Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for...Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for the detection of deoxyribonucleic acid (DNA) hybridization. The Au-gated AIInN/GaN HEMT biosensor exhibits higher sensitivity in comparison with the AlGaN/GaN HEMT biosensor. For the former, the drain-source current (VDS = 0.5 V) shows a clear decrease of 69μA upon the introduction of 1μmolL^-1 (μM) complimentary DNA to the probe DNA at the sensor area, while for the latter it is only 38 μA. This current reduction is a notable indication of the hybridization. The high sensitivity can be attributed to the thinner barrier of the AlInN/GaN heterostructure, which makes the two-dimensional electron gas channel more susceptible to a slight change of the surface charge.展开更多
FoF1-ATPase is an active rotary motor,and generates three-ATP for each rotation.At saturated substrate concentration,the motor can achieve about 103 r.p.m,which means one motor can generate about 105 ATP molecules dur...FoF1-ATPase is an active rotary motor,and generates three-ATP for each rotation.At saturated substrate concentration,the motor can achieve about 103 r.p.m,which means one motor can generate about 105 ATP molecules during 30 min.Here,we constituted a novel nanodevice with a molecular rotary motor and a“battery”,FoF1-ATPase and chromatophore,and presented a novel method of sandwich type rotary biosensor based on εsubunit with one target-to-one motor,in which one target corresponds 105 ATP molecules as detection signals during 30 min.The target such as NT-proBNP detection demonstrated that this novel nanodevice has potential to be developed into an ultrasensitive biosensor to detect low expressed targets.展开更多
A hollow-core metal-cladding waveguide(HCMW) optofluidic resonator that works based on a free-space coupling technique is designed. An HCMW can excite ultra-high-order modes(UOMs) at the coupled angle, which can b...A hollow-core metal-cladding waveguide(HCMW) optofluidic resonator that works based on a free-space coupling technique is designed. An HCMW can excite ultra-high-order modes(UOMs) at the coupled angle, which can be used as an optofluidic resonator to detect alterations of the epidermal growth factor receptor(EGFR)concentration. Theoretical analysis shows that the UOMs excited in the HCMW have a highly sensitive response to the refractive index(RI) variation of the guiding layer. An EGFR solution with a 0.2 ng/mL alteration is detected, and the RI variation caused by the concentration alteration is about 2.5 × 10^(-3).展开更多
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFB0400104 and2016YFB0400301the National Natural Sciences Foundation of China under Grant No 61334002the National Science and Technology Major Project
文摘Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for the detection of deoxyribonucleic acid (DNA) hybridization. The Au-gated AIInN/GaN HEMT biosensor exhibits higher sensitivity in comparison with the AlGaN/GaN HEMT biosensor. For the former, the drain-source current (VDS = 0.5 V) shows a clear decrease of 69μA upon the introduction of 1μmolL^-1 (μM) complimentary DNA to the probe DNA at the sensor area, while for the latter it is only 38 μA. This current reduction is a notable indication of the hybridization. The high sensitivity can be attributed to the thinner barrier of the AlInN/GaN heterostructure, which makes the two-dimensional electron gas channel more susceptible to a slight change of the surface charge.
基金This work is supported by the National Basic Research Program of China(973 Program)under grant No.2013CB932804the National Natural Science Foundation of China under Grant No.11574329 and 11322543+2 种基金the Science and Technology Planning Project of General Administration of Quality Supervision,Inspection and Quarantine(AQSIQ)of PR China under Grant No.2015IK011AQSIQ industrial public service scientific research project of the Ministry of Science and Technology of P.R.China under Grant No.201410049The YS101 type high sensitive detector of chemiluminescence was manufactured by Yishang Innovation Technology Co.,Ltd.
文摘FoF1-ATPase is an active rotary motor,and generates three-ATP for each rotation.At saturated substrate concentration,the motor can achieve about 103 r.p.m,which means one motor can generate about 105 ATP molecules during 30 min.Here,we constituted a novel nanodevice with a molecular rotary motor and a“battery”,FoF1-ATPase and chromatophore,and presented a novel method of sandwich type rotary biosensor based on εsubunit with one target-to-one motor,in which one target corresponds 105 ATP molecules as detection signals during 30 min.The target such as NT-proBNP detection demonstrated that this novel nanodevice has potential to be developed into an ultrasensitive biosensor to detect low expressed targets.
基金supported by the National Natural Science Foundation of China(No.61235009)the National Basic Research Programmer of China(No.2013CBA01703)
文摘A hollow-core metal-cladding waveguide(HCMW) optofluidic resonator that works based on a free-space coupling technique is designed. An HCMW can excite ultra-high-order modes(UOMs) at the coupled angle, which can be used as an optofluidic resonator to detect alterations of the epidermal growth factor receptor(EGFR)concentration. Theoretical analysis shows that the UOMs excited in the HCMW have a highly sensitive response to the refractive index(RI) variation of the guiding layer. An EGFR solution with a 0.2 ng/mL alteration is detected, and the RI variation caused by the concentration alteration is about 2.5 × 10^(-3).