A new type of high water content material which is made up of two pastes is prepared, one is refute from lime and gypsum, and another is based on Ba-bearing sulphoaluminate cement. It has excellent properties such as ...A new type of high water content material which is made up of two pastes is prepared, one is refute from lime and gypsum, and another is based on Ba-bearing sulphoaluminate cement. It has excellent properties such as slow single paste solidifing ,fust double pustes solidifing ,fast coagulating and hardening, high early strength, good suspeasion property at high W/C ratio and low cost. Meanwhile, the properties and hydration mechanism of the material were analyzed by using XRD, DTA- TG and SEM. The hydrated products of new type of high water content material are Ba-bearing ettringite, BaSO4 , aluminum gel and C-S-H gel.展开更多
A new method using high water content material to mechanically fill cross roadways to form artificial bottom for coal faces was introduced. The reasonable determination of filling range, the optimization of the compou...A new method using high water content material to mechanically fill cross roadways to form artificial bottom for coal faces was introduced. The reasonable determination of filling range, the optimization of the compounding ratio of high water content material, and the filling technique were discussed in detail. This new method has been spread after industrial testing in Baodian Colliery. Compared with the traditional method, the manual wooden chock method, the new one decreases about 40% of the filling range and cost in dealing every one set of cross roadway in the testing condition.展开更多
Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this probl...Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this problem, water-releasing material with water storage and releasing characteristics was incorporated into high strength micro-expansive concrete to provide internal curing, and expansive effect of expansive agent was improved. Migration of water from initially saturated water-releasing material to the surrounding hydrating cement paste was investigated. Based on a given efficient diffusion distance of water stored in water-releasing material, the mass and real water-cement ratio of cured cement paste were estimated. At the same time, the effect of internal curing of water-releasing material on the volume deformation of high strength micro-expansive concrete was investigated.展开更多
Through analyzing the effects of water consumption, diameter of solid particle, and flow vefority on the fluidity of high water content material slurry, the relatinnship among the fluidity, the isotropy of the slurry,...Through analyzing the effects of water consumption, diameter of solid particle, and flow vefority on the fluidity of high water content material slurry, the relatinnship among the fluidity, the isotropy of the slurry, and the pumping facilities applied in getway-side backfilling has been found. And the requirment of fluidity of high water content material for the design of getway-side back filling technique is put forward in the paper.展开更多
On the basis of the creep test of bigh-water materisl solidifying backfill body(abb. HW body), This paper discusses its creep properties- The visco-elasto-plastic model, which shows the creep properties of HW body, is...On the basis of the creep test of bigh-water materisl solidifying backfill body(abb. HW body), This paper discusses its creep properties- The visco-elasto-plastic model, which shows the creep properties of HW body, is developed, and the creep contitutive equations are deduced. The visco-elastoplastic model is proved by the experiments and practice.展开更多
As coal and gas outburst is one of the most serious mine disasters, it is very important to at least control it if not prevent it from occurring. Injecting cement slurry or grouting into the coal seam can strengthen t...As coal and gas outburst is one of the most serious mine disasters, it is very important to at least control it if not prevent it from occurring. Injecting cement slurry or grouting into the coal seam can strengthen the seam, increase its rigidity coefficient(f), and reduce the volumetric expansion due to gas energy release.This paper reports the results of laboratory experiments on cement-based high water content slurry having different water-cement ratios(W/C) to be used for coal injection. The results show that as the W/C increases, the mobility of the slurry and its setting time increase. The compressive strength and rupture strength, however, are reduced. Furthermore, high W/C grout shows early strength after 7 days, which can be 80% of its 14-day compressive strength. To achieve rapid setting and early strength, the addition of Na_2SiO_3has proven to give the best result, when the concentration of the additive is 3%. The initial and final setting times are 13 and 21 min shorter than samples without Na_2SiO_3, while the compressive strength is more than double. As a retarder, the initial setting time can be extended to 83 min when tartaric acid of 0.4% concentration is added. Through the orthogonal experiment, the optimum recipe of the new high water content slurry has been determined to be: W/C = 2, tartaric acid = 0.2%, Na_2SiO_3= 3%, and12% bentonite. Reinforcement by injection simulation experiments show that the grouting radius of the new slurry mix is 250 mm when the applied grouting pressure is 60 k Pa, 7-day rupture strength and compressive strength are 5.2 and 6.4 MPa, respectively, and are 37% and 88% higher than ordinary cement grout. It can be concluded that the newly developed slurry mix is more effective than the ordinary mix for reinforcing coal and controlling gas outburst.展开更多
The production of hydrogen through water electrolysis(WE)from renewable electricity is set to revolutionise the energy sector that is at present heavily dependent on fossil fuels.However,there is still a pressing need...The production of hydrogen through water electrolysis(WE)from renewable electricity is set to revolutionise the energy sector that is at present heavily dependent on fossil fuels.However,there is still a pressing need to develop advanced electrocatalysts able to show high activity and withstand industrially-relevant operating conditions for a prolonged period of time.In this regard,high entropy materials(HEMs),including high entropy alloys and high entropy oxides,comprising five or more homogeneously distributed metal components,have emerged as a new class of electrocatalysts owing to their unique properties such as low atomic diffusion,structural stability,a wide variety of adsorption energies and multi-component synergy,making them promising catalysts for challenging electrochemical reactions,including those involved in WE.This review begins with a brief overview about WE technologies and a short introduction to HEMs including their synthesis and general physicochemical properties,followed by a nearly exhaustive summary of HEMs catalysts reported so far for the hydrogen evolution reaction,the oxygen evolution reaction and the overall water splitting in both alkaline and acidic conditions.The review concludes with a brief summary and an outlook about the future development of HEM-based catalysts and further research to be done to understand the catalytic mechanism and eventually deploy HEMs in practical water electrolysers.展开更多
文摘A new type of high water content material which is made up of two pastes is prepared, one is refute from lime and gypsum, and another is based on Ba-bearing sulphoaluminate cement. It has excellent properties such as slow single paste solidifing ,fust double pustes solidifing ,fast coagulating and hardening, high early strength, good suspeasion property at high W/C ratio and low cost. Meanwhile, the properties and hydration mechanism of the material were analyzed by using XRD, DTA- TG and SEM. The hydrated products of new type of high water content material are Ba-bearing ettringite, BaSO4 , aluminum gel and C-S-H gel.
文摘A new method using high water content material to mechanically fill cross roadways to form artificial bottom for coal faces was introduced. The reasonable determination of filling range, the optimization of the compounding ratio of high water content material, and the filling technique were discussed in detail. This new method has been spread after industrial testing in Baodian Colliery. Compared with the traditional method, the manual wooden chock method, the new one decreases about 40% of the filling range and cost in dealing every one set of cross roadway in the testing condition.
基金Funded by the Project of National Natural Science Foundation (No. 50508034)Guangxi Key Laboratory for the Advance Materials and New Preparation Technology(No. 063006-5C-13)
文摘Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this problem, water-releasing material with water storage and releasing characteristics was incorporated into high strength micro-expansive concrete to provide internal curing, and expansive effect of expansive agent was improved. Migration of water from initially saturated water-releasing material to the surrounding hydrating cement paste was investigated. Based on a given efficient diffusion distance of water stored in water-releasing material, the mass and real water-cement ratio of cured cement paste were estimated. At the same time, the effect of internal curing of water-releasing material on the volume deformation of high strength micro-expansive concrete was investigated.
文摘Through analyzing the effects of water consumption, diameter of solid particle, and flow vefority on the fluidity of high water content material slurry, the relatinnship among the fluidity, the isotropy of the slurry, and the pumping facilities applied in getway-side backfilling has been found. And the requirment of fluidity of high water content material for the design of getway-side back filling technique is put forward in the paper.
文摘On the basis of the creep test of bigh-water materisl solidifying backfill body(abb. HW body), This paper discusses its creep properties- The visco-elasto-plastic model, which shows the creep properties of HW body, is developed, and the creep contitutive equations are deduced. The visco-elastoplastic model is proved by the experiments and practice.
基金financial support of the National Natural Science Foundation of China (No. 51474017)the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China (No. 2014211B013)
文摘As coal and gas outburst is one of the most serious mine disasters, it is very important to at least control it if not prevent it from occurring. Injecting cement slurry or grouting into the coal seam can strengthen the seam, increase its rigidity coefficient(f), and reduce the volumetric expansion due to gas energy release.This paper reports the results of laboratory experiments on cement-based high water content slurry having different water-cement ratios(W/C) to be used for coal injection. The results show that as the W/C increases, the mobility of the slurry and its setting time increase. The compressive strength and rupture strength, however, are reduced. Furthermore, high W/C grout shows early strength after 7 days, which can be 80% of its 14-day compressive strength. To achieve rapid setting and early strength, the addition of Na_2SiO_3has proven to give the best result, when the concentration of the additive is 3%. The initial and final setting times are 13 and 21 min shorter than samples without Na_2SiO_3, while the compressive strength is more than double. As a retarder, the initial setting time can be extended to 83 min when tartaric acid of 0.4% concentration is added. Through the orthogonal experiment, the optimum recipe of the new high water content slurry has been determined to be: W/C = 2, tartaric acid = 0.2%, Na_2SiO_3= 3%, and12% bentonite. Reinforcement by injection simulation experiments show that the grouting radius of the new slurry mix is 250 mm when the applied grouting pressure is 60 k Pa, 7-day rupture strength and compressive strength are 5.2 and 6.4 MPa, respectively, and are 37% and 88% higher than ordinary cement grout. It can be concluded that the newly developed slurry mix is more effective than the ordinary mix for reinforcing coal and controlling gas outburst.
基金the financial support of the Mobilizador Programme(via Baterias 2030 project,Grant No.POCI-010247-FEDER-046109)from the National Innovation Agency of Portugalpartially supported by the start-up project of the Songshan lake Materials Laboratory(Grant No.Y2D1051Z311).
文摘The production of hydrogen through water electrolysis(WE)from renewable electricity is set to revolutionise the energy sector that is at present heavily dependent on fossil fuels.However,there is still a pressing need to develop advanced electrocatalysts able to show high activity and withstand industrially-relevant operating conditions for a prolonged period of time.In this regard,high entropy materials(HEMs),including high entropy alloys and high entropy oxides,comprising five or more homogeneously distributed metal components,have emerged as a new class of electrocatalysts owing to their unique properties such as low atomic diffusion,structural stability,a wide variety of adsorption energies and multi-component synergy,making them promising catalysts for challenging electrochemical reactions,including those involved in WE.This review begins with a brief overview about WE technologies and a short introduction to HEMs including their synthesis and general physicochemical properties,followed by a nearly exhaustive summary of HEMs catalysts reported so far for the hydrogen evolution reaction,the oxygen evolution reaction and the overall water splitting in both alkaline and acidic conditions.The review concludes with a brief summary and an outlook about the future development of HEM-based catalysts and further research to be done to understand the catalytic mechanism and eventually deploy HEMs in practical water electrolysers.