With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation sa...With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation satellite system/inertial navigation system(GNSS/INS)integrated navigation systems can provide high-precision navigation information continuously.However,when this system is applied to indoor or GNSS-denied environments,such as outdoor substations with strong electromagnetic interference and complex dense spaces,it is often unable to obtain high-precision GNSS positioning data.The positioning and orientation errors will diverge and accumulate rapidly,which cannot meet the high-precision localization requirements in large-scale and long-distance navigation scenarios.This paper proposes a method of high-precision state estimation with fusion of GNSS/INS/Vision using a nonlinear optimizer factor graph optimization as the basis for multi-source optimization.Through the collected experimental data and simulation results,this system shows good performance in the indoor environment and the environment with partial GNSS signal loss.展开更多
In this paper,we consider the NP-hard problem of finding the minimum dominant resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of dista...In this paper,we consider the NP-hard problem of finding the minimum dominant resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the vertices in B.A resolving set is dominating if every vertex of G that does not belong to B is a neighbor to some vertices in B.The dominant metric dimension of G is the cardinality number of the minimum dominant resolving set.The dominant metric dimension is computed by a binary version of the Archimedes optimization algorithm(BAOA).The objects of BAOA are binary encoded and used to represent which one of the vertices of the graph belongs to the dominant resolving set.The feasibility is enforced by repairing objects such that an additional vertex generated from vertices of G is added to B and this repairing process is iterated until B becomes the dominant resolving set.This is the first attempt to determine the dominant metric dimension problem heuristically.The proposed BAOA is compared to binary whale optimization(BWOA)and binary particle optimization(BPSO)algorithms.Computational results confirm the superiority of the BAOA for computing the dominant metric dimension.展开更多
The laser scanning system based on Simultaneous Localization and Mapping(SLAM)technology has the advantages of low cost,high precision and high efficiency.It has drawn wide attention in the field of surveying and mapp...The laser scanning system based on Simultaneous Localization and Mapping(SLAM)technology has the advantages of low cost,high precision and high efficiency.It has drawn wide attention in the field of surveying and mapping in recent years.Although real-time data acquisition can be achieved using SLAM technology,the precision of the data can’t be ensured,and inconsistency exists in the acquired point cloud.In order to improve the precision of the point cloud obtained by this kind of system,this paper presents a hierarchical point cloud global optimization algorithm.Firstly,the“point-to-plane”iterative closest point(ICP)algorithm is used to match the overlapping point clouds to form constraints between the trajectories of the scanning system.Then a pose graph is constructed to optimize the trajectory.Finally,the optimized trajectory is used to refine the point cloud.The computational efficiency is improved by decomposing the optimization process into two levels,i.e.local level and global level.The experimental results show that the RMSE of the distance between the corresponding points in overlapping areas is reduced by about 50%after optimization,and the internal inconsistency is effectively eliminated.展开更多
Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are eas...Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are easy to be blocked or reflected by obstacles such as walls and furniture.A resilient tightly-coupled inertial navigation system(INS)/UWB integration is proposed and implemented for indoor UAV navigation in this paper.A factor graph optimization(FGO)method enhanced by resilient stochastic model is established to cope with the indoor challenging scenarios.To deal with the impact of UWB non-line-of-sight(NLOS)signals and noise uncertainty,the conventional neural net-works(CNNs)are introduced into the stochastic modelling to improve the resilience and reliability of the integration.Based on the status that the UWB features are limited,a‘two-phase'CNNs structure was designed and implemented:one for signal classification and the other one for measurement noise prediction.The proposed resilient FGO method is tested on flighting UAV platform under actual indoor challenging scenario.Compared to classical FGO method,the overall positioning errors can be decreased from about 0.60 m to centimeter-level under signal block and reflection scenarios.The superiority of resilient FGO which effectively verified in constrained environment is pretty important for positioning accuracy and integrity for indoor navigation task.展开更多
In this paper, decentralized methods of optimally rigid graphs generation for formation control are researched. The notion of optimally rigid graph is first defined in this paper to describe a special kind of rigid gr...In this paper, decentralized methods of optimally rigid graphs generation for formation control are researched. The notion of optimally rigid graph is first defined in this paper to describe a special kind of rigid graphs. The optimally rigid graphs can be used to decrease the topology complexity of graphs while maintaining their shapes. To minimize the communication complexity of formations, we study the theory of optimally rigid formation generation. First, four important propositions are presented to demonstrate the feasibility of using a decentralized method to generate optimally rigid graphs. Then, a formation algorithm for multi-agent systems based on these propositions is proposed. At last, some simulation examples are given to show the efficiency of the proposed algorithm.展开更多
The centralized radio access cellular network infrastructure based on centralized Super Base Station(CSBS) is a promising solution to reduce the high construction cost and energy consumption of conventional cellular n...The centralized radio access cellular network infrastructure based on centralized Super Base Station(CSBS) is a promising solution to reduce the high construction cost and energy consumption of conventional cellular networks. With CSBS, the computing resource for communication protocol processing could be managed flexibly according the protocol load to improve the resource efficiency. Since the protocol load changes frequently and may exceed the capacity of processors, load balancing is needed. However, existing load balancing mechanisms used in data centers cannot satisfy the real-time requirement of the communication protocol processing. Therefore, a new computing resource adjustment scheme is proposed for communication protocol processing in the CSBS architecture. First of all, the main principles of protocol processing resource adjustment is concluded, followed by the analysis on the processing resource outage probability that the computing resource becomes inadequate for protocol processing as load changes. Following the adjustment principles, the proposed scheme is designed to reduce the processing resource outage probability based onthe optimized connected graph which is constructed by the approximate Kruskal algorithm. Simulation re-sults show that compared with the conventional load balancing mechanisms, the proposed scheme can reduce the occurrence number of inadequate processing resource and the additional resource consumption of adjustment greatly.展开更多
Static optimization of logical queries is, in substance, to move selections down as far as possible in evaluating logical queries. This paper extends Ullman's RGG (Rule/Goal Graph) and introduces P- graph, with wh...Static optimization of logical queries is, in substance, to move selections down as far as possible in evaluating logical queries. This paper extends Ullman's RGG (Rule/Goal Graph) and introduces P- graph, with which a wide range of recursive logical queries can be statically optimized top-down and evaluated bottom-up, some of which are usually optimized by dynamic approaches. The paper also shows that for some logical queries the complexity of pushing selections down and computing bottom-up is related to the complexity of base relation in the queries.展开更多
This is primarily an expository paper surveying up-to-date known results on the spectral theory of1-Laplacian on graphs and its applications to the Cheeger cut, maxcut and multi-cut problems. The structure of eigenspa...This is primarily an expository paper surveying up-to-date known results on the spectral theory of1-Laplacian on graphs and its applications to the Cheeger cut, maxcut and multi-cut problems. The structure of eigenspace, nodal domains, multiplicities of eigenvalues, and algorithms for graph cuts are collected.展开更多
Ensuring the safe and efficient operation of self-driving vehicles relies heavily on accurately predicting their future trajectories.Existing approaches commonly employ an encoder-decoder neural network structure to e...Ensuring the safe and efficient operation of self-driving vehicles relies heavily on accurately predicting their future trajectories.Existing approaches commonly employ an encoder-decoder neural network structure to enhance information extraction during the encoding phase.However,these methods often neglect the inclusion of road rule constraints during trajectory formulation in the decoding phase.This paper proposes a novel method that combines neural networks and rule-based constraints in the decoder stage to improve trajectory prediction accuracy while ensuring compliance with vehicle kinematics and road rules.The approach separates vehicle trajectories into lateral and longitudinal routes and utilizes conditional variational autoencoder(CVAE)to capture trajectory uncertainty.The evaluation results demonstrate a reduction of 32.4%and 27.6%in the average displacement error(ADE)for predicting the top five and top ten trajectories,respectively,compared to the baseline method.展开更多
This paper presents a robust visual simultaneous localization and mapping(SLAM) system that leverages point and structural line features in dynamic man-made environments. Manhanttan world assumption is considered and ...This paper presents a robust visual simultaneous localization and mapping(SLAM) system that leverages point and structural line features in dynamic man-made environments. Manhanttan world assumption is considered and the structural line features in such man-made environments provide rich geometric constraint, e.g., parallelism. Such a geometric constraint can be therefore used to rectify 3 D maplines after initialization. To cope with dynamic scenarios, the proposed system are divided into four main threads including 2 D dynamic object tracking, visual odometry, local mapping and loop closing. The 2 D tracker is responsible to track the object and capture the moving object in bounding boxes. In such a case, the dynamic background can be excluded and the outlier point and line features can be effectively removed. To parameterize 3 D lines, we use Pl ¨ucker line coordinates in initialization and projection processes, and utilize the orthonormal representation in unconstrained graph optimization process. The proposed system has been evaluated in both benchmark datasets and real-world scenarios, which reveals a more robust performance in most of the experiments compared with the existing state-of-the-art methods.展开更多
基金supported in part by the Guangxi Power Grid Company’s 2023 Science and Technol-ogy Innovation Project(No.GXKJXM20230169)。
文摘With the development of unmanned driving technology,intelligent robots and drones,high-precision localization,navigation and state estimation technologies have also made great progress.Traditional global navigation satellite system/inertial navigation system(GNSS/INS)integrated navigation systems can provide high-precision navigation information continuously.However,when this system is applied to indoor or GNSS-denied environments,such as outdoor substations with strong electromagnetic interference and complex dense spaces,it is often unable to obtain high-precision GNSS positioning data.The positioning and orientation errors will diverge and accumulate rapidly,which cannot meet the high-precision localization requirements in large-scale and long-distance navigation scenarios.This paper proposes a method of high-precision state estimation with fusion of GNSS/INS/Vision using a nonlinear optimizer factor graph optimization as the basis for multi-source optimization.Through the collected experimental data and simulation results,this system shows good performance in the indoor environment and the environment with partial GNSS signal loss.
文摘In this paper,we consider the NP-hard problem of finding the minimum dominant resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the vertices in B.A resolving set is dominating if every vertex of G that does not belong to B is a neighbor to some vertices in B.The dominant metric dimension of G is the cardinality number of the minimum dominant resolving set.The dominant metric dimension is computed by a binary version of the Archimedes optimization algorithm(BAOA).The objects of BAOA are binary encoded and used to represent which one of the vertices of the graph belongs to the dominant resolving set.The feasibility is enforced by repairing objects such that an additional vertex generated from vertices of G is added to B and this repairing process is iterated until B becomes the dominant resolving set.This is the first attempt to determine the dominant metric dimension problem heuristically.The proposed BAOA is compared to binary whale optimization(BWOA)and binary particle optimization(BPSO)algorithms.Computational results confirm the superiority of the BAOA for computing the dominant metric dimension.
基金National Key Research Program of China(No.2017YFC0803801)。
文摘The laser scanning system based on Simultaneous Localization and Mapping(SLAM)technology has the advantages of low cost,high precision and high efficiency.It has drawn wide attention in the field of surveying and mapping in recent years.Although real-time data acquisition can be achieved using SLAM technology,the precision of the data can’t be ensured,and inconsistency exists in the acquired point cloud.In order to improve the precision of the point cloud obtained by this kind of system,this paper presents a hierarchical point cloud global optimization algorithm.Firstly,the“point-to-plane”iterative closest point(ICP)algorithm is used to match the overlapping point clouds to form constraints between the trajectories of the scanning system.Then a pose graph is constructed to optimize the trajectory.Finally,the optimized trajectory is used to refine the point cloud.The computational efficiency is improved by decomposing the optimization process into two levels,i.e.local level and global level.The experimental results show that the RMSE of the distance between the corresponding points in overlapping areas is reduced by about 50%after optimization,and the internal inconsistency is effectively eliminated.
基金National Natural Science Foundation of China(Grant No.62203111)the Open Research Fund of State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University(Grant No.21P01)the Foundation of Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology,Ministry of Education,China(Grant No.SEU-MIAN-202101)to provide fund for conducting experiments。
文摘Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are easy to be blocked or reflected by obstacles such as walls and furniture.A resilient tightly-coupled inertial navigation system(INS)/UWB integration is proposed and implemented for indoor UAV navigation in this paper.A factor graph optimization(FGO)method enhanced by resilient stochastic model is established to cope with the indoor challenging scenarios.To deal with the impact of UWB non-line-of-sight(NLOS)signals and noise uncertainty,the conventional neural net-works(CNNs)are introduced into the stochastic modelling to improve the resilience and reliability of the integration.Based on the status that the UWB features are limited,a‘two-phase'CNNs structure was designed and implemented:one for signal classification and the other one for measurement noise prediction.The proposed resilient FGO method is tested on flighting UAV platform under actual indoor challenging scenario.Compared to classical FGO method,the overall positioning errors can be decreased from about 0.60 m to centimeter-level under signal block and reflection scenarios.The superiority of resilient FGO which effectively verified in constrained environment is pretty important for positioning accuracy and integrity for indoor navigation task.
基金supported by National Natural Science Foundation of China (No. 60934003, No. 61074065)Key Project for Natural Science Research of Hebei Education Department (No. ZD200908)
文摘In this paper, decentralized methods of optimally rigid graphs generation for formation control are researched. The notion of optimally rigid graph is first defined in this paper to describe a special kind of rigid graphs. The optimally rigid graphs can be used to decrease the topology complexity of graphs while maintaining their shapes. To minimize the communication complexity of formations, we study the theory of optimally rigid formation generation. First, four important propositions are presented to demonstrate the feasibility of using a decentralized method to generate optimally rigid graphs. Then, a formation algorithm for multi-agent systems based on these propositions is proposed. At last, some simulation examples are given to show the efficiency of the proposed algorithm.
基金supported in part by the National Science Foundationof China under Grant number 61431001the Beijing Talents Fund under Grant number 2015000021223ZK31
文摘The centralized radio access cellular network infrastructure based on centralized Super Base Station(CSBS) is a promising solution to reduce the high construction cost and energy consumption of conventional cellular networks. With CSBS, the computing resource for communication protocol processing could be managed flexibly according the protocol load to improve the resource efficiency. Since the protocol load changes frequently and may exceed the capacity of processors, load balancing is needed. However, existing load balancing mechanisms used in data centers cannot satisfy the real-time requirement of the communication protocol processing. Therefore, a new computing resource adjustment scheme is proposed for communication protocol processing in the CSBS architecture. First of all, the main principles of protocol processing resource adjustment is concluded, followed by the analysis on the processing resource outage probability that the computing resource becomes inadequate for protocol processing as load changes. Following the adjustment principles, the proposed scheme is designed to reduce the processing resource outage probability based onthe optimized connected graph which is constructed by the approximate Kruskal algorithm. Simulation re-sults show that compared with the conventional load balancing mechanisms, the proposed scheme can reduce the occurrence number of inadequate processing resource and the additional resource consumption of adjustment greatly.
文摘Static optimization of logical queries is, in substance, to move selections down as far as possible in evaluating logical queries. This paper extends Ullman's RGG (Rule/Goal Graph) and introduces P- graph, with which a wide range of recursive logical queries can be statically optimized top-down and evaluated bottom-up, some of which are usually optimized by dynamic approaches. The paper also shows that for some logical queries the complexity of pushing selections down and computing bottom-up is related to the complexity of base relation in the queries.
基金supported by National Natural Science Foundation of China (Grant Nos. 11371038, 11471025, 11421101 and 61121002)
文摘This is primarily an expository paper surveying up-to-date known results on the spectral theory of1-Laplacian on graphs and its applications to the Cheeger cut, maxcut and multi-cut problems. The structure of eigenspace, nodal domains, multiplicities of eigenvalues, and algorithms for graph cuts are collected.
基金supported in part by the National Natural Science Foundation of China under Grant 52372393,62003238in part by the DongfengTechnology Center(Research and Application of Next-Generation Low-Carbonntelligent Architecture Technology).
文摘Ensuring the safe and efficient operation of self-driving vehicles relies heavily on accurately predicting their future trajectories.Existing approaches commonly employ an encoder-decoder neural network structure to enhance information extraction during the encoding phase.However,these methods often neglect the inclusion of road rule constraints during trajectory formulation in the decoding phase.This paper proposes a novel method that combines neural networks and rule-based constraints in the decoder stage to improve trajectory prediction accuracy while ensuring compliance with vehicle kinematics and road rules.The approach separates vehicle trajectories into lateral and longitudinal routes and utilizes conditional variational autoencoder(CVAE)to capture trajectory uncertainty.The evaluation results demonstrate a reduction of 32.4%and 27.6%in the average displacement error(ADE)for predicting the top five and top ten trajectories,respectively,compared to the baseline method.
基金supported by the Institute for Guo Qiang of Tsinghua University (Grant No. 2019GQG1023)the National Natural Science Foundation of China (Grant No. 61873140)the Independent Research Program of Tsinghua University (Grant No. 2018Z05JDX002)。
文摘This paper presents a robust visual simultaneous localization and mapping(SLAM) system that leverages point and structural line features in dynamic man-made environments. Manhanttan world assumption is considered and the structural line features in such man-made environments provide rich geometric constraint, e.g., parallelism. Such a geometric constraint can be therefore used to rectify 3 D maplines after initialization. To cope with dynamic scenarios, the proposed system are divided into four main threads including 2 D dynamic object tracking, visual odometry, local mapping and loop closing. The 2 D tracker is responsible to track the object and capture the moving object in bounding boxes. In such a case, the dynamic background can be excluded and the outlier point and line features can be effectively removed. To parameterize 3 D lines, we use Pl ¨ucker line coordinates in initialization and projection processes, and utilize the orthonormal representation in unconstrained graph optimization process. The proposed system has been evaluated in both benchmark datasets and real-world scenarios, which reveals a more robust performance in most of the experiments compared with the existing state-of-the-art methods.