Joint inversion is one of the most effective methods for reducing non-uniqueness for geophysical inversion.The current joint inversion methods can be divided into the structural consistency constraint and petrophysica...Joint inversion is one of the most effective methods for reducing non-uniqueness for geophysical inversion.The current joint inversion methods can be divided into the structural consistency constraint and petrophysical consistency constraint methods,which are mutually independent.Currently,there is a need for joint inversion methods that can comprehensively consider the structural consistency constraints and petrophysical consistency constraints.This paper develops the structural similarity index(SSIM)as a new structural and petrophysical consistency constraint for the joint inversion of gravity and vertical gradient data.The SSIM constraint is in the form of a fraction,which may have analytical singularities.Therefore,converting the fractional form to the subtractive form can solve the problem of analytic singularity and finally form a modified structural consistency index of the joint inversion,which enhances the stability of the SSIM constraint applied to the joint inversion.Compared to the reconstructed results from the cross-gradient inversion,the proposed method presents good performance and stability.The SSIM algorithm is a new joint inversion method for petrophysical and structural constraints.It can promote the consistency of the recovered models from the distribution and the structure of the physical property values.Then,applications to synthetic data illustrate that the algorithm proposed in this paper can well process the synthetic data and acquire good reconstructed results.展开更多
Aeromagnetic gradient data needs to be reduced to the pole so that it can be better applied to geological interpretation through theoretical derivation.In this paper,we conduct research on the morphological characteri...Aeromagnetic gradient data needs to be reduced to the pole so that it can be better applied to geological interpretation through theoretical derivation.In this paper,we conduct research on the morphological characteristics of the total and horizontal gradient modules before and after reduction to the pole and design models at different latitudes,with consistent and inconsistent magnetic field direction and geological body magnetization direction.We discuss how to use the total gradient module and horizontal gradient module in geological interpretation.The reduced-to-the-pole(RTP) method is required for the horizontal gradient module method but not for the total gradient module.Finally,the conclusions derived from the theoretical models are verified through analysis of real data.The position determination of a geological body using the total gradient method,gradient data,or total-field data works better without RTP,ensuring data primitive authenticity.However,the horizontal gradient module should be reduced to the pole to determine the boundary of the geological body.Finally,the theoretical model is verified by actual data analysis.Both the total and horizontal gradient methods can be applied to geological interpretation.展开更多
Compared with traditional gravity measurement data,gravity gradient tensor data contain more high frequency information,which can be used to understand the earth's interior structure,mineral resources distribution...Compared with traditional gravity measurement data,gravity gradient tensor data contain more high frequency information,which can be used to understand the earth's interior structure,mineral resources distribution etc. In this study,the authors present an algorithm for inverting gravity gradiometer data to recover the three-dimensional( 3-D) distributions of density. Spatial gradient weighting was used to constrain the extent of the body horizontally and vertically. A more accurate inversion result can be obtained by combining the prior information into the weighting function and applying it in inversion. This method was tested on synthetic models and the inverted results showed that the resolution was significantly improved. Moreover,the algorithm was applied to the inversion of empirical data from a salt dome located in Texas,USA,which demonstrated the validity of the proposed method.展开更多
This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from t...This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from the Bouguer anomaly map, which is strongly affected by a regional gradient. The residual anomaly map generated provides information on the variation in subsurface density, but does not provide sufficient information, hence the interest in using filtering with the aim of highlighting the structures affecting the area of south-west Cameroon. Three interpretation methods were used: vertical gradient, horizontal gradient coupled with upward continuation and Euler deconvolution. The application of these treatments enabled us to map a large number of gravimetric lineaments materializing density discontinuities. These lineaments are organized along main preferential directions: NW-SE, NNE-SSW, ENE-WSW and secondary directions: NNW-SSE, NE-SW, NS and E-W. Euler solutions indicate depths of up to 7337 m. Thanks to the results of this research, significant information has been acquired, contributing to a deeper understanding of the structural composition of the study area. The resulting structural map vividly illustrates the major tectonic events that shaped the geological framework of the study area. It also serves as a guide for prospecting subsurface resources (water and hydrocarbons). .展开更多
The cross-gradients joint inversion technique has been applied to multiple geophysical data with a significant improvement on compatibility, but its numerical implementation for practical use is rarely discussed in th...The cross-gradients joint inversion technique has been applied to multiple geophysical data with a significant improvement on compatibility, but its numerical implementation for practical use is rarely discussed in the literature. We present a MATLAB-based three-dimensional cross-gradients joint inversion program with application to gravity and magnetic data. The input and output information was examined with care to create a rational, independent design of a graphical user interface (GUI) and computing kernel. For 3D visualization and data file operations, UBC-GIF tools are invoked using a series of I/O functions. Some key issues regarding the iterative joint inversion algorithm are also discussed: for instance, the forward difference of cross gradients, and matrix pseudo inverse computation. A synthetic example is employed to illustrate the whole process. Joint and separate inversions can be performed flexibly by switching the inversion mode. The resulting density model and susceptibility model demonstrate the correctness of the proposed program.展开更多
概念漂移是流数据挖掘领域中的一个重要且具有挑战性的难题.然而,目前的方法大多仅能够处理线性或简单的非线性映射,深度神经网络虽然有较强的非线性拟合能力,但在流数据挖掘任务中,每次只能在新得到的1个或一批样本上进行训练,学习模...概念漂移是流数据挖掘领域中的一个重要且具有挑战性的难题.然而,目前的方法大多仅能够处理线性或简单的非线性映射,深度神经网络虽然有较强的非线性拟合能力,但在流数据挖掘任务中,每次只能在新得到的1个或一批样本上进行训练,学习模型难以实时调整以适应动态变化的数据流.为解决上述问题,将梯度提升算法的纠错思想引入含概念漂移的流数据挖掘任务之中,提出了一种基于自适应深度集成网络的概念漂移收敛方法(concept drift convergence method based on adaptive deep ensemble networks,CD_ADEN).该模型集成多个浅层神经网络作为基学习器,后序基学习器在前序基学习器输出的基础上不断纠错,具有较高的实时泛化性能.此外,由于浅层神经网络有较快的收敛速度,因此所提出的模型能够较快地从概念漂移造成的精度下降中恢复.多个数据集上的实验结果表明,所提出的CD_ADEN方法平均实时精度有明显提高,相较于对比方法,平均实时精度有1%~5%的提升,且平均序值在7种典型的对比算法中排名第一.说明所提出的方法能够对前序输出进行纠错,且学习模型能够快速地从概念漂移造成的精度下降中恢复,提升了在线学习模型的实时泛化性能.展开更多
基金supported by the National Key Research and Development Program(Grant No.2021YFA0716100)the National Key Research and Development Program of China Project(Grant No.2018YFC0603502)+1 种基金the Henan Youth Science Fund Program(Grant No.212300410105)the provincial key R&D and promotion special project of Henan Province(Grant No.222102320279).
文摘Joint inversion is one of the most effective methods for reducing non-uniqueness for geophysical inversion.The current joint inversion methods can be divided into the structural consistency constraint and petrophysical consistency constraint methods,which are mutually independent.Currently,there is a need for joint inversion methods that can comprehensively consider the structural consistency constraints and petrophysical consistency constraints.This paper develops the structural similarity index(SSIM)as a new structural and petrophysical consistency constraint for the joint inversion of gravity and vertical gradient data.The SSIM constraint is in the form of a fraction,which may have analytical singularities.Therefore,converting the fractional form to the subtractive form can solve the problem of analytic singularity and finally form a modified structural consistency index of the joint inversion,which enhances the stability of the SSIM constraint applied to the joint inversion.Compared to the reconstructed results from the cross-gradient inversion,the proposed method presents good performance and stability.The SSIM algorithm is a new joint inversion method for petrophysical and structural constraints.It can promote the consistency of the recovered models from the distribution and the structure of the physical property values.Then,applications to synthetic data illustrate that the algorithm proposed in this paper can well process the synthetic data and acquire good reconstructed results.
基金surpported by the National 863 Program(Grant No.2013AA063901)
文摘Aeromagnetic gradient data needs to be reduced to the pole so that it can be better applied to geological interpretation through theoretical derivation.In this paper,we conduct research on the morphological characteristics of the total and horizontal gradient modules before and after reduction to the pole and design models at different latitudes,with consistent and inconsistent magnetic field direction and geological body magnetization direction.We discuss how to use the total gradient module and horizontal gradient module in geological interpretation.The reduced-to-the-pole(RTP) method is required for the horizontal gradient module method but not for the total gradient module.Finally,the conclusions derived from the theoretical models are verified through analysis of real data.The position determination of a geological body using the total gradient method,gradient data,or total-field data works better without RTP,ensuring data primitive authenticity.However,the horizontal gradient module should be reduced to the pole to determine the boundary of the geological body.Finally,the theoretical model is verified by actual data analysis.Both the total and horizontal gradient methods can be applied to geological interpretation.
基金Supported by Project of Natural Science Fund of Jilin Province(No.20180101312JC)
文摘Compared with traditional gravity measurement data,gravity gradient tensor data contain more high frequency information,which can be used to understand the earth's interior structure,mineral resources distribution etc. In this study,the authors present an algorithm for inverting gravity gradiometer data to recover the three-dimensional( 3-D) distributions of density. Spatial gradient weighting was used to constrain the extent of the body horizontally and vertically. A more accurate inversion result can be obtained by combining the prior information into the weighting function and applying it in inversion. This method was tested on synthetic models and the inverted results showed that the resolution was significantly improved. Moreover,the algorithm was applied to the inversion of empirical data from a salt dome located in Texas,USA,which demonstrated the validity of the proposed method.
文摘This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from the Bouguer anomaly map, which is strongly affected by a regional gradient. The residual anomaly map generated provides information on the variation in subsurface density, but does not provide sufficient information, hence the interest in using filtering with the aim of highlighting the structures affecting the area of south-west Cameroon. Three interpretation methods were used: vertical gradient, horizontal gradient coupled with upward continuation and Euler deconvolution. The application of these treatments enabled us to map a large number of gravimetric lineaments materializing density discontinuities. These lineaments are organized along main preferential directions: NW-SE, NNE-SSW, ENE-WSW and secondary directions: NNW-SSE, NE-SW, NS and E-W. Euler solutions indicate depths of up to 7337 m. Thanks to the results of this research, significant information has been acquired, contributing to a deeper understanding of the structural composition of the study area. The resulting structural map vividly illustrates the major tectonic events that shaped the geological framework of the study area. It also serves as a guide for prospecting subsurface resources (water and hydrocarbons). .
文摘The cross-gradients joint inversion technique has been applied to multiple geophysical data with a significant improvement on compatibility, but its numerical implementation for practical use is rarely discussed in the literature. We present a MATLAB-based three-dimensional cross-gradients joint inversion program with application to gravity and magnetic data. The input and output information was examined with care to create a rational, independent design of a graphical user interface (GUI) and computing kernel. For 3D visualization and data file operations, UBC-GIF tools are invoked using a series of I/O functions. Some key issues regarding the iterative joint inversion algorithm are also discussed: for instance, the forward difference of cross gradients, and matrix pseudo inverse computation. A synthetic example is employed to illustrate the whole process. Joint and separate inversions can be performed flexibly by switching the inversion mode. The resulting density model and susceptibility model demonstrate the correctness of the proposed program.
文摘概念漂移是流数据挖掘领域中的一个重要且具有挑战性的难题.然而,目前的方法大多仅能够处理线性或简单的非线性映射,深度神经网络虽然有较强的非线性拟合能力,但在流数据挖掘任务中,每次只能在新得到的1个或一批样本上进行训练,学习模型难以实时调整以适应动态变化的数据流.为解决上述问题,将梯度提升算法的纠错思想引入含概念漂移的流数据挖掘任务之中,提出了一种基于自适应深度集成网络的概念漂移收敛方法(concept drift convergence method based on adaptive deep ensemble networks,CD_ADEN).该模型集成多个浅层神经网络作为基学习器,后序基学习器在前序基学习器输出的基础上不断纠错,具有较高的实时泛化性能.此外,由于浅层神经网络有较快的收敛速度,因此所提出的模型能够较快地从概念漂移造成的精度下降中恢复.多个数据集上的实验结果表明,所提出的CD_ADEN方法平均实时精度有明显提高,相较于对比方法,平均实时精度有1%~5%的提升,且平均序值在7种典型的对比算法中排名第一.说明所提出的方法能够对前序输出进行纠错,且学习模型能够快速地从概念漂移造成的精度下降中恢复,提升了在线学习模型的实时泛化性能.