Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,p...Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,potassium persulfate(KPS)as the initiator to generate free radicals,and N,N`-methylenebisacrylamide(MBA)as cross-linking agent for cross-linking reaction.Simutaneously,the influence of individual factors on the water absorption is investigated,and these factors are mainly AA,AM,KPS,MBA,HPMC,and reaction temperature.The optimized conditions are obtained by the experiment repeating for several times.The water absorption multiplicity and salt absorption multiplicity under the conditions are 782.4 and 132.5 g/g,respectivity.Furthermore,the effects of different temperatures and salt concentrations on its water absorption,as well as the swelling kinetics of SAR are studied.It is indicated the water-absorbing swelling process is mainly caused by the difference in water osmotic pressure and Na+concentration inside and outside the cross-linked molecular structure of the resin,which is not only consistent with the quasi-secondary kinetic model,but also with the Fick diffusion model.展开更多
A theoretical method to calculate the mode of polyurethane(PU) prepolymers grafted to polyacrylic(PAC) was presented. Using hydroxyethyl acrylate(HEA) as coupling agent, polyurethane-acrylics(PU-AC) hybrid lat...A theoretical method to calculate the mode of polyurethane(PU) prepolymers grafted to polyacrylic(PAC) was presented. Using hydroxyethyl acrylate(HEA) as coupling agent, polyurethane-acrylics(PU-AC) hybrid latexes were prepared with varying HEA level and the reaction of HEA with PU prepolymers at different temperatures, and PU grafted to PAC was experimentally determined. The results show that PU grafted to PAC regularly increased, and the non-grafted and linear free PU regularly decreased with increase in HEA/NCO(isocyanate group). The grafted PU on PAC was not proportional to HEA. More than half of linear PU prepolymers were grafted to PAC when HEA was at a low level with HEA/NCO at 0.33. While grafted PU increased to 84.80%(mass fraction), when HEA/NCO increased to 1.0. The results were interpreted based on the theoretical calculation of PU grafted to PAC by the present method.展开更多
The monomer methacrylamido propyl trimethy ammonium chloride( MAPTAC) was copolymerized onto the fiber surface of polypropylene( PP) nonwoven fabric under ultroviole radiation. The weak acid red GN dye adsorption and ...The monomer methacrylamido propyl trimethy ammonium chloride( MAPTAC) was copolymerized onto the fiber surface of polypropylene( PP) nonwoven fabric under ultroviole radiation. The weak acid red GN dye adsorption and adsorptive filtration performance of the resulted PP fabrics were investigated.The results showed that the grafting copolymerization preferred to happen in the inner layer of the fabrics. The water flux of the grafted fabrics decreases with the increase of grafting yield. The collapse of the grafted polymer chains causes the flux increase in acidic condition,or vice versa at alkaline version. The coiling of the polyelectrolyte chains upon the dye adsorption seems to violate the routine assumption of the rigid substrate, and this gets the adsorption energy constant negative. The static adsorption process follows the Lagergren's pseudo-second order kinetic equation. The removals of circa( ca.) 100% of the total permeation volume3 500 mL simulated dye wastewater was reached during permeation.The dye adsorbed fabrics were regenerated by the mixed media of the cationic surfactant / ethanol /water. The grafted fabric assumes stable fabric integrity and stability during permeation,and presents excellent dye adsorption capacity,easy desorption, and repeatable utilization.展开更多
Two copolymers containing p-tolylcarbamoyl pendant group poly (MAMT-co-VAc) and poly(MAMT-co-MA) were synthesized f and the graft copolymerization of AAM onto these two func-tional copolymers films initiated with ceri...Two copolymers containing p-tolylcarbamoyl pendant group poly (MAMT-co-VAc) and poly(MAMT-co-MA) were synthesized f and the graft copolymerization of AAM onto these two func-tional copolymers films initiated with ceric salt were carried out in aqueous solution for variousperiods at 30℃. The formation of graft copolymer was verified by water absorption, ESCA andSEM photographs. Based on the results of the study of the initiation mechanism of model com-pounds and ceric salt systems, the reaction mechanism of the graft copolymerization initiated withceric salt was proposed.展开更多
A novel radical grafting copolymerization process has been designed for water-soluble polymers which avoids the problems of conducting grafting reactions in highly viscous polymerization media. A variety of water-solu...A novel radical grafting copolymerization process has been designed for water-soluble polymers which avoids the problems of conducting grafting reactions in highly viscous polymerization media. A variety of water-soluble graft copolymers having starch or dextran as the backbone chain with grafted side chains of polyacrylamide (—AM—), poly (acrylic acid ) (—AA—), poly (acrylamide-co-acrylic acid) (—AM—NH_4AA—) or poly ( acrylamide-co-2-acryiamido-2-methyl-l-propanesulphinic acid) (—AM—AMPS—) have been synthesized in gel droplets using aceric sulphate redox initiator, and their properties compared. The reaction conditions were optimized taking into account reaction kinetic data and the observed properties of the products produced under different reaction conditions. The effects of the ratios of [backbone]/[graft monomer], [ AM]/[ AA]/[AMPS] , [Ce^(4+)]/[ S_2O_8=] and pH value on the reaction rate , conversion, grafting degree, grafted chain length and the product molecular weight have been investigated.展开更多
This paper deals with graft copolymerization of acrylic acid (AA) onto Xinjiang fine wool.fiber in aqueous medium initiated by gamma rays. Graft copolymerization was carried out by themutual irradiation method in limi...This paper deals with graft copolymerization of acrylic acid (AA) onto Xinjiang fine wool.fiber in aqueous medium initiated by gamma rays. Graft copolymerization was carried out by themutual irradiation method in limited air. Percent grafting and percent efficiency have been deter-mined as a function of total dose, dose rate, concentration of monomer, wool weight and reactiontemperature. Graft copolymers are characterized with infrared (IR) spectroscopy, scanning elec-tron microscopy (SEM), and X--ray diffractometer. Properties of the grafts were studied, and compared with the virgin fiber.展开更多
The kinetics of melt grafting acrylic acid (AA) onto linear low density polyethylene (LLDPE) by using reactive extrusion was investigated. The polymeric peroxides (POOP and POOH) generated by electron beam irrad...The kinetics of melt grafting acrylic acid (AA) onto linear low density polyethylene (LLDPE) by using reactive extrusion was investigated. The polymeric peroxides (POOP and POOH) generated by electron beam irradiation were used to initiate the graft reaction. The samples taken out from the barrel at five ports along screw axis were analyzed by FTIR. The spectra show that both the graft copolymerization and homopolymerization proceed in two stages: the graft degree (or mass of homopolymer) increases linearly with the reaction time in the initial stage, and then gradually in the second stage. The rate of graft copolymerization Rg is always faster than that of homopolymerization Rh in the present system and the activation energy is 131 kJ · mol^-1 for graft copolymerization and 127 kJ · mol^-1 for homopolymeirzation. These results were interpreted in terms of solubility and diffusion of monomer, as well as the reactivity and the concentration of reactive species. The relationships between reaction rate and monomer concentration and peroxide concentration were found to be: Rg ∞ [M]^1.46[POOP+POOH]^0.53 and Rh ∞ [M] ^1.08[POOH]^0.51, which indicate that the addition of monomer to polymeric radicals is a slow step for the graft copolymerization.展开更多
The starch-g-lactic acid copolymer was synthesized with catalysis of sulfuric acid by onestep process, and the structure of starch-g-lactic acid copolymer was characterized by means of IR, 13C-NMR, HMBC, XRD, and SEM....The starch-g-lactic acid copolymer was synthesized with catalysis of sulfuric acid by onestep process, and the structure of starch-g-lactic acid copolymer was characterized by means of IR, 13C-NMR, HMBC, XRD, and SEM. The experimental results show that the maximum grafting degree of starch can reach 75% when the starch-g-lactic acid copolymer is activated at 80 ℃ for 2 h and reacted with lactic acid at 90 ℃ for 4 h in vacuum.展开更多
A series of novel chitosan-based magnetic flocculants FS@CTS-P(AM-DMC)was prepared by molecular structure control.The characterization results showed that FS@CTS-P(AM-DMC)had a uniform size of about 21.46 nm,featuring...A series of novel chitosan-based magnetic flocculants FS@CTS-P(AM-DMC)was prepared by molecular structure control.The characterization results showed that FS@CTS-P(AM-DMC)had a uniform size of about 21.46 nm,featuring a typical core-shell structure,and the average coating layer thickness of CTS-P(AM-DMC)was about 5.03 nm.FS@CTS-P(AM-DMC)exhibited excellent flocculation performance for kaolin suspension,achieved 92.54% turbidity removal efficiency under dosage of 150 mg/L,pH 7.0,even at high turbidity(2000 NTU)with a removal efficiency of 96.96%.The flocculation mechanism was revealed to be dominated by charge neutralization under acidic and neutral conditions,while adsorption and bridging effects play an important role in alkaline environments.The properties of magnetic aggregates during flocculation,breakage,and regeneration were studied at different pH levels and dosages.In the process of magnetophoretic,magnetic particles collide and adsorb with kaolin particles continuously due to magnetic and electrostatic attraction,transform into magnetic chain clusters,and then further form three-dimensional network magnetic aggregates that can capture free kaolin particles and other chain clusters.Particle image velocimetry confirmed the formation of eddy current of magnetic flocs and experienced three stages:acceleration,stabilization,and deceleration.展开更多
By means of initiation of the high temperature and shearing stress of an extruder,we synthesized the graft copolymer of starch with acrylate monomers based on the simple dry method.The eff...By means of initiation of the high temperature and shearing stress of an extruder,we synthesized the graft copolymer of starch with acrylate monomers based on the simple dry method.The effects of reaction conditions on graft copolymerization were discussed. Grafted starch used as a compatibilizer for the blend system of starch and polyethylene was further investigated. The results indicate that grafted starch as a compatibilizer can improve the mechanical properties and rheologic properties of the blend of starch and polyethylene.展开更多
[Objective] The paper was to study the structure and performance of starch and styrene graft copolymer. [Method] The microscopic structure of corn starch and styrene graft copolymer was analyzed by using infrared spec...[Objective] The paper was to study the structure and performance of starch and styrene graft copolymer. [Method] The microscopic structure of corn starch and styrene graft copolymer was analyzed by using infrared spectrum and scanning electron microscope, and the property of starch and styrene graft copoly- mer was confirmed through grinding experiment, tensile strength, water absorption rate, hot water resistance properties and enzymatic properties analysis. [Result] The starch and styrene graft copolymer had the properties of thermoplastic and microbial degradation. IConclusion] The starch and styrene graft copolymer is expected to be developed as a biodegradable material.展开更多
A new quaternary ammonium salt monomer was synthesized and a quaternary amination of lignin( noted as QL), with the monomer was carried out by grafting copolymerization. The products were characterized by Fourier Tr...A new quaternary ammonium salt monomer was synthesized and a quaternary amination of lignin( noted as QL), with the monomer was carried out by grafting copolymerization. The products were characterized by Fourier Transform Infrared spectroscopy( FTIR). The experimental results indicate that the yield of the monomer was 99.06%, and the conversion of the monomer and the grafting yield of QL were 93.69% and 185.78%, respectively. The feasibility of QL as the flocculant to be applied in color removal of five artificial dyes, erioehrome black T(dye A), gongo red(dye B ), direct fast black G (dye C ), cuprofix blue green B (dye D ), and acid black ATT (dye E ) was examined. Results show that OL exhihits the favorable flocculation nerformance and high stability.展开更多
A stable epoxy emulsion was prepared with epoxy resin (EP) as raw material, 2-acrylamido-2- methyl-l-propanesulfonic acid (AMPS) as modifier and benzoyl peroxide as initiator. By criterion of yield of the copolyme...A stable epoxy emulsion was prepared with epoxy resin (EP) as raw material, 2-acrylamido-2- methyl-l-propanesulfonic acid (AMPS) as modifier and benzoyl peroxide as initiator. By criterion of yield of the copolymer AMPS-EP, water-solubility, change of the acid value and intrinsic viscosity [η] along with reaction time, the copolymerization course was deduced. It is found that during the process, AMPS takes part in both the grafting copolymerization with epoxy principal chain and the ring-opening polyaddition with epoxy group. It is also discovered that the yield of AMPS-EP and water dispersing varies with reaction time. When it reaches 1.5 h, AMPS-EP can obtain good water-solubility; but the water-solubility will go bad gradually if it exceeds 3.5 h.. R spectrum analysis indicates that partial epoxy group partially remains and the others create sulfonic ester.展开更多
In this paper, the capabilities of grafting acrylonitrile (AN) onto starch initiated by Fe(III)-TU, V(V)-TU, Cr(VI)-TU, Mn(VII)-TU redox systems were compared in the presence of sulfuric acid of different concentratio...In this paper, the capabilities of grafting acrylonitrile (AN) onto starch initiated by Fe(III)-TU, V(V)-TU, Cr(VI)-TU, Mn(VII)-TU redox systems were compared in the presence of sulfuric acid of different concentrations. It was shown that the grafting capability of Mn(VII)-TU is the highest in these initiating systems. Using Mn (VII-TU as initiator, the effects of various acids (HClO4, H2SO4, HNO3, HCl) on the graft copolymerization of acrylonitrile onto starch were discussed, and the capabilities of graft copolymerization of methyl methacrylate (MMA), acrylamide (AM), acrylic acid (AA) onto starch were investigated. The experimental results show that the order of the influences of different acids is HClO4 > H2SO4 > HNO3 > HCl, and the order of grafting capabilities of different monomers grafted onto starch is MMA > AN > AM > AA. The structure and morphology of graft, copolymers were studied with infrared spectroscopy and scanning electron microscopy. The size, shape and roughness of surface of the grafted starch granules are changed after grafting.展开更多
A super-absorbent polymer is prepared by graft polymerizing acrylamide (AM) onto potato starch using eerie ammonium nitrate (CAN) and N, N'-methylene-bis-acrylamide (bisAM) as an initiator and cross-linking agent ...A super-absorbent polymer is prepared by graft polymerizing acrylamide (AM) onto potato starch using eerie ammonium nitrate (CAN) and N, N'-methylene-bis-acrylamide (bisAM) as an initiator and cross-linking agent respectively, and then subjecting the potato starch- poly(acrylamide) (PAM) graft copolymer (SPAM) to alkaline saponification. The water absorbency (WA) of the sample is nearly 5000 g H2O/g for dry sample in 24 h at room temperature and is far larger than that of reported in the literature([1]). The variables affecting the WA were investigated and optimiz;ed, they were: concentrations of potato starch, AM, CAN and bisAM were 26.3 g/L, 1.14 mol/L, 10.3 mmol/L and 0.53 mmol/L, respectively. The amount of sodium hydroxide was 15 g and the temperatures of graft copolymerization and saponification reactions were 60 degrees C and 95 degrees C. The time of graft copolymerization and saponification reactions was 2 h, respectively.展开更多
The copolymers were formed by the graft copolymerization of PVC with acrylic rare earth. The principle and method of the graft copolymerization of PVC and acrylic rare earth were discussed. The graft copolymers were c...The copolymers were formed by the graft copolymerization of PVC with acrylic rare earth. The principle and method of the graft copolymerization of PVC and acrylic rare earth were discussed. The graft copolymers were characterized by FT-IR spectra and scanning electron microscope (SEM).The thermal stability of the graft-copolymers was studied by thermogravimetric analysis (TG). The experiment results show that the thermal resistance and toughness of the graft copolymers are obviously enhanced.展开更多
Acryloyl terminated Poly (ethyleneoxide)macromonomers (PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (e...Acryloyl terminated Poly (ethyleneoxide)macromonomers (PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (ethylene oxide)graft copolymer containing both microphase separated and PEO side chain structures has been synthesized from radical copolymerization of PEO-A macromonomer with styrene. After careful purification by a newly-developed method called 'selective dissolution', the well-defined structure of the purified copolymers was confirmed by IR, ~1H-NMR and GPC. Various experimental parameters controlling the copolymerization were studied in detail. The results indicated that the feed ratio of styrene to macromonomer(S/M) was the most important determining factor for the composition of the copolymers. A detailed 'comb- model' was proposed to describe the molecular structure of the graft copolymers. Finally, this amphiphilic graft copolymers may readily form microphase separated structures as clearly indicated by transmission electron microscopy.展开更多
A new casting binder was prepared based on an animal bone glue. In order to overcome the disadvantages of the animal glue agglomeration at room temperature, an alkaline decomposition process was used, with acrylic aci...A new casting binder was prepared based on an animal bone glue. In order to overcome the disadvantages of the animal glue agglomeration at room temperature, an alkaline decomposition process was used, with acrylic acid, ammonium persulfate, and glucose as modifiers of the animal glue to obtain a high strength of binding. In the process of alkaline decomposition, Na OH was used as the catalyst with the addition of 3, 4, 5, 6, 7, 8wt.%, respectively, into 100 g of animal glue and the alkaline decomposition temperature was set for 30, 40, 50, 60, and 70 °C, with an identical decomposition time of 30 min, in order to reduce viscosity of the animal glue and maintain a liquid state at room temperature. The added acrylic acid, ammonium persulfate and glucose were determined through an orthogonal experiment. The experimental results are as fol ows: the optimal amount of NaOH addition is 5wt.%; alkaline decomposition temperature is 50 °C; the optimal weight ratio of three kinds of modifiers to animal glue is acrylic acid : ammonium persulfate : glucose : animal glue = 30:3:15:100; the modification reaction should be performed at 75 °C with a reaction time of 90 min. With the addition of 3% binder to sand, a final tensile strength of about 3.36 MPa and surface tension value of about 25.387 m N·m^(-1) are achieved; the gas evolution at 850 °C is 19 ml·g^(-1) and the residual strength after high temperature(700 ■× 10 min) is 0 MPa. Finally, the new binder was characterized and analyzed by means of element analysis and an IR infrared spectrum.展开更多
The chemical modification of the surface of calcium alginate gel beads (CAGB) via grafting copolymerization with vinyl acetate (VAc) was studied. The optimum reaction conditions with activation and graft copolymerizat...The chemical modification of the surface of calcium alginate gel beads (CAGB) via grafting copolymerization with vinyl acetate (VAc) was studied. The optimum reaction conditions with activation and graft copolymerization two steps were explored. First, 5 grams CAGB with 2.5 mm initial diameter was initiated with 0.0493 mol/L K2S2O8 at 51 °C for 30 min in 15 mL 1 % PVA/H2O. Then 4.34 moi/L VAc was added dropwise and the reaction was allowed to proce at 48 °C for 3 h. The grafting efficiency could come up to 30%. It was found the stability of modified CAGB in the air and in electrolyte solutions was greatly improved.展开更多
Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chit...Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chitosan, (2) poly (D,L-lactic acid)(PLA) with low molecular weight can be linked to the amino group by coupling activated PLA to trimethylsilyl-chitosan. Two graft copolymers had hydrophilic-hydrophobic character and can be applied as carriers for drug delivery.展开更多
基金Funded by National Natural Science Foundation of China(No.52174206)Shaanxi Provincial Department of Education Youth Innovation Team Construction Scientific Research Plan Project(No.21JP074)Shaanxi Provincial Department of Education Youth Innovation Team Scientific Research Plan Project(No.22JP047)。
文摘Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,potassium persulfate(KPS)as the initiator to generate free radicals,and N,N`-methylenebisacrylamide(MBA)as cross-linking agent for cross-linking reaction.Simutaneously,the influence of individual factors on the water absorption is investigated,and these factors are mainly AA,AM,KPS,MBA,HPMC,and reaction temperature.The optimized conditions are obtained by the experiment repeating for several times.The water absorption multiplicity and salt absorption multiplicity under the conditions are 782.4 and 132.5 g/g,respectivity.Furthermore,the effects of different temperatures and salt concentrations on its water absorption,as well as the swelling kinetics of SAR are studied.It is indicated the water-absorbing swelling process is mainly caused by the difference in water osmotic pressure and Na+concentration inside and outside the cross-linked molecular structure of the resin,which is not only consistent with the quasi-secondary kinetic model,but also with the Fick diffusion model.
基金Supported by the National Natural Science Foundation of China(No20874040)the Research Fund from University of Jinan, China(NoXKY0721)
文摘A theoretical method to calculate the mode of polyurethane(PU) prepolymers grafted to polyacrylic(PAC) was presented. Using hydroxyethyl acrylate(HEA) as coupling agent, polyurethane-acrylics(PU-AC) hybrid latexes were prepared with varying HEA level and the reaction of HEA with PU prepolymers at different temperatures, and PU grafted to PAC was experimentally determined. The results show that PU grafted to PAC regularly increased, and the non-grafted and linear free PU regularly decreased with increase in HEA/NCO(isocyanate group). The grafted PU on PAC was not proportional to HEA. More than half of linear PU prepolymers were grafted to PAC when HEA was at a low level with HEA/NCO at 0.33. While grafted PU increased to 84.80%(mass fraction), when HEA/NCO increased to 1.0. The results were interpreted based on the theoretical calculation of PU grafted to PAC by the present method.
基金the Priority Academic Development Program for Textile Science and Textile Engineering of Jiangsu Higher Education Institutions,Chinathe Environmental Protection Department of Jiangsu Province,China(No.2012009)Suzhou Municipal Government,China(No.SYG201202)
文摘The monomer methacrylamido propyl trimethy ammonium chloride( MAPTAC) was copolymerized onto the fiber surface of polypropylene( PP) nonwoven fabric under ultroviole radiation. The weak acid red GN dye adsorption and adsorptive filtration performance of the resulted PP fabrics were investigated.The results showed that the grafting copolymerization preferred to happen in the inner layer of the fabrics. The water flux of the grafted fabrics decreases with the increase of grafting yield. The collapse of the grafted polymer chains causes the flux increase in acidic condition,or vice versa at alkaline version. The coiling of the polyelectrolyte chains upon the dye adsorption seems to violate the routine assumption of the rigid substrate, and this gets the adsorption energy constant negative. The static adsorption process follows the Lagergren's pseudo-second order kinetic equation. The removals of circa( ca.) 100% of the total permeation volume3 500 mL simulated dye wastewater was reached during permeation.The dye adsorbed fabrics were regenerated by the mixed media of the cationic surfactant / ethanol /water. The grafted fabric assumes stable fabric integrity and stability during permeation,and presents excellent dye adsorption capacity,easy desorption, and repeatable utilization.
文摘Two copolymers containing p-tolylcarbamoyl pendant group poly (MAMT-co-VAc) and poly(MAMT-co-MA) were synthesized f and the graft copolymerization of AAM onto these two func-tional copolymers films initiated with ceric salt were carried out in aqueous solution for variousperiods at 30℃. The formation of graft copolymer was verified by water absorption, ESCA andSEM photographs. Based on the results of the study of the initiation mechanism of model com-pounds and ceric salt systems, the reaction mechanism of the graft copolymerization initiated withceric salt was proposed.
文摘A novel radical grafting copolymerization process has been designed for water-soluble polymers which avoids the problems of conducting grafting reactions in highly viscous polymerization media. A variety of water-soluble graft copolymers having starch or dextran as the backbone chain with grafted side chains of polyacrylamide (—AM—), poly (acrylic acid ) (—AA—), poly (acrylamide-co-acrylic acid) (—AM—NH_4AA—) or poly ( acrylamide-co-2-acryiamido-2-methyl-l-propanesulphinic acid) (—AM—AMPS—) have been synthesized in gel droplets using aceric sulphate redox initiator, and their properties compared. The reaction conditions were optimized taking into account reaction kinetic data and the observed properties of the products produced under different reaction conditions. The effects of the ratios of [backbone]/[graft monomer], [ AM]/[ AA]/[AMPS] , [Ce^(4+)]/[ S_2O_8=] and pH value on the reaction rate , conversion, grafting degree, grafted chain length and the product molecular weight have been investigated.
基金The project was supported by The National Natural Science Foundation of China.
文摘This paper deals with graft copolymerization of acrylic acid (AA) onto Xinjiang fine wool.fiber in aqueous medium initiated by gamma rays. Graft copolymerization was carried out by themutual irradiation method in limited air. Percent grafting and percent efficiency have been deter-mined as a function of total dose, dose rate, concentration of monomer, wool weight and reactiontemperature. Graft copolymers are characterized with infrared (IR) spectroscopy, scanning elec-tron microscopy (SEM), and X--ray diffractometer. Properties of the grafts were studied, and compared with the virgin fiber.
基金This work was supported by the National Natural Science Foundation of China(No.50390090).
文摘The kinetics of melt grafting acrylic acid (AA) onto linear low density polyethylene (LLDPE) by using reactive extrusion was investigated. The polymeric peroxides (POOP and POOH) generated by electron beam irradiation were used to initiate the graft reaction. The samples taken out from the barrel at five ports along screw axis were analyzed by FTIR. The spectra show that both the graft copolymerization and homopolymerization proceed in two stages: the graft degree (or mass of homopolymer) increases linearly with the reaction time in the initial stage, and then gradually in the second stage. The rate of graft copolymerization Rg is always faster than that of homopolymerization Rh in the present system and the activation energy is 131 kJ · mol^-1 for graft copolymerization and 127 kJ · mol^-1 for homopolymeirzation. These results were interpreted in terms of solubility and diffusion of monomer, as well as the reactivity and the concentration of reactive species. The relationships between reaction rate and monomer concentration and peroxide concentration were found to be: Rg ∞ [M]^1.46[POOP+POOH]^0.53 and Rh ∞ [M] ^1.08[POOH]^0.51, which indicate that the addition of monomer to polymeric radicals is a slow step for the graft copolymerization.
文摘The starch-g-lactic acid copolymer was synthesized with catalysis of sulfuric acid by onestep process, and the structure of starch-g-lactic acid copolymer was characterized by means of IR, 13C-NMR, HMBC, XRD, and SEM. The experimental results show that the maximum grafting degree of starch can reach 75% when the starch-g-lactic acid copolymer is activated at 80 ℃ for 2 h and reacted with lactic acid at 90 ℃ for 4 h in vacuum.
基金supported by the National Natural Science Foundation of China(No.51672028)the Fundamental Research Funds for the Central Universities(Nos.2015ZCQ-HJ-02 and 2015PY-08)。
文摘A series of novel chitosan-based magnetic flocculants FS@CTS-P(AM-DMC)was prepared by molecular structure control.The characterization results showed that FS@CTS-P(AM-DMC)had a uniform size of about 21.46 nm,featuring a typical core-shell structure,and the average coating layer thickness of CTS-P(AM-DMC)was about 5.03 nm.FS@CTS-P(AM-DMC)exhibited excellent flocculation performance for kaolin suspension,achieved 92.54% turbidity removal efficiency under dosage of 150 mg/L,pH 7.0,even at high turbidity(2000 NTU)with a removal efficiency of 96.96%.The flocculation mechanism was revealed to be dominated by charge neutralization under acidic and neutral conditions,while adsorption and bridging effects play an important role in alkaline environments.The properties of magnetic aggregates during flocculation,breakage,and regeneration were studied at different pH levels and dosages.In the process of magnetophoretic,magnetic particles collide and adsorb with kaolin particles continuously due to magnetic and electrostatic attraction,transform into magnetic chain clusters,and then further form three-dimensional network magnetic aggregates that can capture free kaolin particles and other chain clusters.Particle image velocimetry confirmed the formation of eddy current of magnetic flocs and experienced three stages:acceleration,stabilization,and deceleration.
文摘By means of initiation of the high temperature and shearing stress of an extruder,we synthesized the graft copolymer of starch with acrylate monomers based on the simple dry method.The effects of reaction conditions on graft copolymerization were discussed. Grafted starch used as a compatibilizer for the blend system of starch and polyethylene was further investigated. The results indicate that grafted starch as a compatibilizer can improve the mechanical properties and rheologic properties of the blend of starch and polyethylene.
文摘[Objective] The paper was to study the structure and performance of starch and styrene graft copolymer. [Method] The microscopic structure of corn starch and styrene graft copolymer was analyzed by using infrared spectrum and scanning electron microscope, and the property of starch and styrene graft copoly- mer was confirmed through grinding experiment, tensile strength, water absorption rate, hot water resistance properties and enzymatic properties analysis. [Result] The starch and styrene graft copolymer had the properties of thermoplastic and microbial degradation. IConclusion] The starch and styrene graft copolymer is expected to be developed as a biodegradable material.
基金Supported by the National Nature Science Technology Item of of China(No.2005DC105005-01).
文摘A new quaternary ammonium salt monomer was synthesized and a quaternary amination of lignin( noted as QL), with the monomer was carried out by grafting copolymerization. The products were characterized by Fourier Transform Infrared spectroscopy( FTIR). The experimental results indicate that the yield of the monomer was 99.06%, and the conversion of the monomer and the grafting yield of QL were 93.69% and 185.78%, respectively. The feasibility of QL as the flocculant to be applied in color removal of five artificial dyes, erioehrome black T(dye A), gongo red(dye B ), direct fast black G (dye C ), cuprofix blue green B (dye D ), and acid black ATT (dye E ) was examined. Results show that OL exhihits the favorable flocculation nerformance and high stability.
文摘A stable epoxy emulsion was prepared with epoxy resin (EP) as raw material, 2-acrylamido-2- methyl-l-propanesulfonic acid (AMPS) as modifier and benzoyl peroxide as initiator. By criterion of yield of the copolymer AMPS-EP, water-solubility, change of the acid value and intrinsic viscosity [η] along with reaction time, the copolymerization course was deduced. It is found that during the process, AMPS takes part in both the grafting copolymerization with epoxy principal chain and the ring-opening polyaddition with epoxy group. It is also discovered that the yield of AMPS-EP and water dispersing varies with reaction time. When it reaches 1.5 h, AMPS-EP can obtain good water-solubility; but the water-solubility will go bad gradually if it exceeds 3.5 h.. R spectrum analysis indicates that partial epoxy group partially remains and the others create sulfonic ester.
文摘In this paper, the capabilities of grafting acrylonitrile (AN) onto starch initiated by Fe(III)-TU, V(V)-TU, Cr(VI)-TU, Mn(VII)-TU redox systems were compared in the presence of sulfuric acid of different concentrations. It was shown that the grafting capability of Mn(VII)-TU is the highest in these initiating systems. Using Mn (VII-TU as initiator, the effects of various acids (HClO4, H2SO4, HNO3, HCl) on the graft copolymerization of acrylonitrile onto starch were discussed, and the capabilities of graft copolymerization of methyl methacrylate (MMA), acrylamide (AM), acrylic acid (AA) onto starch were investigated. The experimental results show that the order of the influences of different acids is HClO4 > H2SO4 > HNO3 > HCl, and the order of grafting capabilities of different monomers grafted onto starch is MMA > AN > AM > AA. The structure and morphology of graft, copolymers were studied with infrared spectroscopy and scanning electron microscopy. The size, shape and roughness of surface of the grafted starch granules are changed after grafting.
文摘A super-absorbent polymer is prepared by graft polymerizing acrylamide (AM) onto potato starch using eerie ammonium nitrate (CAN) and N, N'-methylene-bis-acrylamide (bisAM) as an initiator and cross-linking agent respectively, and then subjecting the potato starch- poly(acrylamide) (PAM) graft copolymer (SPAM) to alkaline saponification. The water absorbency (WA) of the sample is nearly 5000 g H2O/g for dry sample in 24 h at room temperature and is far larger than that of reported in the literature([1]). The variables affecting the WA were investigated and optimiz;ed, they were: concentrations of potato starch, AM, CAN and bisAM were 26.3 g/L, 1.14 mol/L, 10.3 mmol/L and 0.53 mmol/L, respectively. The amount of sodium hydroxide was 15 g and the temperatures of graft copolymerization and saponification reactions were 60 degrees C and 95 degrees C. The time of graft copolymerization and saponification reactions was 2 h, respectively.
文摘The copolymers were formed by the graft copolymerization of PVC with acrylic rare earth. The principle and method of the graft copolymerization of PVC and acrylic rare earth were discussed. The graft copolymers were characterized by FT-IR spectra and scanning electron microscope (SEM).The thermal stability of the graft-copolymers was studied by thermogravimetric analysis (TG). The experiment results show that the thermal resistance and toughness of the graft copolymers are obviously enhanced.
基金Supported by the National Natural Science Foundation of China and the State Education Committee of China
文摘Acryloyl terminated Poly (ethyleneoxide)macromonomers (PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (ethylene oxide)graft copolymer containing both microphase separated and PEO side chain structures has been synthesized from radical copolymerization of PEO-A macromonomer with styrene. After careful purification by a newly-developed method called 'selective dissolution', the well-defined structure of the purified copolymers was confirmed by IR, ~1H-NMR and GPC. Various experimental parameters controlling the copolymerization were studied in detail. The results indicated that the feed ratio of styrene to macromonomer(S/M) was the most important determining factor for the composition of the copolymers. A detailed 'comb- model' was proposed to describe the molecular structure of the graft copolymers. Finally, this amphiphilic graft copolymers may readily form microphase separated structures as clearly indicated by transmission electron microscopy.
文摘A new casting binder was prepared based on an animal bone glue. In order to overcome the disadvantages of the animal glue agglomeration at room temperature, an alkaline decomposition process was used, with acrylic acid, ammonium persulfate, and glucose as modifiers of the animal glue to obtain a high strength of binding. In the process of alkaline decomposition, Na OH was used as the catalyst with the addition of 3, 4, 5, 6, 7, 8wt.%, respectively, into 100 g of animal glue and the alkaline decomposition temperature was set for 30, 40, 50, 60, and 70 °C, with an identical decomposition time of 30 min, in order to reduce viscosity of the animal glue and maintain a liquid state at room temperature. The added acrylic acid, ammonium persulfate and glucose were determined through an orthogonal experiment. The experimental results are as fol ows: the optimal amount of NaOH addition is 5wt.%; alkaline decomposition temperature is 50 °C; the optimal weight ratio of three kinds of modifiers to animal glue is acrylic acid : ammonium persulfate : glucose : animal glue = 30:3:15:100; the modification reaction should be performed at 75 °C with a reaction time of 90 min. With the addition of 3% binder to sand, a final tensile strength of about 3.36 MPa and surface tension value of about 25.387 m N·m^(-1) are achieved; the gas evolution at 850 °C is 19 ml·g^(-1) and the residual strength after high temperature(700 ■× 10 min) is 0 MPa. Finally, the new binder was characterized and analyzed by means of element analysis and an IR infrared spectrum.
基金This work was supported by the Young Scientist & Technician Creation Item sponsored by Fujian Province (No. 2002J021)and Scientific Research Fund Sponsored by Huaqiao University.
文摘The chemical modification of the surface of calcium alginate gel beads (CAGB) via grafting copolymerization with vinyl acetate (VAc) was studied. The optimum reaction conditions with activation and graft copolymerization two steps were explored. First, 5 grams CAGB with 2.5 mm initial diameter was initiated with 0.0493 mol/L K2S2O8 at 51 °C for 30 min in 15 mL 1 % PVA/H2O. Then 4.34 moi/L VAc was added dropwise and the reaction was allowed to proce at 48 °C for 3 h. The grafting efficiency could come up to 30%. It was found the stability of modified CAGB in the air and in electrolyte solutions was greatly improved.
文摘Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chitosan, (2) poly (D,L-lactic acid)(PLA) with low molecular weight can be linked to the amino group by coupling activated PLA to trimethylsilyl-chitosan. Two graft copolymers had hydrophilic-hydrophobic character and can be applied as carriers for drug delivery.