In this paper,we present the concept of Banach-mean equicontinuity and prove that the Banach-,Weyl-and Besicovitch-mean equicontinuities of a dynamic system of Abelian group action are equivalent.Furthermore,we obtain...In this paper,we present the concept of Banach-mean equicontinuity and prove that the Banach-,Weyl-and Besicovitch-mean equicontinuities of a dynamic system of Abelian group action are equivalent.Furthermore,we obtain that the topological entropy of a transitive,almost Banach-mean equicontinuous dynamical system of Abelian group action is zero.As an application of our main result,we show that the topological entropy of the Banach-mean equicontinuous system under the action of an Abelian groups is zero.展开更多
Analytic atlases on <img src="Edit_948e45b7-cbef-425e-bb79-28648b859994.png" width="23" height="22" alt="" /> can be easily defined making it an <em>n</em>-dim...Analytic atlases on <img src="Edit_948e45b7-cbef-425e-bb79-28648b859994.png" width="23" height="22" alt="" /> can be easily defined making it an <em>n</em>-dimensional complex manifold. Then with the help of bi-M<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span>bius transformations in complex coordinates Abelian groups are constructed making this manifold a Lie group. Actions of Lie groups on differentiable manifolds are well known and serve different purposes. We have introduced in previous works actions of Lie groups on non orientable Klein surfaces. The purpose of this work is to extend those studies to non orientable <em>n</em>-dimensional complex manifolds. Such manifolds are obtained by factorizing <img src="Edit_7e5721ee-bb7f-4224-bd52-7d4641ac1c73.png" width="23" height="22" alt="" /> with the two elements group of a fixed point free antianalytic involution of <img src="Edit_ddfdac64-b296-48c5-9bb2-932eb3d76008.png" width="23" height="22" alt="" />. Involutions <strong>h(z)</strong> of this kind are obtained linearly by composing special M<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span>bius transformations of the planes with the mapping <img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="89" height="24" alt="" /><img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="85" height="22" alt="" />. A convenient partition of <img src="Edit_9e899708-41b0-4351-a12b-cc6efb5b1581.png" width="23" height="22" alt="" /> is performed which helps defining an internal operation on <img src="Edit_7cd42987-68f8-4e4c-9382-cbc68b56377e.png" width="49" height="26" alt="" /> and finally actions of the previously defined Lie groups on the non orientable manifold <img src="Edit_5740b48c-f9ea-438d-a87d-8cdc1f83662b.png" width="49" height="25" alt="" /> are displayed.展开更多
It is proved that there is no chaotic group actions on any topological space with free arc.In this paper the chaotic actions of the group like G×F ,where F is a finite group,are studied.In particular,under...It is proved that there is no chaotic group actions on any topological space with free arc.In this paper the chaotic actions of the group like G×F ,where F is a finite group,are studied.In particular,under a suitable assumption,if F is a cyclic group,then the topological space which admits a chaotic action of Z×F must admit a chaotic homeomorphism.A topological space which admits a chaotic group action but admits no chaotic homeomorphism is constructed.展开更多
Let M be a closed n-manifold of positive sectional curvature. Assume that M admits an effective isometrical T1× Zpk-action with p prime. The main result of the article n+1 for n 〉 5, then there exists a positiv...Let M be a closed n-manifold of positive sectional curvature. Assume that M admits an effective isometrical T1× Zpk-action with p prime. The main result of the article n+1 for n 〉 5, then there exists a positive constant p(n), is that ifk=lforn=3or k〉 n+1/4 for n≥5,then there exists a positive constant p(n),depending only on n, such that π1 (M) is cyclic if p ≥ p(n).展开更多
This paper determines the group structure of stabilizer of 2×2 matrix under similarity action over arbitrary field. Then, the cardinal number of any orbit is calculated over finite field.
In this article, we introduce the notion of fuzzy G-module by defining the group action of G on a fuzzy set of a Z-module M. We establish the cases in which fuzzy submodules also become fuzzy G-submodules. Notions of ...In this article, we introduce the notion of fuzzy G-module by defining the group action of G on a fuzzy set of a Z-module M. We establish the cases in which fuzzy submodules also become fuzzy G-submodules. Notions of a fuzzy prime submodule, fuzzy prime G-submodule, fuzzy semi prime submodule, fuzzy G-semi prime submodule, G-invariant fuzzy submodule and G-invariant fuzzy prime submodule of M are introduced and their properties are described. The homomorphic image and pre-image of fuzzy G-submodules, G-invariant fuzzy submodules and G-invariant fuzzy prime submodules of M are also established.展开更多
In this paper,the entropy of discrete Heisenberg group actions is considered.Let α be a discrete Heisenberg group action on a compact metric space X.Two types of entropies,h and h(α)are introduced,in which h is defi...In this paper,the entropy of discrete Heisenberg group actions is considered.Let α be a discrete Heisenberg group action on a compact metric space X.Two types of entropies,h and h(α)are introduced,in which h is defined in Ruelle’s way and h(α) is defined via the natural extension of α.It is shown that when X is the torus and α is induced by integer matrices then h is zero and h(α) can be expressed via the eigenvalues of the matrices.展开更多
In this paper,we study the relationship between the multi-sensitivity and the topological maximal sequence entropy of dynamical systems for general group action.Furthermore,we also discuss the consistency of multi-sen...In this paper,we study the relationship between the multi-sensitivity and the topological maximal sequence entropy of dynamical systems for general group action.Furthermore,we also discuss the consistency of multi-sensitivity of a dynamical system(G■X)and its hyperspace dynamical system G■K(X).Moreover,we research the relationship between the multi-sensitivity of two dynamical systems and the multi-sensitivity of their product space dynamical system.Finally,we prove that if the topological sequence entropy of G■X vanishes,then so does that of its induced system G■M(X);if the topological sequence entropy of G■X is positive,then that of its induced system G■M(X)is infinity.展开更多
In this paper we present systematic differential representations for the dynamical group SO(4).Theserepresentations include the left and the right differential representations and the left and the right adjoint differ...In this paper we present systematic differential representations for the dynamical group SO(4).Theserepresentations include the left and the right differential representations and the left and the right adjoint differentialrepresentations in both the group parameter space and its coset spaces.They are the generalization of the differentialrepresentations of the SO(3) rotation group in the Euler angles.These representations may find their applications in thestudy of the physical systems with SO(4) dynamical symmetry.展开更多
Segal’s chronometric theory is based on a space-time D, which might be viewed as a Lie group with a causal structure defined by an invariant Lorentzian form on the Lie algebra u(2). Similarly, the space-time F is rea...Segal’s chronometric theory is based on a space-time D, which might be viewed as a Lie group with a causal structure defined by an invariant Lorentzian form on the Lie algebra u(2). Similarly, the space-time F is realized as the Lie group with a causal structure defined by an invariant Lorentzian form on u(1,1). Two Lie groups G, GF are introduced as representations of SU(2,2): they are related via conjugation by a certain matrix Win Gl(4). The linear-fractional action of G on D is well-known to be global, conformal, and it plays a crucial role in the analysis on space-time bundles carried out by Paneitz and Segal in the 1980’s. This analysis was based on the parallelizing group U(2). In the paper, singularities’ general (“geometric”) description of the linear-fractional conformal GF-action on F is given and specific examples are presented. The results call for the analysis of space-time bundles based on U(1,1) as the parallelizing group. Certain key stages of such an analysis are suggested.展开更多
In this paper,we consider the fractional critical Schrödinger equation(FCSE)(-Δ)^(s)u-|u|2^(*)s-2 u=0,where u∈˙H^(s)(R^(N)),N≥4,0<s<1 and 2^(*)s=2 N/N-2 s is the critical Sobolev exponent of order s.By ...In this paper,we consider the fractional critical Schrödinger equation(FCSE)(-Δ)^(s)u-|u|2^(*)s-2 u=0,where u∈˙H^(s)(R^(N)),N≥4,0<s<1 and 2^(*)s=2 N/N-2 s is the critical Sobolev exponent of order s.By virtue of the variational method and the concentration compactness principle with the equivariant group action,we obtain some new type of nonradial,sign-changing solutions of(FCSE)in the energy space˙H^(s)(R^(N)).The key component is that we take the equivariant group action to construct several subspace of˙H^(s)(R^(N))with trivial intersection,then combine the concentration compactness argument in the Sobolev space with fractional order to show the compactness property of Palais-Smale sequences in each subspace and obtain the multiple solutions of(FCSE)in˙H^(s)(R^(N)).展开更多
In this paper, the group action of a local wild Bocs'rep. category is introduced. And, it computed the parametric numbers U(n) and P(n) of the rep. category mod n(A) and ind n(t) in case n=1,2 with geometric met...In this paper, the group action of a local wild Bocs'rep. category is introduced. And, it computed the parametric numbers U(n) and P(n) of the rep. category mod n(A) and ind n(t) in case n=1,2 with geometric method.展开更多
基金supported by NSF of China(11671057)NSF of Chongqing(cstc2020jcyj-msxmX0694)the Fundamental Research Funds for the Central Universities(2018CDQYST0023).
文摘In this paper,we present the concept of Banach-mean equicontinuity and prove that the Banach-,Weyl-and Besicovitch-mean equicontinuities of a dynamic system of Abelian group action are equivalent.Furthermore,we obtain that the topological entropy of a transitive,almost Banach-mean equicontinuous dynamical system of Abelian group action is zero.As an application of our main result,we show that the topological entropy of the Banach-mean equicontinuous system under the action of an Abelian groups is zero.
文摘Analytic atlases on <img src="Edit_948e45b7-cbef-425e-bb79-28648b859994.png" width="23" height="22" alt="" /> can be easily defined making it an <em>n</em>-dimensional complex manifold. Then with the help of bi-M<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span>bius transformations in complex coordinates Abelian groups are constructed making this manifold a Lie group. Actions of Lie groups on differentiable manifolds are well known and serve different purposes. We have introduced in previous works actions of Lie groups on non orientable Klein surfaces. The purpose of this work is to extend those studies to non orientable <em>n</em>-dimensional complex manifolds. Such manifolds are obtained by factorizing <img src="Edit_7e5721ee-bb7f-4224-bd52-7d4641ac1c73.png" width="23" height="22" alt="" /> with the two elements group of a fixed point free antianalytic involution of <img src="Edit_ddfdac64-b296-48c5-9bb2-932eb3d76008.png" width="23" height="22" alt="" />. Involutions <strong>h(z)</strong> of this kind are obtained linearly by composing special M<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span>bius transformations of the planes with the mapping <img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="89" height="24" alt="" /><img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="85" height="22" alt="" />. A convenient partition of <img src="Edit_9e899708-41b0-4351-a12b-cc6efb5b1581.png" width="23" height="22" alt="" /> is performed which helps defining an internal operation on <img src="Edit_7cd42987-68f8-4e4c-9382-cbc68b56377e.png" width="49" height="26" alt="" /> and finally actions of the previously defined Lie groups on the non orientable manifold <img src="Edit_5740b48c-f9ea-438d-a87d-8cdc1f83662b.png" width="49" height="25" alt="" /> are displayed.
文摘It is proved that there is no chaotic group actions on any topological space with free arc.In this paper the chaotic actions of the group like G×F ,where F is a finite group,are studied.In particular,under a suitable assumption,if F is a cyclic group,then the topological space which admits a chaotic action of Z×F must admit a chaotic homeomorphism.A topological space which admits a chaotic group action but admits no chaotic homeomorphism is constructed.
文摘Let M be a closed n-manifold of positive sectional curvature. Assume that M admits an effective isometrical T1× Zpk-action with p prime. The main result of the article n+1 for n 〉 5, then there exists a positive constant p(n), is that ifk=lforn=3or k〉 n+1/4 for n≥5,then there exists a positive constant p(n),depending only on n, such that π1 (M) is cyclic if p ≥ p(n).
文摘This paper determines the group structure of stabilizer of 2×2 matrix under similarity action over arbitrary field. Then, the cardinal number of any orbit is calculated over finite field.
文摘In this article, we introduce the notion of fuzzy G-module by defining the group action of G on a fuzzy set of a Z-module M. We establish the cases in which fuzzy submodules also become fuzzy G-submodules. Notions of a fuzzy prime submodule, fuzzy prime G-submodule, fuzzy semi prime submodule, fuzzy G-semi prime submodule, G-invariant fuzzy submodule and G-invariant fuzzy prime submodule of M are introduced and their properties are described. The homomorphic image and pre-image of fuzzy G-submodules, G-invariant fuzzy submodules and G-invariant fuzzy prime submodules of M are also established.
基金Supported by NSFC (Grant Nos. 12171400, 12126102)。
文摘In this paper,the entropy of discrete Heisenberg group actions is considered.Let α be a discrete Heisenberg group action on a compact metric space X.Two types of entropies,h and h(α)are introduced,in which h is defined in Ruelle’s way and h(α) is defined via the natural extension of α.It is shown that when X is the torus and α is induced by integer matrices then h is zero and h(α) can be expressed via the eigenvalues of the matrices.
基金Supported by NSF of China (Grant No.11671057)NSF of Chongqing (Grant No.cstc2020jcyj-msxm X0694)。
文摘In this paper,we study the relationship between the multi-sensitivity and the topological maximal sequence entropy of dynamical systems for general group action.Furthermore,we also discuss the consistency of multi-sensitivity of a dynamical system(G■X)and its hyperspace dynamical system G■K(X).Moreover,we research the relationship between the multi-sensitivity of two dynamical systems and the multi-sensitivity of their product space dynamical system.Finally,we prove that if the topological sequence entropy of G■X vanishes,then so does that of its induced system G■M(X);if the topological sequence entropy of G■X is positive,then that of its induced system G■M(X)is infinity.
基金National Natural Science Foundation of China under Grant Nos.10205007,10226033,10375039,and 90503008the Nuclear Theory Research Program for NCET and Fund of HIRFL of China
文摘In this paper we present systematic differential representations for the dynamical group SO(4).Theserepresentations include the left and the right differential representations and the left and the right adjoint differentialrepresentations in both the group parameter space and its coset spaces.They are the generalization of the differentialrepresentations of the SO(3) rotation group in the Euler angles.These representations may find their applications in thestudy of the physical systems with SO(4) dynamical symmetry.
文摘Segal’s chronometric theory is based on a space-time D, which might be viewed as a Lie group with a causal structure defined by an invariant Lorentzian form on the Lie algebra u(2). Similarly, the space-time F is realized as the Lie group with a causal structure defined by an invariant Lorentzian form on u(1,1). Two Lie groups G, GF are introduced as representations of SU(2,2): they are related via conjugation by a certain matrix Win Gl(4). The linear-fractional action of G on D is well-known to be global, conformal, and it plays a crucial role in the analysis on space-time bundles carried out by Paneitz and Segal in the 1980’s. This analysis was based on the parallelizing group U(2). In the paper, singularities’ general (“geometric”) description of the linear-fractional conformal GF-action on F is given and specific examples are presented. The results call for the analysis of space-time bundles based on U(1,1) as the parallelizing group. Certain key stages of such an analysis are suggested.
基金supported by National Key Research and Development Program of China(No.2020YFA0712900)NSFC(No.112371240 and No.12431008)supported by NSFC(No.12001284)。
文摘In this paper,we consider the fractional critical Schrödinger equation(FCSE)(-Δ)^(s)u-|u|2^(*)s-2 u=0,where u∈˙H^(s)(R^(N)),N≥4,0<s<1 and 2^(*)s=2 N/N-2 s is the critical Sobolev exponent of order s.By virtue of the variational method and the concentration compactness principle with the equivariant group action,we obtain some new type of nonradial,sign-changing solutions of(FCSE)in the energy space˙H^(s)(R^(N)).The key component is that we take the equivariant group action to construct several subspace of˙H^(s)(R^(N))with trivial intersection,then combine the concentration compactness argument in the Sobolev space with fractional order to show the compactness property of Palais-Smale sequences in each subspace and obtain the multiple solutions of(FCSE)in˙H^(s)(R^(N)).
文摘In this paper, the group action of a local wild Bocs'rep. category is introduced. And, it computed the parametric numbers U(n) and P(n) of the rep. category mod n(A) and ind n(t) in case n=1,2 with geometric method.