-Xizang Plateau(QXP,Qinghai-Tibet Plateau)and the Arctic.Climate warming has accelerated glacier retreat and the rapid ex...Glacial lakes,intimately linked to glacier termini,are crucial landscape features of the Qinghai-Xizang Plateau(QXP,Qinghai-Tibet Plateau)and the Arctic.Climate warming has accelerated glacier retreat and the rapid expansion of glacial lakes in both regions.Despite being typically considered harsh environments,these lakes serve as vital reservoirs for microbial biodiversity and carbon metabolism.In the face of climate change,glacial lake ecosystems over the QXP and the Arctic are undergoing unprecedentedtransformations.Thisopinioneditorial highlights the significance of conducting research and establishing long-term monitoring programs focused on microbial carbon metabolism in these glacial lakes.展开更多
One of the prominent impacts of climate change induced glacier retreat in the Himalayas is the formation and expansion of glacial lakes. The newly formed glacial lakes are mostly located in higher altitudinal regions(...One of the prominent impacts of climate change induced glacier retreat in the Himalayas is the formation and expansion of glacial lakes. The newly formed glacial lakes are mostly located in higher altitudinal regions(4200-5800 m) of Himalaya,however, a new glacial lake(Kapuche, 28.446° N and 84.116° E) have been reported to be emerged in the relatively low elevation area of ~2450 m above sea level(masl) in the Nepal Himalaya. This short communication presents the remote sensing-based evolution and field-based bathymetry of Kapuche lake, and further discusses its formation process and lake type for being a glacial lake at the lowest elevation in Nepal Himalaya.展开更多
Glacial lake mapping provides the most feasible way for investigating the water resources and monitoring the flood outburst hazards in High Mountain Region.However,various types of glacial lakes with different propert...Glacial lake mapping provides the most feasible way for investigating the water resources and monitoring the flood outburst hazards in High Mountain Region.However,various types of glacial lakes with different properties bring a constraint to the rapid and accurate glacial lake mapping over a large scale.Existing spectral features to map glacial lakes are diverse but some are generally limited to the specific glaciated regions or lake types,some have unclear applicability,which hamper their application for the large areas.To this end,this study provides a solution for evaluating the most effective spectral features in glacial lake mapping using Landsat-8 imagery.The 23 frequently-used lake mapping spectral features,including single band reflectance features,Water Index features and image transformation features were selected,then the insignificant features were filtered out based on scoring calculated from two classical feature selection methods-random forest and decision tree algorithm.The result shows that the three most prominent spectral features(SF)with high scores are NDWI1,EWI,and NDWI3(renamed as SF8,SF19 and SF12 respectively).Accuracy assessment of glacial lake mapping results in five different test sites demonstrate that the selected features performed well and robustly in classifying different types of glacial lakes without any influence from the mountain shadows.SF8 and SF19 are superior for the detection of large amount of small glacial lakes,while some lake areas extracted by SF12 are incomplete.Moreover,SF8 achieved better accuracy than the other two features in terms of both Kappa Coefficient(0.8812)and Prediction(0.9025),which further indicates that SF8 has great potential for large scale glacial lake mapping in high mountainous area.展开更多
The detection of glacial lake change in the Himalayas, Nepal is extremely significant since the glacial lake change is one of the crucial indicators of global climate change in this area, where is the most sensitive a...The detection of glacial lake change in the Himalayas, Nepal is extremely significant since the glacial lake change is one of the crucial indicators of global climate change in this area, where is the most sensitive area of the global climate changes. In the Hima- layas, some of glacial lakes are covered by the dark mountains' shadow because of their location. Therefore, these lakes can not be de- tected by conventional method such as Normalized Difference Water Index (NDWI), because the reflectance feature of shadowed glacial lake is different comparing to the ones which are located in the open flat area. The shadow causes two major problems: 1) glacial lakes which are covered by shadow completely result in underestimation of the number of glacial lakes; 2) glacial lakes which are partly iden- tified are considered to undervalue the area of glacial lakes. The aim of this study is to develop a new model, named Detection of Shadowed Glacial Lakes (DSGL) model, to identify glacial lakes under the shadow environment by using Advanced Space-borne Ther- mal Emission and Reflection Radiometer (ASTER) data in the Himalayas, Nepal. The DSGL model is based on integration of two dif- ferent modifications of NDWI, namely NDWls model and NDWIshe model. NDWI~ is defined as integration of the NDWI and slope analysis and used for detecting non-shadowed lake in the mountain area. The NDWIshe is proposed as a new methodology to overcome the weakness of NDWI~ on identifying shadowed lakes in highly elevated mountainous area such as the Himalayas. The first step of the NDWIshe is to enhance the data from ASTER 1B using the histogram equalization (HE) method, and its outcome product is named AS- TERho. We used the ASTERhe for calculating the NDWIhc and the NDWIshe. Integrated with terrain analysis using Digital Elevation Model (DEM) data, the NDWIshe can be used to identify the shadowed glacial lakes in the Himalayas. NDWIs value of 0.41 is used to identify the glacier lake (NDWI~ 〉 0.41), and 0.3 of NDWIshe is used to identify the shadowed glacier lake (NDWIsho 〈 0.3). The DSGL model was proved to be able to classify the glacial lakes more accurately, while the NDWI model had tendency to underestimate the presence of actual glacial lakes. Correct classification rate regarding the products from NDWI model and DSGL model were 57% and 99%, respectively. The results of this paper demonstrated that the DSGL model is promising to detect glacial lakes in the shadowed en- vironment at high mountains.展开更多
The Himalayas are prone to glacial lake outburst floods,which can pose a severe threat to downstream villages and infrastructure.The Zhangmu and Gyirong land treaty ports are located on the China-Nepal border in the c...The Himalayas are prone to glacial lake outburst floods,which can pose a severe threat to downstream villages and infrastructure.The Zhangmu and Gyirong land treaty ports are located on the China-Nepal border in the central Himalayas.In recent years,the expansion of glacial lakes has increased the threat of these two port regions.This article describes the results of mapping the glacial lakes larger than 0.01 km^2 in the Zhangmu and Gyirong port regions and analyzes their change.It provides a comprehensive assessment of potentially dangerous glacial lakes and predicts the development of future glacial lakes.From 1988 to 2019,the glacial lakes in these port regions underwent"expansion",and moraine-dammed lakes show the most significant expansion trend.A total of eleven potentially dangerous glacial lakes are identified based on the assessment criteria and historical outburst events;most expanded by more than 150%from 1988 to 2019,with some by over 500%.The Cirenmaco,a moraine-dammed lake,is extremely prone to overtopping due to ice avalanches or the melting of dead ice in the dam.For other large lakes,such as the Jialongco,Gangxico and Galongco,ice avalanches may likely cause the lakes to burst besides self-destructive failure.The potential dangers of the Youmojianco glacial lakes,including lakes Nos.9,10 and 11,will increase in the future.In addition,the glacier-bed topography model predicts that 113 glacial lakes with a size larger than 0.01 km^2,a total area of 11.88 km2 and a total volume of 6.37×10^9 m^3 will form in the study area by the end of the 21 century.Due to global warming,the glacial lakes in the Zhangmu and Gyirong port regions will continue to grow in the short term,and hence the risk of glacial lake outburst floods will increase.展开更多
Glacial lakes in the High Mountain Asia(HMA)are sensitive to global warming and can result in much more severe flood disasters than some largesized lakes.An accurate and robust method for the extraction of glacial lak...Glacial lakes in the High Mountain Asia(HMA)are sensitive to global warming and can result in much more severe flood disasters than some largesized lakes.An accurate and robust method for the extraction of glacial lakes is critical to effective management of these natural water resources.Conventional methods often have limitations in terms of low spectral contrast and heterogeneous backgrounds in an image.This study presents a robust and automated method for the yearly mapping of glacial lake over a large scale,which took advantage of the complementarity between the modified normalized difference water index(MNDWI)and the nonlocal active contour model,required only local homogeneity in reflectance features of lake.The cloud computing approach with the Google Earth Engine(GEE)platform was used to process the intensive amount of Landsat 8 images from 2015 (344 path/rows and approximately 7504 scenes).The experimental results were validated by very high resolution images from Chinese GaoFen-1 (GF-1) panchromatic multi-spectral(PMS)and appeared a general good agreement.This is the first time that information regarding the spatial distribution of glacial lakes over the HMA has been derived automatically within quite a short period of time.By integrating it with the relevant indices,it can also be applied to detect other land cover types such as snow or vegetation with improved accuracy.展开更多
Glacier retreat is not only a symbol of temperature and precipitation change, but a dominating factor of glacial lake changes in alpine regions, which are of wide concern for high risk of potential outburst floods. Of...Glacier retreat is not only a symbol of temperature and precipitation change, but a dominating factor of glacial lake changes in alpine regions, which are of wide concern for high risk of potential outburst floods. Of all types of glacial lakes, moraine-dammed lakes may be the most dangerous to local residents in mountain regions. Thus, we monitored the dy- namics of 12 moraine-dammed glacial lakes from 1974 to 2014 in the Poiqu River Basin of central west Himalayas, as well as their associated glaciers with a combination of remote sensing, topographic maps and digital elevation models (DEMs). Our results indicate that all monitored moraine-dammed glacial lakes have expanded by 7.46 km2 in total while the glaciers retreated by a total of 15.29 km2 correspondingly. Meteorological analysis indicates a warming and drying trend in the Nyalam region from 1974 to 2014, which accelerated glacier retreat and then augmented the supply of moraine-dammed glacial lakes from glacier melt. Lake volume and water depth changed from 1974 to 2014 which indicates that lakes Kangxico, Galongco, and Youmojanco have a high potential for outburst floods and in urgent need for continuous moni- toring or artificial excavation to release water due to the quick increase in water depths and storage capacities. Lakes Jialongco and Cirenmaco, with outburst floods in 1981 and 2002, have a high potential risk for outburst floods because of rapid lake growth and steep slope gradients surrounding them.展开更多
Natural disasters inflict severe damage on almost the entire spectrum of social and natural habitats. This ranges from housing and shelter, water, food, health, sanitation to information and communication networks, su...Natural disasters inflict severe damage on almost the entire spectrum of social and natural habitats. This ranges from housing and shelter, water, food, health, sanitation to information and communication networks, supply of power and energy,transportation infrastructure, and others. Nepal is a risk prone country for Glacial Lake Outburst Flood(GLOF). GLOFs exist as major challenges as they repeatedly cause a heavy toll of life and property. During such a disaster, major challenges are indeed the protection of life, property and vital life-supporting infrastructure. Any delay or laxity in disaster relief can escalate the magnitude of distress for the victims. Thus, rather than trying to take curative measures, it is better to minimize the impacts of GLOF. These measures subsequently help in reducing the magnitude of death and casualties due to a GLOF event. This reduction of impact is often achieved by optimizing preventive measures. For applying necessary deterrent measures, it is essential to disseminate information about the danger beforehand. Early Warning System(EWS) is an important step for such information dissemination for GLOF disaster management and helps to anticipate the risk of disaster and disseminate information to lives at risk. It is impossible and impractical to reduce all GLOF risks, but it is possible to reduce several impacts of a GLOF through the implementation of the EWS. This paper presents the design and implementation of an EWS for monitoring potential outbursts of a glacier lake in the Dudh-Koshi Basin, Nepal.展开更多
Glacial outburst floods(GLOFs) in alpine regions tend to be relatively complicated, multi-stage catastrophes, capable of causing significant geomorphologic changes in channel surroundings and posing severe threats t...Glacial outburst floods(GLOFs) in alpine regions tend to be relatively complicated, multi-stage catastrophes, capable of causing significant geomorphologic changes in channel surroundings and posing severe threats to infrastructure and the safety and livelihoods of human communities. GLOF disasters have been observed and potential hazards can be foreseen due to the newly formed glacial lakes or the expansion of existing ones in the Poiqu River Basin in Tibet, China. Here we presented a synthesis of GLOF-related studies including triggering mechanism(s), dam breach modeling, and flood routing simulation that have been employed to reconstruct or forecast GLOF hydrographs. We provided a framework for probability-based GLOFs simulation and hazard mapping in the Poiqu River Basin according to available knowledge. We also discussed the uncertainties and challenges in the model chains, which may form the basis for further research.展开更多
Changes in glacial lakes and the consequences of these changes, particularly on the development of water resources and management of glacial lake outburst flood(GLOF) risk, has become one of the challenges in the sust...Changes in glacial lakes and the consequences of these changes, particularly on the development of water resources and management of glacial lake outburst flood(GLOF) risk, has become one of the challenges in the sustainable development of high mountain areas in the context of global warming. This paper presents the findings of a study on the distribution of, and area changes in, glacial lakes in the Koshi basin in the central Himalayas.Data on the number of glacial lakes and their area was generated for the years 1977, 1990, 2000, and 2010 using Landsat satellite images. According to the glacial lake inventory in 2010, there were a total of 2168 glacial lakes with a total area of 127.61 km^2 and average size of 0.06 km^2 in the Koshi basin. Of these,47% were moraine dammed lakes, 34.8% bedrock dammed lakes and 17.7% ice dammed lakes. The number of glacial lakes increased consistently over the study period from 1160 in 1977 to 2168 in 2010, an overall growth rate of 86.9%. The area of glacial lakes also increased from 94.44 km^2 in 1977 to 127.61 km^2 in 2010, a growth rate of 35.1%. A large number of glacial lakes in the inventory are small in size(≤ 0.1km^2). End moraine dammed lakes with area greater than 0.1 km^2 were selected to analyze the change characteristics of glacial lakes in the basin. The results show that, in 2010, there were 129 lakes greater than 0.1 km^2 in area; these lakes had a total area of 42.92km^2 in 1997, increasing to 63.28 km^2 in 2010. The distribution of lakes on the north side of the Himalayas(in China) was three times higher than on the south side of the Himalayas(in Nepal).Comparing the mean growth rate in area for the 33 year study period(1977-2010), the growth rate on the north side was found to be a little slower than that on the south side. A total of 42 glacial lakes with an area greater than 0.2 km^2 are rapidly growing between 1977 and 2010 in the Koshi basin, which need to be paid more attention to monitoring in the future and to identify how critical they are in terms of GLOF.展开更多
At present,the mechanism research on glacial lake outburst mainly focuses on the ice quake and ice landslide,etc. To some glacial lakes,the seepage deformation is the dominant factor in outburst process. Taking the Yi...At present,the mechanism research on glacial lake outburst mainly focuses on the ice quake and ice landslide,etc. To some glacial lakes,the seepage deformation is the dominant factor in outburst process. Taking the Yindapu Glacial Lake in Tibet as an example,using SEEP/W module of FEM software (GEO-STUDIO),the authors analyzed seepage stability of terminal moraine ridge dam. The leading role of seepage deformation in some glacial lake outburst mechanism is proposed and proved.展开更多
The relatively rapid recession of glaciers in the Himalayas and formation of moraine dammed glacial lakes(MDGLs) in the recent past have increased the risk of glacier lake outburst floods(GLOF) in the countries of Nep...The relatively rapid recession of glaciers in the Himalayas and formation of moraine dammed glacial lakes(MDGLs) in the recent past have increased the risk of glacier lake outburst floods(GLOF) in the countries of Nepal and Bhutan and in the mountainous territory of Sikkim in India. As a product of climate change and global warming, such a risk has not only raised the level of threats to the habitation and infrastructure of the region, but has also contributed to the worsening of the balance of the unique ecosystem that exists in this domain that sustains several of the highest mountain peaks of the world. This study attempts to present an up to date mapping of the MDGLs in the central and eastern Himalayan regions using remote sensing data, with an objective to analyse their surface area variations with time from 1990 through 2015, disaggregated over six episodes. The study also includes the evaluation for susceptibility of MDGLs to GLOF with the least criteria decision analysis(LCDA). Forty two major MDGLs, each having a lake surface area greater than 0.2 km2, that were identified in the Himalayan ranges of Nepal, Bhutan, and Sikkim, have been categorized according to their surface area expansion rates in space and time. The lakes have been identified as located within the elevation range of 3800 m and6800 m above mean sea level(a msl). With a total surface area of 37.9 km2, these MDGLs as a whole were observed to have expanded by an astonishing 43.6% in area over the 25 year period of this study. A factor is introduced to numerically sort the lakes in terms of their relative yearly expansion rates, based on their interpretation of their surface area extents from satellite imageries. Verification of predicted GLOF events in the past using this factor with the limited field data as reported in literature indicates that the present analysis may be considered a sufficiently reliable and rapid technique for assessing the potential bursting susceptibility of the MDGLs. The analysis also indicates that, as of now, there are eight MDGLs in the region which appear to be in highly vulnerable states and have high chances in causing potential GLOF events anytime in the recent future.展开更多
Global warming is causing glaciers to retreat and glacial lakes to expand in the Himalayas,which amplifies the risk of glacial lake outburst debris flows(GLODFs)and poses a significant threat to downstream lives and i...Global warming is causing glaciers to retreat and glacial lakes to expand in the Himalayas,which amplifies the risk of glacial lake outburst debris flows(GLODFs)and poses a significant threat to downstream lives and infrastructures.However,the complex interplay between GLODF occurrences and associated indicators,coupled with the lack of a comprehensive susceptibility indicator system that considers the entire GLODF process,presents a substantial challenge in assessing GLODF susceptibility in the Himalayas.This study proposes a process-driven GLODF susceptibility assessment indicator system responding to climate change that considers the complete process of GLODF formation,incorporating relevant parameters about upstream,themselves,and downstream of glacial lakes.Furthermore,to mitigate subjective factors associated with traditional evaluation methods,we developed three novel hybrid machine-learning models by integrating classic machine-learning algorithms with the whale optimization algorithm(WOA)to delineate the distribution of GLODF susceptibility in the Himalayas.All the hybrid models effectively predicted the GLODFs occurrence,with the WOA-SVC model demonstrating the highest prediction accuracy.Approximately 34%of the catchments exhibit high and very high susceptibility levels,primarily concentrated along the north and south sides of the Himalayan ridge,particularly in the eastern and central Himalayas.Indicators capturing the physical formation process of hazards,such as topographic potential(highest relative importance value of 40%),can precisely identify GLODF.A total of 128 catchments pose potential transboundary threats,with 24 classified as having a very high susceptibility level and 25 as having a high susceptibility level.Notably,the border region between China and Nepal is a prominent hotspot for transboundary threats of GLODF.These findings can provide valuable clues for disaster prevention,mitigation,and cross-border coordination in the Himalayas.展开更多
Glaciers and glacial lakes are very sensitive to climate change,and studying their dynamics is important for revealing changes in global climate.In this study,we extracted the boundaries of glaciers and glacial lakes ...Glaciers and glacial lakes are very sensitive to climate change,and studying their dynamics is important for revealing changes in global climate.In this study,we extracted the boundaries of glaciers and glacial lakes in the Northern Tianshan Mountains based on Landsat TM/ETM+/OLI and Sentinel 2A/2B MSI remote sensing images and analyzed their dynamics and impacts over the past 30 years.The findings indicate that in 2020,the Northern Tianshan region exhibited a total of 3254 glaciers,with an area of 1670.55 km^(2) and a volume of 95.69 km^(3).The corresponding numbers,areas,and volumes of glacial lakes were 281,13.23 km^(2) and 210.49×10~6 m^(3),respectively.Over the past 30 years,glaciers and glacial lakes have exhibited opposite characteristics.The former decreased by 16,332.64 km^(2)(-0.60%·a^(–1)) and 18.36 km^(3)(-0.58%·a^(–1)),respectively,and the latter increased by 56 and2.48 km^(2)(0.82%·a^(–1)) and 38.88×10~6 m^(3)(0.79%·a^(–1)),respectively.Moreover,different glacier termination types cause differences in the glacier retreat rates.Lake-terminated glaciers retreated faster than land-terminated glaciers,and the type of glacier termination has a greater effect on the retreat rate than the size of the glacial area.展开更多
In this article, we review the current knowledge of the glacial recession and related glacial lake development in the Andes of South America. Since the mid-1980 s, hundreds of glacial lakes either expanded or formed, ...In this article, we review the current knowledge of the glacial recession and related glacial lake development in the Andes of South America. Since the mid-1980 s, hundreds of glacial lakes either expanded or formed, and predictions show that additional hundreds of lakes will form throughout the 21 st century. However, studies on glacial lakes in the Andes are still relatively rare. Many glacial lakes pose a potential hazard to local communities, but glacial lake outburst floods(GLOFs) are understudied. We provide an overview on hazards from glacial lakes such as GLOFs and water pollution, and their monitoring approaches. In real-time monitoring, the use of unmanned aerial systems(UASs) and early warning systems(EWSs) is still extremely rare in the Andes, but increasingly authorities plan to install mitigation systems to reduce glacial lake risk and protect local communities. In support, we propose an international remote sensing-based observation initiative following the model of, for example, the Global Land Ice Measurements from Space(GLIMS) one, with the headquarters in one of the Andean nations.展开更多
Glacial lakes are not only the important refresh water resources in alpine region, but also act as a trigger of many glacial hazards such as glacial lake outburst flood (GLOF) and debris flow. Therefore, glacial lak...Glacial lakes are not only the important refresh water resources in alpine region, but also act as a trigger of many glacial hazards such as glacial lake outburst flood (GLOF) and debris flow. Therefore, glacial lakes play an important role on the cryosphere, climate change and alpine hazards. In this paper, the issues of glacial lake were systematically discussed, then from the view of glacial lake inventory and glacial lake hazards study, the glacial lake was defined as natural water mainly supplied by modern glacial meltwater or formed in glacier moraine's depression. Furthermore, a complete classification system of glacial lake was proposed based on its formation mechanism, topographic feature and geographical position. Glacial lakes were classified as 6 classes and 8 subclasses, i.e., glacial erosion lake (including cirque lake, gla- cial valley lake and other glacial erosion lake), moraine-dammed lake (including end mo- raine-dammed lake, lateral moraine-dammed lake and moraine thaw lake), ice-blocked lake (including advancing glacier-blocked lake and other glacier-blocked lake), supraglacial lake, subglacial lake and other glacial lake. Meanwhile, some corresponding features exhibiting on remote sensing image and quantitative indices for identifying different glacial lake types were proposed in order to build a universal and operational classification system of glacial lake.展开更多
Despite several regional glacier and glacier lake inventories, the relationship between receding glacier, glacial lake evolution(glacial-lake interactions) and their sensitivity to different forcing factors have not b...Despite several regional glacier and glacier lake inventories, the relationship between receding glacier, glacial lake evolution(glacial-lake interactions) and their sensitivity to different forcing factors have not been properly understood yet. To better understand these processes, we used satellite images collected in 1994, 2015 and 2017 to monitor the spatially-explicit evolution of glacial lakes and glacier changes. The results show a total of 1 353 glacial lakes covering an area of 7.96 km;in the year 2015. Out of these, a total of 137 glacial lakes having an area of >0.01 km;and located within 2 km periphery of mother glacier have been selected for the monitoring of spatial development between 1994 and 2017. We found an increase in the total lake area from ~4.9 to ~7.73 km;between 1994 and 2017,corresponding to an overall expansion of ~57%. The total area covered by the glaciers associated with these lakes reduced from ~365 km;in 1994 to ~358 km^(2) in 2017, accounting for a glacier loss of ~7 km^(2) and corresponding to ~1.92% reduction. Our study results are in agreement with global glacier behavior, revealing a rapid glacier recession and accelerated glacial lake expansion under an unprecedented climate change scenario. In addition, the results suggest a significant reduction in the glacier area and a close relationship between the glacier melting and lake changes.展开更多
High-risk areas for glacial lake outburst flood(GLOF) disasters in China are mainly concentrated in the middle-eastern Himalayas and Nyainqe?ntanglha(Nyenchen Tanglha Mountains), Tibetan Plateau. In the past 20 years,...High-risk areas for glacial lake outburst flood(GLOF) disasters in China are mainly concentrated in the middle-eastern Himalayas and Nyainqe?ntanglha(Nyenchen Tanglha Mountains), Tibetan Plateau. In the past 20 years, glaciers in these regions have retreated and thinned rapidly as a response to regional climate warming,leading to the formation of new glacial lakes and the expansion of existing glacial lakes. These areas are located in the border belt between the Indian and the Eurasian plates, where tectonic seismic activity is also frequent and intense. Earthquakes have often compromised the stability of mountain slopes, glaciers, and moraine dams, resulting in an imbalance in the state of glacial lakes and an increase of loose materials in valleys. It is foreseeable that the possibility of GLOFs and disaster occurrence will be great in the context of frequent earthquakes and continued climate warming. This article presents the temporal and spatial characteristics of GLOF disasters, as well as the conditions and mechanisms of GLOF disaster formation,and proposes an integrated risk management strategy to cope with GLOF disasters. It aims to facilitate the mitigation of the impacts of GLOF disasters on mountain economic and social systems, and improve disaster risk analysis, as well as the capability of risk management and disaster prevention and reduction.展开更多
As they are products of glacier movement, the water body composition and water quality attributes of glacial lakes have distinct characteristics compared with inland lakes. Although satellite remote sensing provides a...As they are products of glacier movement, the water body composition and water quality attributes of glacial lakes have distinct characteristics compared with inland lakes. Although satellite remote sensing provides an effective approach to monitor water quality, lack of in-situ measurement data on the status and environment surrounding glacial lakes presents a major constraint in relating satellite data to water quality indicators. This study presents findings of a preliminary investigation into water quality attributes of 3 glacial lakes in the Mount Qomolangma region. Suspended particulate matter (SPM), light absorption attributes of phytoplankton, nonalgal particles (NAP), and colored dissolved organic matter (CDOM) were measured. The suspended substance concentration varies markedly from 0-320 mg/L. This is considered to reflect differing stages of lake development. l-he chlorophyll concentra- tion is much lower than that found for inland lakes, as landscapes that surround these high altitude lakes have almost no vegetation growth. The phytoplankton and CDOM concentration depend on long-term stability of lake slopes. Given the lack of exogenous and endogenous inputs in the Qomolangma region, CDOM in glacial lakes is significantly lower than in inland lakes. These preliminary findings could support efforts to appraise estimates of water quality parameters using remotely sensed images.展开更多
基金funded by the National University of Mongolia under grant agreement P2023(grant number P2023-4578)。
文摘This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 years,significant glacier retreats,driven by rising temperatures and changing precipitation patterns,have led to the formation and expansion of several proglacial lakes.Fieldwork combined with satellite data and meteorological analysis was used to assess the dynamics of glacier and lake area changes,with particular focus on the flood events of July 2021.The research reveals a substantial reduction in glacier area,particularly in the Khukhnuruu E complex,where glacier area decreased by 19.3%.The study highlights the influence of increasing temperatures and summer precipitation,which have accelerated ice melt,contributing to the expansion and eventual breaching of lakes.Additionally,lake area changes were influenced by the steepness of the terrain,with steeper slopes exacerbating peak discharge during floods.Of the studied seven lakes(Lake 1 to Lake 7),Lake 1 experienced the most dramatic reduction,with a decrease in area by 73.51%and volume by 84.84%,followed by Lake 7.This study underscores the region's vulnerability to climate-induced hazards and stresses the need for a comprehensive early warning system and disaster preparedness measures to mitigate future risks.
基金supported by Key Collaborative Research Program of the Alliance of International Science Organizations(Grant no.ANSO-CR-KP-2021-04)the Key Program of National Natural Science Foundation of China(Grant no.42330410)。
文摘Glacial lakes,intimately linked to glacier termini,are crucial landscape features of the Qinghai-Xizang Plateau(QXP,Qinghai-Tibet Plateau)and the Arctic.Climate warming has accelerated glacier retreat and the rapid expansion of glacial lakes in both regions.Despite being typically considered harsh environments,these lakes serve as vital reservoirs for microbial biodiversity and carbon metabolism.In the face of climate change,glacial lake ecosystems over the QXP and the Arctic are undergoing unprecedentedtransformations.Thisopinioneditorial highlights the significance of conducting research and establishing long-term monitoring programs focused on microbial carbon metabolism in these glacial lakes.
基金Center of Research for Environment Energy and Water (CREEW)CAS-TWAS President’s fellowship for his PhD study。
文摘One of the prominent impacts of climate change induced glacier retreat in the Himalayas is the formation and expansion of glacial lakes. The newly formed glacial lakes are mostly located in higher altitudinal regions(4200-5800 m) of Himalaya,however, a new glacial lake(Kapuche, 28.446° N and 84.116° E) have been reported to be emerged in the relatively low elevation area of ~2450 m above sea level(masl) in the Nepal Himalaya. This short communication presents the remote sensing-based evolution and field-based bathymetry of Kapuche lake, and further discusses its formation process and lake type for being a glacial lake at the lowest elevation in Nepal Himalaya.
基金funded by the National Key R&D Program of China(Grant No.2017YFE0100800)the International Partnership Program of the Chinese Academy of Sciences(Grant No.131551KYSB20160002/131211KYSB20170046)the National Natural Science Foundation of China(41701481)。
文摘Glacial lake mapping provides the most feasible way for investigating the water resources and monitoring the flood outburst hazards in High Mountain Region.However,various types of glacial lakes with different properties bring a constraint to the rapid and accurate glacial lake mapping over a large scale.Existing spectral features to map glacial lakes are diverse but some are generally limited to the specific glaciated regions or lake types,some have unclear applicability,which hamper their application for the large areas.To this end,this study provides a solution for evaluating the most effective spectral features in glacial lake mapping using Landsat-8 imagery.The 23 frequently-used lake mapping spectral features,including single band reflectance features,Water Index features and image transformation features were selected,then the insignificant features were filtered out based on scoring calculated from two classical feature selection methods-random forest and decision tree algorithm.The result shows that the three most prominent spectral features(SF)with high scores are NDWI1,EWI,and NDWI3(renamed as SF8,SF19 and SF12 respectively).Accuracy assessment of glacial lake mapping results in five different test sites demonstrate that the selected features performed well and robustly in classifying different types of glacial lakes without any influence from the mountain shadows.SF8 and SF19 are superior for the detection of large amount of small glacial lakes,while some lake areas extracted by SF12 are incomplete.Moreover,SF8 achieved better accuracy than the other two features in terms of both Kappa Coefficient(0.8812)and Prediction(0.9025),which further indicates that SF8 has great potential for large scale glacial lake mapping in high mountainous area.
基金Under the auspices of Taikichiro Mori Memorial Research Grants of Keio University (No. 19, 2010)Doctoral Students Research Support Program of Keio University (No. 87, 2010)Academic Frontier Fund's 'Integrated Research for Community Strategic Concept by Construction and Management of Digital Asia' by Ministry of Education, Culture, Sports, Science and Technology (MEXT) (No. 04F003, 2004-2008)
文摘The detection of glacial lake change in the Himalayas, Nepal is extremely significant since the glacial lake change is one of the crucial indicators of global climate change in this area, where is the most sensitive area of the global climate changes. In the Hima- layas, some of glacial lakes are covered by the dark mountains' shadow because of their location. Therefore, these lakes can not be de- tected by conventional method such as Normalized Difference Water Index (NDWI), because the reflectance feature of shadowed glacial lake is different comparing to the ones which are located in the open flat area. The shadow causes two major problems: 1) glacial lakes which are covered by shadow completely result in underestimation of the number of glacial lakes; 2) glacial lakes which are partly iden- tified are considered to undervalue the area of glacial lakes. The aim of this study is to develop a new model, named Detection of Shadowed Glacial Lakes (DSGL) model, to identify glacial lakes under the shadow environment by using Advanced Space-borne Ther- mal Emission and Reflection Radiometer (ASTER) data in the Himalayas, Nepal. The DSGL model is based on integration of two dif- ferent modifications of NDWI, namely NDWls model and NDWIshe model. NDWI~ is defined as integration of the NDWI and slope analysis and used for detecting non-shadowed lake in the mountain area. The NDWIshe is proposed as a new methodology to overcome the weakness of NDWI~ on identifying shadowed lakes in highly elevated mountainous area such as the Himalayas. The first step of the NDWIshe is to enhance the data from ASTER 1B using the histogram equalization (HE) method, and its outcome product is named AS- TERho. We used the ASTERhe for calculating the NDWIhc and the NDWIshe. Integrated with terrain analysis using Digital Elevation Model (DEM) data, the NDWIshe can be used to identify the shadowed glacial lakes in the Himalayas. NDWIs value of 0.41 is used to identify the glacier lake (NDWI~ 〉 0.41), and 0.3 of NDWIshe is used to identify the shadowed glacier lake (NDWIsho 〈 0.3). The DSGL model was proved to be able to classify the glacial lakes more accurately, while the NDWI model had tendency to underestimate the presence of actual glacial lakes. Correct classification rate regarding the products from NDWI model and DSGL model were 57% and 99%, respectively. The results of this paper demonstrated that the DSGL model is promising to detect glacial lakes in the shadowed en- vironment at high mountains.
基金This work is supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP,Grant No.2019QZKK0208)the Innovation Fund Designated to Graduate Students of Yunnan University(Grant No.2020Z47)+1 种基金the National Natural Science Foundation of China(Grant No.41761144075)the Research Seed Fund for Talents of Yunnan University(No.YJRC3201702).
文摘The Himalayas are prone to glacial lake outburst floods,which can pose a severe threat to downstream villages and infrastructure.The Zhangmu and Gyirong land treaty ports are located on the China-Nepal border in the central Himalayas.In recent years,the expansion of glacial lakes has increased the threat of these two port regions.This article describes the results of mapping the glacial lakes larger than 0.01 km^2 in the Zhangmu and Gyirong port regions and analyzes their change.It provides a comprehensive assessment of potentially dangerous glacial lakes and predicts the development of future glacial lakes.From 1988 to 2019,the glacial lakes in these port regions underwent"expansion",and moraine-dammed lakes show the most significant expansion trend.A total of eleven potentially dangerous glacial lakes are identified based on the assessment criteria and historical outburst events;most expanded by more than 150%from 1988 to 2019,with some by over 500%.The Cirenmaco,a moraine-dammed lake,is extremely prone to overtopping due to ice avalanches or the melting of dead ice in the dam.For other large lakes,such as the Jialongco,Gangxico and Galongco,ice avalanches may likely cause the lakes to burst besides self-destructive failure.The potential dangers of the Youmojianco glacial lakes,including lakes Nos.9,10 and 11,will increase in the future.In addition,the glacier-bed topography model predicts that 113 glacial lakes with a size larger than 0.01 km^2,a total area of 11.88 km2 and a total volume of 6.37×10^9 m^3 will form in the study area by the end of the 21 century.Due to global warming,the glacial lakes in the Zhangmu and Gyirong port regions will continue to grow in the short term,and hence the risk of glacial lake outburst floods will increase.
基金funded by the National Natural Science Foundation Project (Grant Nos. 41701481 and 41401511)
文摘Glacial lakes in the High Mountain Asia(HMA)are sensitive to global warming and can result in much more severe flood disasters than some largesized lakes.An accurate and robust method for the extraction of glacial lakes is critical to effective management of these natural water resources.Conventional methods often have limitations in terms of low spectral contrast and heterogeneous backgrounds in an image.This study presents a robust and automated method for the yearly mapping of glacial lake over a large scale,which took advantage of the complementarity between the modified normalized difference water index(MNDWI)and the nonlocal active contour model,required only local homogeneity in reflectance features of lake.The cloud computing approach with the Google Earth Engine(GEE)platform was used to process the intensive amount of Landsat 8 images from 2015 (344 path/rows and approximately 7504 scenes).The experimental results were validated by very high resolution images from Chinese GaoFen-1 (GF-1) panchromatic multi-spectral(PMS)and appeared a general good agreement.This is the first time that information regarding the spatial distribution of glacial lakes over the HMA has been derived automatically within quite a short period of time.By integrating it with the relevant indices,it can also be applied to detect other land cover types such as snow or vegetation with improved accuracy.
基金supported by programs from the Ministry of Science and Technology of China (MOST) (Grant Nos. 2013FY111400 and 2012BAC19B07)the National Natural Science Foundation of China (Grant No. 41190084)The first and second Chinese Glacier Inventory data were provided by an immediate past Project from MOST (Grant No. 2006FY110200)
文摘Glacier retreat is not only a symbol of temperature and precipitation change, but a dominating factor of glacial lake changes in alpine regions, which are of wide concern for high risk of potential outburst floods. Of all types of glacial lakes, moraine-dammed lakes may be the most dangerous to local residents in mountain regions. Thus, we monitored the dy- namics of 12 moraine-dammed glacial lakes from 1974 to 2014 in the Poiqu River Basin of central west Himalayas, as well as their associated glaciers with a combination of remote sensing, topographic maps and digital elevation models (DEMs). Our results indicate that all monitored moraine-dammed glacial lakes have expanded by 7.46 km2 in total while the glaciers retreated by a total of 15.29 km2 correspondingly. Meteorological analysis indicates a warming and drying trend in the Nyalam region from 1974 to 2014, which accelerated glacier retreat and then augmented the supply of moraine-dammed glacial lakes from glacier melt. Lake volume and water depth changed from 1974 to 2014 which indicates that lakes Kangxico, Galongco, and Youmojanco have a high potential for outburst floods and in urgent need for continuous moni- toring or artificial excavation to release water due to the quick increase in water depths and storage capacities. Lakes Jialongco and Cirenmaco, with outburst floods in 1981 and 2002, have a high potential risk for outburst floods because of rapid lake growth and steep slope gradients surrounding them.
文摘Natural disasters inflict severe damage on almost the entire spectrum of social and natural habitats. This ranges from housing and shelter, water, food, health, sanitation to information and communication networks, supply of power and energy,transportation infrastructure, and others. Nepal is a risk prone country for Glacial Lake Outburst Flood(GLOF). GLOFs exist as major challenges as they repeatedly cause a heavy toll of life and property. During such a disaster, major challenges are indeed the protection of life, property and vital life-supporting infrastructure. Any delay or laxity in disaster relief can escalate the magnitude of distress for the victims. Thus, rather than trying to take curative measures, it is better to minimize the impacts of GLOF. These measures subsequently help in reducing the magnitude of death and casualties due to a GLOF event. This reduction of impact is often achieved by optimizing preventive measures. For applying necessary deterrent measures, it is essential to disseminate information about the danger beforehand. Early Warning System(EWS) is an important step for such information dissemination for GLOF disaster management and helps to anticipate the risk of disaster and disseminate information to lives at risk. It is impossible and impractical to reduce all GLOF risks, but it is possible to reduce several impacts of a GLOF through the implementation of the EWS. This paper presents the design and implementation of an EWS for monitoring potential outbursts of a glacier lake in the Dudh-Koshi Basin, Nepal.
基金funded by the National Key Technology Research and Development Programthe Key Basic Research Program of the Ministry of Science and Technology of China (2012BAC19B07, 2013FY111400)the National Natural Science Foundation of China (41190084)
文摘Glacial outburst floods(GLOFs) in alpine regions tend to be relatively complicated, multi-stage catastrophes, capable of causing significant geomorphologic changes in channel surroundings and posing severe threats to infrastructure and the safety and livelihoods of human communities. GLOF disasters have been observed and potential hazards can be foreseen due to the newly formed glacial lakes or the expansion of existing ones in the Poiqu River Basin in Tibet, China. Here we presented a synthesis of GLOF-related studies including triggering mechanism(s), dam breach modeling, and flood routing simulation that have been employed to reconstruct or forecast GLOF hydrographs. We provided a framework for probability-based GLOFs simulation and hazard mapping in the Poiqu River Basin according to available knowledge. We also discussed the uncertainties and challenges in the model chains, which may form the basis for further research.
基金supported by the Cryosphere Monitoring Programme (CMP) of the International Centre for Integrated Mountain Development (ICIMOD) funded by the Norwegian Ministry of Foreign Affairssupported by core funds of ICIMOD contributed by the Governments of Afghanistan, Australia, Austria, Bangladesh, Bhutan, China, India, Myanmar, Nepal, Norway, Pakistan, Switzerland, and the United Kingdomthe Koshi Basin Programme at ICIMOD, which is supported by the Australian Government through the Sustainable Development Investment Portfolio for South Asia
文摘Changes in glacial lakes and the consequences of these changes, particularly on the development of water resources and management of glacial lake outburst flood(GLOF) risk, has become one of the challenges in the sustainable development of high mountain areas in the context of global warming. This paper presents the findings of a study on the distribution of, and area changes in, glacial lakes in the Koshi basin in the central Himalayas.Data on the number of glacial lakes and their area was generated for the years 1977, 1990, 2000, and 2010 using Landsat satellite images. According to the glacial lake inventory in 2010, there were a total of 2168 glacial lakes with a total area of 127.61 km^2 and average size of 0.06 km^2 in the Koshi basin. Of these,47% were moraine dammed lakes, 34.8% bedrock dammed lakes and 17.7% ice dammed lakes. The number of glacial lakes increased consistently over the study period from 1160 in 1977 to 2168 in 2010, an overall growth rate of 86.9%. The area of glacial lakes also increased from 94.44 km^2 in 1977 to 127.61 km^2 in 2010, a growth rate of 35.1%. A large number of glacial lakes in the inventory are small in size(≤ 0.1km^2). End moraine dammed lakes with area greater than 0.1 km^2 were selected to analyze the change characteristics of glacial lakes in the basin. The results show that, in 2010, there were 129 lakes greater than 0.1 km^2 in area; these lakes had a total area of 42.92km^2 in 1997, increasing to 63.28 km^2 in 2010. The distribution of lakes on the north side of the Himalayas(in China) was three times higher than on the south side of the Himalayas(in Nepal).Comparing the mean growth rate in area for the 33 year study period(1977-2010), the growth rate on the north side was found to be a little slower than that on the south side. A total of 42 glacial lakes with an area greater than 0.2 km^2 are rapidly growing between 1977 and 2010 in the Koshi basin, which need to be paid more attention to monitoring in the future and to identify how critical they are in terms of GLOF.
基金Project supported by China Geological Survey (No.1012010640702)
文摘At present,the mechanism research on glacial lake outburst mainly focuses on the ice quake and ice landslide,etc. To some glacial lakes,the seepage deformation is the dominant factor in outburst process. Taking the Yindapu Glacial Lake in Tibet as an example,using SEEP/W module of FEM software (GEO-STUDIO),the authors analyzed seepage stability of terminal moraine ridge dam. The leading role of seepage deformation in some glacial lake outburst mechanism is proposed and proved.
文摘The relatively rapid recession of glaciers in the Himalayas and formation of moraine dammed glacial lakes(MDGLs) in the recent past have increased the risk of glacier lake outburst floods(GLOF) in the countries of Nepal and Bhutan and in the mountainous territory of Sikkim in India. As a product of climate change and global warming, such a risk has not only raised the level of threats to the habitation and infrastructure of the region, but has also contributed to the worsening of the balance of the unique ecosystem that exists in this domain that sustains several of the highest mountain peaks of the world. This study attempts to present an up to date mapping of the MDGLs in the central and eastern Himalayan regions using remote sensing data, with an objective to analyse their surface area variations with time from 1990 through 2015, disaggregated over six episodes. The study also includes the evaluation for susceptibility of MDGLs to GLOF with the least criteria decision analysis(LCDA). Forty two major MDGLs, each having a lake surface area greater than 0.2 km2, that were identified in the Himalayan ranges of Nepal, Bhutan, and Sikkim, have been categorized according to their surface area expansion rates in space and time. The lakes have been identified as located within the elevation range of 3800 m and6800 m above mean sea level(a msl). With a total surface area of 37.9 km2, these MDGLs as a whole were observed to have expanded by an astonishing 43.6% in area over the 25 year period of this study. A factor is introduced to numerically sort the lakes in terms of their relative yearly expansion rates, based on their interpretation of their surface area extents from satellite imageries. Verification of predicted GLOF events in the past using this factor with the limited field data as reported in literature indicates that the present analysis may be considered a sufficiently reliable and rapid technique for assessing the potential bursting susceptibility of the MDGLs. The analysis also indicates that, as of now, there are eight MDGLs in the region which appear to be in highly vulnerable states and have high chances in causing potential GLOF events anytime in the recent future.
基金the National Nature Science Foundation of China(42171085)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0902)+1 种基金the Light of West China Program of Chinese Academy of Sciences(xbzg-zdsys-202104)the Project of Applications for Network Security and Informatization,Chinese Academy of Sciences(CAS-WX2021SF-010604).
文摘Global warming is causing glaciers to retreat and glacial lakes to expand in the Himalayas,which amplifies the risk of glacial lake outburst debris flows(GLODFs)and poses a significant threat to downstream lives and infrastructures.However,the complex interplay between GLODF occurrences and associated indicators,coupled with the lack of a comprehensive susceptibility indicator system that considers the entire GLODF process,presents a substantial challenge in assessing GLODF susceptibility in the Himalayas.This study proposes a process-driven GLODF susceptibility assessment indicator system responding to climate change that considers the complete process of GLODF formation,incorporating relevant parameters about upstream,themselves,and downstream of glacial lakes.Furthermore,to mitigate subjective factors associated with traditional evaluation methods,we developed three novel hybrid machine-learning models by integrating classic machine-learning algorithms with the whale optimization algorithm(WOA)to delineate the distribution of GLODF susceptibility in the Himalayas.All the hybrid models effectively predicted the GLODFs occurrence,with the WOA-SVC model demonstrating the highest prediction accuracy.Approximately 34%of the catchments exhibit high and very high susceptibility levels,primarily concentrated along the north and south sides of the Himalayan ridge,particularly in the eastern and central Himalayas.Indicators capturing the physical formation process of hazards,such as topographic potential(highest relative importance value of 40%),can precisely identify GLODF.A total of 128 catchments pose potential transboundary threats,with 24 classified as having a very high susceptibility level and 25 as having a high susceptibility level.Notably,the border region between China and Nepal is a prominent hotspot for transboundary threats of GLODF.These findings can provide valuable clues for disaster prevention,mitigation,and cross-border coordination in the Himalayas.
基金The Third Xinjiang Scientific Expedition Program,No.2021xjkk0801National Natural Science Foundation of China,No.42161027。
文摘Glaciers and glacial lakes are very sensitive to climate change,and studying their dynamics is important for revealing changes in global climate.In this study,we extracted the boundaries of glaciers and glacial lakes in the Northern Tianshan Mountains based on Landsat TM/ETM+/OLI and Sentinel 2A/2B MSI remote sensing images and analyzed their dynamics and impacts over the past 30 years.The findings indicate that in 2020,the Northern Tianshan region exhibited a total of 3254 glaciers,with an area of 1670.55 km^(2) and a volume of 95.69 km^(3).The corresponding numbers,areas,and volumes of glacial lakes were 281,13.23 km^(2) and 210.49×10~6 m^(3),respectively.Over the past 30 years,glaciers and glacial lakes have exhibited opposite characteristics.The former decreased by 16,332.64 km^(2)(-0.60%·a^(–1)) and 18.36 km^(3)(-0.58%·a^(–1)),respectively,and the latter increased by 56 and2.48 km^(2)(0.82%·a^(–1)) and 38.88×10~6 m^(3)(0.79%·a^(–1)),respectively.Moreover,different glacier termination types cause differences in the glacier retreat rates.Lake-terminated glaciers retreated faster than land-terminated glaciers,and the type of glacier termination has a greater effect on the retreat rate than the size of the glacial area.
文摘In this article, we review the current knowledge of the glacial recession and related glacial lake development in the Andes of South America. Since the mid-1980 s, hundreds of glacial lakes either expanded or formed, and predictions show that additional hundreds of lakes will form throughout the 21 st century. However, studies on glacial lakes in the Andes are still relatively rare. Many glacial lakes pose a potential hazard to local communities, but glacial lake outburst floods(GLOFs) are understudied. We provide an overview on hazards from glacial lakes such as GLOFs and water pollution, and their monitoring approaches. In real-time monitoring, the use of unmanned aerial systems(UASs) and early warning systems(EWSs) is still extremely rare in the Andes, but increasingly authorities plan to install mitigation systems to reduce glacial lake risk and protect local communities. In support, we propose an international remote sensing-based observation initiative following the model of, for example, the Global Land Ice Measurements from Space(GLIMS) one, with the headquarters in one of the Andean nations.
基金National Natural Science Foundation of China,No.41261016,No.41561016Opening Foundation Projection of State Key Laboratory of Cryosphere Sciences,CAS,No.SKLCS-OP-2016-10+1 种基金Youth Scholar Scientific Capability Promoting Project of Northwest Normal University,No.NWNU-LKQN-14-4Geological Survey Project of China Geological Survey,No.DD2016034206
文摘Glacial lakes are not only the important refresh water resources in alpine region, but also act as a trigger of many glacial hazards such as glacial lake outburst flood (GLOF) and debris flow. Therefore, glacial lakes play an important role on the cryosphere, climate change and alpine hazards. In this paper, the issues of glacial lake were systematically discussed, then from the view of glacial lake inventory and glacial lake hazards study, the glacial lake was defined as natural water mainly supplied by modern glacial meltwater or formed in glacier moraine's depression. Furthermore, a complete classification system of glacial lake was proposed based on its formation mechanism, topographic feature and geographical position. Glacial lakes were classified as 6 classes and 8 subclasses, i.e., glacial erosion lake (including cirque lake, gla- cial valley lake and other glacial erosion lake), moraine-dammed lake (including end mo- raine-dammed lake, lateral moraine-dammed lake and moraine thaw lake), ice-blocked lake (including advancing glacier-blocked lake and other glacier-blocked lake), supraglacial lake, subglacial lake and other glacial lake. Meanwhile, some corresponding features exhibiting on remote sensing image and quantitative indices for identifying different glacial lake types were proposed in order to build a universal and operational classification system of glacial lake.
基金procured from the National Remote Sensing Centre (NRSC) Hyderabad under the project “Assessment of Potential Vulnerability of Western Himalayan Glaciers to Climate Change”funded by the Indian Space Research Organisation,Department of Space,India.
文摘Despite several regional glacier and glacier lake inventories, the relationship between receding glacier, glacial lake evolution(glacial-lake interactions) and their sensitivity to different forcing factors have not been properly understood yet. To better understand these processes, we used satellite images collected in 1994, 2015 and 2017 to monitor the spatially-explicit evolution of glacial lakes and glacier changes. The results show a total of 1 353 glacial lakes covering an area of 7.96 km;in the year 2015. Out of these, a total of 137 glacial lakes having an area of >0.01 km;and located within 2 km periphery of mother glacier have been selected for the monitoring of spatial development between 1994 and 2017. We found an increase in the total lake area from ~4.9 to ~7.73 km;between 1994 and 2017,corresponding to an overall expansion of ~57%. The total area covered by the glaciers associated with these lakes reduced from ~365 km;in 1994 to ~358 km^(2) in 2017, accounting for a glacier loss of ~7 km^(2) and corresponding to ~1.92% reduction. Our study results are in agreement with global glacier behavior, revealing a rapid glacier recession and accelerated glacial lake expansion under an unprecedented climate change scenario. In addition, the results suggest a significant reduction in the glacier area and a close relationship between the glacier melting and lake changes.
基金the National Natural Science Foundation (41690143)the National Social Science Foundation of China (Grant No.14BGL137)+1 种基金the Technology Services Network Program of Cold and Arid Regions Environmental and Engineering Research Institute, the Chinese Academy of Sciences (HHS-TSS-STS-1501)the National Basic Research Program of China (2013CBA01808)
文摘High-risk areas for glacial lake outburst flood(GLOF) disasters in China are mainly concentrated in the middle-eastern Himalayas and Nyainqe?ntanglha(Nyenchen Tanglha Mountains), Tibetan Plateau. In the past 20 years, glaciers in these regions have retreated and thinned rapidly as a response to regional climate warming,leading to the formation of new glacial lakes and the expansion of existing glacial lakes. These areas are located in the border belt between the Indian and the Eurasian plates, where tectonic seismic activity is also frequent and intense. Earthquakes have often compromised the stability of mountain slopes, glaciers, and moraine dams, resulting in an imbalance in the state of glacial lakes and an increase of loose materials in valleys. It is foreseeable that the possibility of GLOFs and disaster occurrence will be great in the context of frequent earthquakes and continued climate warming. This article presents the temporal and spatial characteristics of GLOF disasters, as well as the conditions and mechanisms of GLOF disaster formation,and proposes an integrated risk management strategy to cope with GLOF disasters. It aims to facilitate the mitigation of the impacts of GLOF disasters on mountain economic and social systems, and improve disaster risk analysis, as well as the capability of risk management and disaster prevention and reduction.
基金National Basic Research Program of China, No.2010CB951704 No.2010CB951702+1 种基金 National Natural Science Foundation of China, No.41190080 The Hindu-Kush-Karakorum-Himalaya (HKKH) Partnership Project "Institutional Consolidation for the Coordinated and Integrated Monitoring of Natural Resources towards Sustainable Development and Environmental Conservation in the Hindu Kush-Karakoram-Himalaya Mountain Complex"
文摘As they are products of glacier movement, the water body composition and water quality attributes of glacial lakes have distinct characteristics compared with inland lakes. Although satellite remote sensing provides an effective approach to monitor water quality, lack of in-situ measurement data on the status and environment surrounding glacial lakes presents a major constraint in relating satellite data to water quality indicators. This study presents findings of a preliminary investigation into water quality attributes of 3 glacial lakes in the Mount Qomolangma region. Suspended particulate matter (SPM), light absorption attributes of phytoplankton, nonalgal particles (NAP), and colored dissolved organic matter (CDOM) were measured. The suspended substance concentration varies markedly from 0-320 mg/L. This is considered to reflect differing stages of lake development. l-he chlorophyll concentra- tion is much lower than that found for inland lakes, as landscapes that surround these high altitude lakes have almost no vegetation growth. The phytoplankton and CDOM concentration depend on long-term stability of lake slopes. Given the lack of exogenous and endogenous inputs in the Qomolangma region, CDOM in glacial lakes is significantly lower than in inland lakes. These preliminary findings could support efforts to appraise estimates of water quality parameters using remotely sensed images.