期刊文献+
共找到28,460篇文章
< 1 2 250 >
每页显示 20 50 100
Preparation, Crystallization and Mechanical Properties of Potassium Aluminosilicate Glass-ceramics
1
作者 郑伟宏 黄猛 +4 位作者 GAO Zipeng ZHANG Hang YUAN Jian TIAN Peijing PENG Zhigang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期587-595,共9页
In this study,transparent K_(2)O-Al_(2)O_(3)-SiO_(2)(KAS)glass-ceramics with leucite as the main crystalline phase were prepared by melting-quench method and two-step heat treatment.The effects of SiO_(2)/Al_(2)O_(3) ... In this study,transparent K_(2)O-Al_(2)O_(3)-SiO_(2)(KAS)glass-ceramics with leucite as the main crystalline phase were prepared by melting-quench method and two-step heat treatment.The effects of SiO_(2)/Al_(2)O_(3) ratio and heat treatment on crystallization and mechanical properties were studied.The crystallization kinetics and X-Ray Diffraction(XRD)results showed that SiO_(2)/Al_(2)O_(3) ratio and heat treatment system had a direct impact on the crystallization behavior of potassium aluminosilicate glass-ceramics.When heat-treated at 680℃/2 h and 780℃/1 h,cracks generated on the surface of the sample with the addition of SiO_(2)/Al_(2)O_(3)=4.8(in mol)due to the huge difference in the coefficient of thermal expansion between glass matrix and surface.When the addition of SiO_(2)/Al_(2)O_(3)(in mol)was 4,the sample with leucite as the main crystalline phase showed an excellent fracture toughness(1.46 MPa·m^(0.5))after the heat treatment of 680℃/2 h and 780℃/5 h.And there was a phase transformation from kaliophilite to leucite.The crystalline phases of the sample heat-treated at 680℃/8 h and 780℃/1 h were leucite and kaliophilite,which resulted in the visible light transmittance of 63%and the fracture toughness of 0.91 MPa·m^(0.5).Furthermore,after the heat treatment of 680℃/2 h and 780℃/5 h,the main crystalline phase of the sample with SiO_(2)/Al_(2)O_(3)=3.2(in mol)was still kaliophilite.Because leucite only grows on the surface of the sample and is hard to grow inward,it is hard to achieve the bulk crystallization of leucite in the sample with SiO_(2)/Al_(2)O_(3)=3.2(in mol). 展开更多
关键词 LEUCITE glass-ceramic kaliophilite crystallization kinetics
原文传递
Glass-Ceramics with High Strength and High Transmittance Obtained by Multi-Factor Controlling
2
作者 胡云坤 RAO Yu +4 位作者 WANG Mingzhong XU Yinsheng XIA Mengling TAO Haizheng 陆平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期551-560,共10页
The presence of Li_(2)Si_(2)O_(5) and LiAlSi_(4)O_(10) could effectively improve the elastic modulus and transmittance of lithium disilicate(LD)glass-ceramics.Through synergistically modulation of the crystal content ... The presence of Li_(2)Si_(2)O_(5) and LiAlSi_(4)O_(10) could effectively improve the elastic modulus and transmittance of lithium disilicate(LD)glass-ceramics.Through synergistically modulation of the crystal content and grain size,we obtained high strength and high transmittance of LD glass-ceramics.The optimal sample had a high transmittance of 90.3%,the hardness was 7.72 GPa,the fracture toughness was 1.07 MPa·m^(1/2),and the elastic modulus was 103.1 GPa. 展开更多
关键词 lithium disilicate glass-ceramicS TRANSMITTANCE mechanical properties
原文传递
Isotropic sintering shrinkage of 3D glass-ceramic nanolattices:backbone preforming and mechanical enhancement
3
作者 Nianyao Chai Yunfan Yue +3 位作者 Xiangyu Chen Zhongle Zeng Sheng Li Xuewen Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期418-426,共9页
There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimen... There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimensional(3D)forms to reduce their weight while maintaining high mechanical properties.A popular strategy for the preparation of 3D inorganic materials is to mold the organic–inorganic hybrid photoresists into 3D micro-and nano-structures and remove the organic components by subsequent sintering.However,due to the discrete arrangement of inorganic components in the organic-inorganic hybrid photoresists,it remains a huge challenge to attain isotropic shrinkage during sintering.Herein,we demonstrate the isotropic sintering shrinkage by forming the consecutive–Si–O–Si–O–Zr–O–inorganic backbone in photoresists and fabricating 3D glass–ceramic nanolattices with enhanced mechanical properties.The femtosecond(fs)laser is used in two-photon polymerization(TPP)to fabricate 3D green body structures.After subsequent sintering at 1000℃,high-quality 3D glass–ceramic microstructures can be obtained with perfectly intact and smooth morphology.In-suit compression experiments and finite-element simulations reveal that octahedral-truss(oct-truss)lattices possess remarkable adeptness in bearing stress concentration and maintain the structural integrity to resist rod bending,indicating that this structure is a candidate for preparing lightweight and high stiffness glass–ceramic nanolattices.3D printing of such glasses and ceramics has significant implications in a number of industrial applications,including metamaterials,microelectromechanical systems,photonic crystals,and damage-tolerant lightweight materials. 展开更多
关键词 3D printing isotropic shrinkage femtosecond laser two-photon polymerization structural glass-ceramics
下载PDF
Properties of Ultra-low Thermal Expansion LAS Transparent Glass-ceramics Prepared by Spodumene
4
作者 何峰 何子君 +2 位作者 ZHOU Zhiqiang TIAN Yingliang ZHAO Zhiyong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期541-550,共10页
The glass-ceramics were prepared with the spodumene mineral as the main raw material,and the effects of ZrO_(2)replacing TiO_(2)on the samples were systematically investigated.The results show that the substitution of... The glass-ceramics were prepared with the spodumene mineral as the main raw material,and the effects of ZrO_(2)replacing TiO_(2)on the samples were systematically investigated.The results show that the substitution of ZrO_(2)for TiO_(2)is not conductive to precipitate𝛽β-quartz solid solution phase,but can improve the transparency and flexural strength of glass-ceramics.And the glass-ceramic with the highest visible light transmittance(87%)and flexural strength(231.80 MPa)exhibits an ultra-low thermal expansion of-0.028×10^(-7)K^(-1)in the region of 30-700℃. 展开更多
关键词 ultra-low thermal expansion LAS transparent glass-ceramics substitution of ZrO_(2)for TiO_(2) spodumene mineral
原文传递
Enhancing the stability of Ni Fe-layered double hydroxide nanosheet array for alkaline seawater oxidation by Ce doping 被引量:1
5
作者 Yongchao Yao Shengjun Sun +14 位作者 Hui Zhang Zixiao Li Chaoxin Yang Zhengwei Cai Xun He Kai Dong Yonglan Luo Yan Wang Yuchun Ren Qian Liu Dongdong Zheng Weihua Zhuang Bo Tang Xuping Sun Wenchuang(Walter)Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期306-312,共7页
Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau... Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution. 展开更多
关键词 Ce doping NiFe layered double hydroxide Seawater oxidation Electrocatalysis Cl^(-) repulsion
下载PDF
Luminescence property of Eu-doped fluorochlorozirconate glass-ceramics 被引量:1
6
作者 裴之利 王永生 +1 位作者 何大伟 孟宪国 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第2期338-340,共3页
A series of Eu2+-doped fluorochlorozirconate glass-ceramics were prepared by solid state reaction method. X-ray diffraction, pho- toluminescence, photo-stimulated luminescence (PSL) and the turbidity of fluorozirco... A series of Eu2+-doped fluorochlorozirconate glass-ceramics were prepared by solid state reaction method. X-ray diffraction, pho- toluminescence, photo-stimulated luminescence (PSL) and the turbidity of fluorozirconate glass containing BaCl2 nano- and micro-crystals were measured for the samples annealed at 290℃ for 10 rain The PSL was attributed to the characteristic emission of Eu2+ in nano-crystallites of BaCI2, which formed in the glass upon annealing. The PSL efficiency of the glass ceramic was increased by increasing the concentration of BaCl2, which, however, resulted in the decreasing in the transparency of the sample. The sample turned to a semi-transparent glass ceramic or even an opaque and milky white one from a near-transparent glass. The trade-off between optical transparency and PSL intensity over different concentrations of BaCl2 for X-ray imaging plate applications was briefly discussed. 展开更多
关键词 X-ray storage phosphor fluorozirconate glass-ceramics photostimulated luminescence RESOLUTION rare earths
下载PDF
Fabrication and Characterization of Glass-Ceramics Doped with Rare Earth Oxide and Heavy Metal Oxide 被引量:1
7
作者 陈国华 刘心宇 成钧 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第3期381-384,共4页
Cordierite-based glass-ceramics with non-stoichiometric composition doped with rare earth oxide (REO_2) and heavy metal oxide (M_2O_3) respectively were fabricated from glass powders. After sintering and crystallizati... Cordierite-based glass-ceramics with non-stoichiometric composition doped with rare earth oxide (REO_2) and heavy metal oxide (M_2O_3) respectively were fabricated from glass powders. After sintering and crystallization heat treatment, various physical properties, including compact density and apparent porosity, were examined to evaluate the sintering behavior of cordierite-based glass-ceramics. Results show that the additives both heavy metal oxide and rare earth oxide promote the sintering and lower the phase temperature from μ- to α-cordierite as well as affect the dielectric properties of sintered glass-ceramics. The complete-densification temperature for samples is as low as 900 ℃. The materials have a low dielectric constant (≈5), a low thermal expansion coefficient ((2.80~3.52)×10^(-6) ℃^(-1)) and a low dissipation factor (≤0.2%) and can be co-fired with high conductivity metals such as Au, Cu, Ag/Pd paste at low temperature (below 950 ℃), which makes it to be a promising material for low-temperature co-fired ceramic substrates. 展开更多
关键词 inorganic materials cordierite-based glass-ceramics heavy metal oxide FABRICATION SINTERING properties rare earths
下载PDF
Co-doped BaFe_(2)As_(2) Josephson junction fabricated with a focused helium ion beam 被引量:1
8
作者 陈紫雯 张焱 +6 位作者 马平 徐中堂 李宇龙 王越 路建明 马衍伟 甘子钊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期181-186,共6页
Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation ... Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices. 展开更多
关键词 focused helium ion beam Co doped BaFe_(2)As_(2) Josephson junction
原文传递
Preparation and Spectroscopic Properties of Pr^(3+)-doped Transparent Glass-ceramic Containing LiYF_4 Nanocrystals 被引量:1
9
作者 梁超 龚兴红 +4 位作者 黄建华 陈雨金 林炎富 罗遵度 黄艺东 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2017年第4期614-620,共7页
Pr^(3+)-doped transparent oxyfluoride glass-ceramic containing tetragonal LiYF_4 nanocrystals has been synthesized by melting-quenching method and subsequent thermal treatment and spectroscopic properties of Pr^(... Pr^(3+)-doped transparent oxyfluoride glass-ceramic containing tetragonal LiYF_4 nanocrystals has been synthesized by melting-quenching method and subsequent thermal treatment and spectroscopic properties of Pr^(3+) ions were investigated. The crystalline phase and microstructure of the LiYF_4 nanocrystals were studied by X-ray diffraction(XRD) and transmission electron microscopy(TEM), respectively. Compared with those of Pr^(3+)-doped glass(Pr^(3+):PG), the sharp absorption and emission bands of Pr^(3+)-doped glass-ceramic(Pr^(3+):GC) reveal parts of Pr^(3+) ions are incorporated into LiYF_4 nanocrystals. The peak absorption cross-section at 443 nm(~3H_4 → ~3P_2) adds to 110% and the full width at half maximum(FWHM) for the band around 443 nm reduces from 22 to 14 nm after crystallization. The fluorescence lifetime of the ~3P_0 multiplet of Pr^(3+) ions increases from 5.35 to 11.14 μs after crystallization. The results indicate that this glass-ceramic is promising to be a visible laser material. 展开更多
关键词 Pr3+-doped transparent oxyfluoride glass-ceramic LiYF4 nanocrystal spectroscopic property
下载PDF
Thermal and Structural Characterization of Transparent Rare-Earth Doped Lead Fluoride Glass-Ceramics 被引量:1
10
作者 Chaouki Bensalem Michel Mortier +3 位作者 Daniel Vivien Patrick Gredin Gilles Patriarche Madjid Diaf 《New Journal of Glass and Ceramics》 2012年第2期65-74,共10页
The devitrification of glasses with composition 50GeO2-40PbO-10PbF2-xREF3, RE = Gd, Eu, 0 3+: β-PbF2 nanocrystals embedded in a glassy oxide matrix. This transformation is investigated using thermal analysis, X-ray d... The devitrification of glasses with composition 50GeO2-40PbO-10PbF2-xREF3, RE = Gd, Eu, 0 3+: β-PbF2 nanocrystals embedded in a glassy oxide matrix. This transformation is investigated using thermal analysis, X-ray diffraction and electron microscopy. A comparison with RE3+: β-PbF2 ceramics prepared by standard ceramic techniques is performed. The Rare Earth cations show a strong nucleating effect for the precipitation of the RE3++: β-PbF2 nanocrystals. The evolution of the unit cell parameters of the REF3: β-PbF2 solid solution results from a combined effect of Pb2+-RE3+ substitution and interstitial F– introduction. In the glass ceramics, RE3+: β-PbF2 nanocrystals are constrained by the glassy matrix when they form with a pressure equivalent to 1.6 GPa. The constrained nanocrystals can return to a relaxed state by chemical dissolution of the embedding glassy matrix, followed by thermal treatments. 展开更多
关键词 glass-ceramic RARE-EARTH THERMAL Analysis DEVITRIFICATION NANOCRYSTALLITE X-Ray Diffraction
下载PDF
Enhanced conductivity and weakened magnetism in Pb-doped Sr_(2)IrO_(4)
11
作者 岳智来 甄伟立 +4 位作者 牛瑞 焦珂珂 朱文卡 皮雳 张昌锦 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期680-685,共6页
Group IV element Pb has been selected as the dopant to dope at the Sr site of Sr_(2)IrO_(4). It is exciting to find that the single-phase crystal structure could be maintained with a high Pb doping level of up to x=0.... Group IV element Pb has been selected as the dopant to dope at the Sr site of Sr_(2)IrO_(4). It is exciting to find that the single-phase crystal structure could be maintained with a high Pb doping level of up to x=0.3 in Sr_(2-x)Pb_(x)IrO_(4). The mapping data obtained from energy-dispersive x-ray spectroscopy analyses give solid evidence that the Pb ions are uniformly distributed in the Sr_(2)IrO_(4) matrix. The incorporation of Pb leads to a moderate depression of the canted antiferromagnetic ordering state. The electrical conductivity could be greatly enhanced when the Pb doping content is higher than x=0.2.The present results give a fresh material base to explore new physics in doped Sr_(2)IrO_(4) systems. 展开更多
关键词 iridates doping CONDUCTIVITY MAGNETISM
原文传递
Hole-Doped Nonvolatile and Electrically Controllable Magnetism in van der Waals Ferroelectric Heterostructures
12
作者 姜新新 王智宽 +5 位作者 李冲 孙雪莲 杨磊 李冬梅 崔彬 刘德胜 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第5期107-119,共13页
Electrical control of magnetism in van der Waals semiconductors is a promising step towards development of two-dimensional spintronic devices with ultralow power consumption for processing and storing information.Here... Electrical control of magnetism in van der Waals semiconductors is a promising step towards development of two-dimensional spintronic devices with ultralow power consumption for processing and storing information.Here, we propose a design for two-dimensional van der Waals heterostructures(vdWHs) that can host ferroelectricity and ferromagnetism simultaneously under hole doping. By contacting an In Se monolayer and forming an InSe/In_(2)Se_(3) vd WH, the switchable built-in electric field from the reversible out-of-plane polarization enables robust control of the band alignment. Furthermore, switching between the two ferroelectric states(P_↑ and P_↓)of hole-doped In_(2)Se_(3) with an external electric field can interchange the ON and OFF states of the nonvolatile magnetism. More interestingly, doping concentration and strain can effectively tune the magnetic moment and polarization energy. Therefore, this provides a platform for realizing multiferroics in ferroelectric heterostructures,showing great potential for use in nonvolatile memories and ferroelectric field-effect transistors. 展开更多
关键词 polarization FERROELECTRIC doping
原文传递
Sr-Doping-Modulated Metal-Insulator Transition in NdNiO3 Epitaxial Films
13
作者 Huan Ye Enda Hua +6 位作者 Fang Xu Jingdi Lu Feng Jin Wenbin Wu Liang Si Lingfei Wang 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第11期99-113,共15页
Perovskite-structured nickelates,ReNiO_(3)(Re=rare earth),have long garnered significant research interest due to their sharp and highly tunable metal-insulator transitions(MITs).Doping the parent compound ReNiO_(3)wi... Perovskite-structured nickelates,ReNiO_(3)(Re=rare earth),have long garnered significant research interest due to their sharp and highly tunable metal-insulator transitions(MITs).Doping the parent compound ReNiO_(3)with alkaline earth metal can substantially suppress this MIT.Recently,intriguing superconductivity has been discovered in doped infinite-layer nickelates(ReNiO_(2)),while the mechanism behind A-site doping-suppressed MIT in the parent compound ReNiO_(3)remains unclear.To address this problem,we grew a series of Nd_(1−x)Sr_(x)NiO_(3)(NSNO,x=0–0.2)thin films and conducted systematic electrical transport measurements.Our resistivity and Hall measurements suggest that Sr-induced excessive holes are not the primary reason for MIT suppression.Instead,first-principles calculations indicate that Sr cations,with larger ionic radius,suppress breathing mode distortions and promote charge transfer between oxygen and Ni cations.This process weakens Ni–O bond disproportionation and Ni^(2+)/Ni^(4+)charge disproportionation.Such significant modulations in lattice and electronic structures convert the ground state from a charge-disproportionated antiferromagnetic insulator to a paramagnetic metal,thereby suppressing the MIT.This scenario is further supported by the weakened MIT observed in the tensile-strained NSNO/SrTiO_(3)(001)films.Our work reveals the A-side doping-modulated electrical transport of perovskite nickelate films,providing deeper insights into novel electric phases in these strongly correlated nickelate systems. 展开更多
关键词 doping NICKEL EARTH
原文传递
Mott Gap Filling by Doping Electrons through Depositing One Sub-Monolayer Thin Film of Rb on Ca_(2)CuO_(2)Cl_(2)
14
作者 李寒 王朝晖 +3 位作者 范圣泰 李华州 杨欢 闻海虎 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第5期90-96,共7页
Understanding the doping evolution from a Mott insulator to a superconductor probably holds the key to resolve the mystery of unconventional superconductivity in copper oxides. To elucidate the evolution of the electr... Understanding the doping evolution from a Mott insulator to a superconductor probably holds the key to resolve the mystery of unconventional superconductivity in copper oxides. To elucidate the evolution of the electronic state starting from the Mott insulator, we dose the surface of the parent phase Ca_(2)CuO_(2)Cl_(2) by depositing Rb atoms, which are supposed to donate electrons to the CuO_(2) planes underneath. We successfully achieved the Rb sub-monolayer thin films in forming the square lattice. The scanning tunneling microscopy or spectroscopy measurements on the surface show that the Fermi energy is pinned within the Mott gap but close to the edge of the charge transfer band. In addition, an in-gap state appears at the bottom of the upper Hubbard band(UHB), and the Mott gap will be significantly diminished. Combined with the Cl defect and the Rb adatom/cluster results, the electron doping is likely to increase the spectra weight of the UHB for the double occupancy. Our results provide information to understand the electron doping to the parent compound of cuprates. 展开更多
关键词 doping holds Electron
原文传递
Enhancing multifunctional photocatalysis with acetate-assisted cesium doping and unlocking the potential of Z-scheme solar water splitting
15
作者 Mengmeng Ma Jingzhen Li +6 位作者 Xiaogang Zhu Kong Liu Kaige Huang Guodong Yuan Shizhong Yue Zhijie Wang Shengchun Qu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期178-195,共18页
Graphitic carbon nitride(g-C_(3)N_(4))has been extensively doped with alkali metals to enlarge photocatalytic output,in which cesium(Cs)doping is predicted to be the most efficient.Nevertheless,the sluggish diffusion ... Graphitic carbon nitride(g-C_(3)N_(4))has been extensively doped with alkali metals to enlarge photocatalytic output,in which cesium(Cs)doping is predicted to be the most efficient.Nevertheless,the sluggish diffusion and doping kinetics of precursors with high melting points,along with imprecise regulation,have raised the debate on whether Cs doping could make sense.For this matter,we attempt to confirm the positive effects of Cs doping on multifunctional photocatalysis by first using cesium acetate with the character of easy manipulation.The optimized Csdoped g-C_(3)N_(4)(CCN)shows a 41.6-fold increase in visible-light-driven hydrogen evolution reaction(HER)compared to pure g-C_(3)N_(4) and impressive degradation capability,especially with 77%refractory tetracycline and almost 100%rhodamine B degradedwithin an hour.The penetration ofCs+is demonstrated to be a mode of interlayer doping,and Cs–N bonds(especially with sp^(2) pyridine N in C═N–C),along with robust chemical interaction and electron exchange,are fabricated.This atomic configuration triggers the broadened spectral response,the improved charge migration,and the activated photocatalytic capacity.Furthermore,we evaluate the CCN/cadmium sulfide hybrid as a Z-scheme configuration,promoting the visible HER yield to 9.02 mmol g^(−1) h^(−1),which is the highest ever reported among all CCN systems.This work adds to the rapidly expanding field of manipulation strategies and supports further development of mediating served for photocatalysis. 展开更多
关键词 acetate-assisted cesium doping MULTIFUNCTIONAL PHOTOCATALYSIS Z-scheme
下载PDF
Investigation on p-type doping of PBn unipolar barrier InAsSb photodetectors
16
作者 ZHANG Jian CHANG Chao +11 位作者 LI Hong-Fu SHI Yu-Na YIN Han-Xiang LI Yan-Hui YUE Biao WANG Hai-Peng YAN Chang-Shan DAI Xin-Ran DENG Gong-Rong KONG Jin-Cheng ZHAO Peng ZHAO Jun 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第4期472-478,共7页
The lattice-matched XBn structures of InAsSb,grown on GaSb substrates,exhibit high crystal quali⁃ty,and can achieve extremely low dark currents at high operating temperatures(HOT).Its superior performance is attribute... The lattice-matched XBn structures of InAsSb,grown on GaSb substrates,exhibit high crystal quali⁃ty,and can achieve extremely low dark currents at high operating temperatures(HOT).Its superior performance is attributed to the unipolar barrier,which blocks the majority carriers while allowing unhindered hole transport.To further explore the energy band and carrier transport mechanisms of the XBn unipolar barrier structure,this pa⁃per systematically investigates the influence of doping on the dark current,photocurrent,and tunneling character⁃istics of InAsSb photodetectors in the PBn structure.Three high-quality InAsSb samples with unintentionally doped absorption layers(AL)were prepared,with varying p-type doping concentrations in the GaSb contact layer(CL)and the AlAsSb barrier layer(BL).As the p-type doping concentration in the CL increased,the device’s turn-on bias voltage also increased,and p-type doping in the BL led to tunneling occurring at lower bias voltages.For the sample with UID BL,which exhibited an extremely low dark current of 5×10^(-6) A/cm^(2).The photocurrent characteristics were well-fitted using the back-to-back diode model,revealing the presence of two opposing space charge regions on either side of the BL. 展开更多
关键词 INASSB PBN p-type doping dark current
下载PDF
Neutral and metallic vs.charged and semiconducting surface layer in acceptor doped CeO_(2)
17
作者 Ilan Riess 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期795-802,共8页
The monomolecular surface layer of acceptor doped CeO_(2) may become neutral and metallic or charged and semiconducting.This is revealed in the theoretical analysis of the oxygen pressure dependence of the surface def... The monomolecular surface layer of acceptor doped CeO_(2) may become neutral and metallic or charged and semiconducting.This is revealed in the theoretical analysis of the oxygen pressure dependence of the surface defects concentration in acceptor doped ceria with two different dopant types and operated under different oxygen pressures.Recently published experimental data for highly reduced Sm0.2Ce0.8O1.9-x(SDC)containing a fixed valence dopant Sm3+are very different from those published for Pr0.1Ce0.9O_(2)-x(PCO) with the variable valence dopant Pr4+/Pr3+being reduced under milder conditions.The theoretical analysis of these experimental results fits very well the experimental results of SDC and PCO.It leads to the following predictions:the highly reduced surface of SDC is metallic and neutral,the metallic surface electron density of state is gs=0.9×10^(38)J-1·m^(-2)(1.4×1015eV^(-1)·cm^(-2)),the electron effective mass is meff,s=3.3me,and the phase diagram of the reduced surface has theα(fcc)structure as in the bulk.In PCO a double layer is predicted to be formed between the surface and the bulk with the surface being negatively charged and semiconducting.The surface of PCO maintains high Pr^(3+) defect concentration as well as relative high oxygen vacancy concentration at oxygen pressures higher than in the bulk.The reasons for the difference between a metallic and semiconducting surface layer of acceptor doped CeO_(2) are reviewed,as well as the key theoretical considerations applied in coping with this problem.For that we make use of the experimental data and theoretical analysis available for acceptor doped ceria. 展开更多
关键词 CeO_(2) surface defects metallic surface oxide reduction Sm doped CeO_(2) Pr doped CeO_(2)
下载PDF
Photodoping-Modified Charge Density Wave Phase Transition in WS_(2)/1T-TaS_(2) Heterostructure
18
作者 王瑞 丁建伟 +2 位作者 孙飞 赵继民 裘晓辉 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第5期144-170,共27页
Controlling collective electronic states hold great promise for development of innovative devices. Here, we experimentally detect the modification of the charge density wave(CDW) phase transition within a 1T-TaS_(2) l... Controlling collective electronic states hold great promise for development of innovative devices. Here, we experimentally detect the modification of the charge density wave(CDW) phase transition within a 1T-TaS_(2) layer in a WS_(2)/1T-TaS_(2) heterostructure using time-resolved ultrafast spectroscopy. Laser-induced charge transfer doping strongly suppresses the commensurate CDW phase, which results in a significant decrease in both the phase transition temperature(T_(c)) and phase transition stiffness. We interpret the phenomenon that photoinduced hole doping, when surpassing a critical threshold value of ~ 10^(18)cm^(-3), sharply decreases the phase transition energy barrier. Our results provide new insights into controlling the CDW phase transition, paving the way for optical-controlled novel devices based on CDW materials. 展开更多
关键词 doping TRANSITION TRANSITION
原文传递
Pillar effect induced by ultrahigh phosphorous/nitrogen doping enables graphene/MXene film with excellent cycling stability for alkali metal ion storage
19
作者 Meng Qin Yiwei Yao +5 位作者 Junjie Mao Chi Chen Kai Zhu Guiling Wang Dianxue Cao Jun Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期146-156,I0004,共12页
Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and... Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and long ion transfer distance.Herein,this paper aims to address the issue by introducing MXene through a simple and scalable method for assembling graphene and realizing ultrahigh P doping content.The findings reveal that MXene and P-C bonds have a "pillar effect" on the structure of graphene,and the P-C bond plays a primary role.In addition,N/P co-doping introduces abundant defects,providing more active sites for K^(+) storage and facilitating K^(+) adsorption.As expected,the developed ultrahigh phosphorous/nitrogen co-doped flexible reduced graphene oxide/MXene(NPrGM) electrode exhibits remarkable reversible discharge capacity(554 mA hg^(-1) at 0.05 A g^(-1)),impressive rate capability(178 mA h g^(-1) at 2 A g^(-1)),and robust cyclic stability(0.0005% decay per cycle after 10,000 cycles at 2 A g^(-1)).Furthermore,the assembled activated carbon‖NPrGM potassium-ion hybrid capacitor(PIHC) can deliver an impressive energy density of 131 W h kg^(-1) and stable cycling performance with 98.1% capacitance retention after5000 cycles at 1 A g^(-1).Such a new strategy will effectively promote the practical application of graphene materials in PIBs/PIHCs and open new avenues for the scalable development of flexible films based on two-dimensional materials for potential applications in energy storage,thermal interface,and electromagnetic shielding. 展开更多
关键词 GRAPHENE MXene Phosphorous doping Pillar effect Potassium-ion batteries
下载PDF
Progress in efficient doping of Al-rich AlGaN
20
作者 Jiaming Wang Fujun Xu +14 位作者 Lisheng Zhang Jing Lang Xuzhou Fang Ziyao Zhang Xueqi Guo Chen Ji Chengzhi Ji Fuyun Tan Xuelin Yang Xiangning Kang Zhixin Qin Ning Tang Xinqiang Wang Weikun Ge Bo Shen 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期10-20,共11页
The development of semiconductors is always accompanied by the progress in controllable doping techniques.Taking AlGaN-based ultraviolet(UV)emitters as an example,despite a peak wall-plug efficiency of 15.3%at the wav... The development of semiconductors is always accompanied by the progress in controllable doping techniques.Taking AlGaN-based ultraviolet(UV)emitters as an example,despite a peak wall-plug efficiency of 15.3%at the wavelength of 275 nm,there is still a huge gap in comparison with GaN-based visible light-emitting diodes(LEDs),mainly attributed to the inefficient doping of AlGaN with increase of the Al composition.First,p-doping of Al-rich AlGaN is a long-standing challenge and the low hole concentration seriously restricts the carrier injection efficiency.Although p-GaN cladding layers are widely adopted as a compromise,the high injection barrier of holes as well as the inevitable loss of light extraction cannot be neglected.While in terms of n-doping the main issue is the degradation of the electrical property when the Al composition exceeds 80%,resulting in a low electrical efficiency in sub-250 nm UV-LEDs.This review summarizes the recent advances and outlines the major challenges in the efficient doping of Al-rich AlGaN,meanwhile the corresponding approaches pursued to overcome the doping issues are discussed in detail. 展开更多
关键词 AlGaN-based UV-LEDs Al-rich AlGaN doping
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部