期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Contribution of glial cells to the neuroprotective effects triggered by repetitive magnetic stimulation:a systematic review
1
作者 Susana A.Ferreira Nuno Pinto +2 位作者 Inês Serrenho Maria Vaz Pato Graça Baltazar 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期116-123,共8页
Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases,and although most studies focus on its effects on neuronal cells,the contribution of nonneuronal cells to t... Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases,and although most studies focus on its effects on neuronal cells,the contribution of nonneuronal cells to the improvement trigge red by repetitive transcranial magnetic stimulation in these diseases has been increasingly suggested.To systematically review the effects of repetitive magnetic stimulation on non-neuronal cells two online databases.Web of Science and PubMed were searched fo r the effects of high-frequency-repetitive transcranial magnetic stimulation,low-frequencyrepetitive transcranial magnetic stimulation,intermittent theta-bu rst stimulation,continuous thetaburst stimulation,or repetitive magnetic stimulation on non-neuronal cells in models of disease and in unlesioned animals or cells.A total of 52 studies were included.The protocol more frequently used was high-frequency-repetitive magnetic stimulation,and in models of disease,most studies report that high-frequency-repetitive magnetic stimulation led to a decrease in astrocyte and mic roglial reactivity,a decrease in the release of pro-inflammatory cyto kines,and an increase of oligodendrocyte proliferation.The trend towards decreased microglial and astrocyte reactivity as well as increased oligodendrocyte proliferation occurred with intermittent theta-burst stimulation and continuous theta-burst stimulation.Few papers analyzed the low-frequency-repetitive transcranial magnetic stimulation protocol,and the parameters evaluated were restricted to the study of astrocyte reactivity and release of pro-inflammatory cytokines,repo rting the absence of effects on these paramete rs.In what concerns the use of magnetic stimulation in unlesioned animals or cells,most articles on all four types of stimulation reported a lack of effects.It is also important to point out that the studies were developed mostly in male rodents,not evaluating possible diffe rential effects of repetitive transcranial magnetic stimulation between sexes.This systematic review supports that thro ugh modulation of glial cells repetitive magnetic stimulation contributes to the neuroprotection or repair in various neurological disease models.Howeve r,it should be noted that there are still few articles focusing on the impact of repetitive magnetic stimulation on non-neuronal cells and most studies did not perform in-depth analyses of the effects,emphasizing the need for more studies in this field. 展开更多
关键词 ASTROCYTE GLIA high-frequency repetitive magnetic stimulation inflammation low-frequency repetitive magnetic stimulation MICROGLIA neurologic disorders OLIGODENDROCYTE repetitive magnetic stimulation theta-burst stimulation
下载PDF
High-frequency spinal cord stimulation produces longlasting analgesic effects by restoring lysosomal function and autophagic flux in the spinal dorsal horn 被引量:2
2
作者 Zhi-Bin Wang Yong-Da Liu +1 位作者 Shuo Wang Ping Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第2期370-377,共8页
High-frequency spinal cord stimulation(HF-SCS) has been established as an effective therapy for neuropathic pain. However, the analgesic mechanisms involved in HF-SCS remain to be clarified. In our study, adult rat ne... High-frequency spinal cord stimulation(HF-SCS) has been established as an effective therapy for neuropathic pain. However, the analgesic mechanisms involved in HF-SCS remain to be clarified. In our study, adult rat neuropathic pain was induced by spinal nerve ligation. Two days after modeling, the rats were subjected to 4 hours of HF-SCS(motor threshold 50%, frequency 10,000 Hz, and pulse width 0.024 ms) in the dorsal horn of the spinal cord. The results revealed that the tactile allodynia of spinal nerve-injured rats was markedly alleviated by HFSCS, and the effects were sustained for 3 hours after the stimulation had ceased. HF-SCS restored lysosomal function, increased the levels of lysosome-associated membrane protein 2(LAMP2) and the mature form of cathepsin D(matu-CTSD), and alleviated the abnormally elevated levels of microtubule-associated protein 1 A/B-light chain 3(LC3)-II and sequestosome 1(P62) in spinal nerve-injured rats. HF-SCS also mostly restored the immunoreactivity of LAMP2, which was localized in neurons in the superficial layers of the spinal dorsal horn in spinal nerve-injured rats. In addition, intraperitoneal administration of 15 mg/kg chloroquine for 60 minutes reversed the expression of the aforementioned proteins and shortened the timing of the analgesic effects of HF-SCS. These findings suggest that HF-SCS may exhibit longlasting analgesic effects on neuropathic pain in rats through improving lysosomal dysfunction and alleviating autophagic flux. This study was approved by the Laboratory Animal Ethics Committee of China Medical University, Shenyang, China(approval No. 2017 PS196 K) on March 1, 2017. 展开更多
关键词 autolysosome dorsal horn of spinal cord DYSFUNCTION electrical stimulation high-frequency spinal cord stimulation neuropathic pain spinal nerve ligation
下载PDF
Delayed improvements in visual memory task performance among chronic schizophrenia patients after high-frequency repetitive transcranial magnetic stimulation 被引量:3
3
作者 Xiang-Dong Du Zhe Li +13 位作者 Nian Yuan Ming Yin Xue-Li Zhao Xiao-Li Lv Si-Yun Zou Jun Zhang Guang-Ya Zhang Chuan-Wei Li Hui Pan Li Yang Si-Qi Wu Yan Yue Yu-Xuan Wu Xiang-Yang Zhang 《World Journal of Psychiatry》 SCIE 2022年第9期1169-1182,共14页
BACKGROUND Cognitive impairments are core characteristics of schizophrenia,but are largely resistant to current treatments.Several recent studies have shown that highfrequency repetitive transcranial magnetic stimulat... BACKGROUND Cognitive impairments are core characteristics of schizophrenia,but are largely resistant to current treatments.Several recent studies have shown that highfrequency repetitive transcranial magnetic stimulation(rTMS)of the left dorsolateral prefrontal cortex(DLPFC)can reduce negative symptoms and improve certain cognitive deficits in schizophrenia patients.However,results are inconsistent across studies.AIM To examine if high-frequency rTMS of the DLPFC can improve visual memory deficits in patients with schizophrenia.METHODS Forty-seven chronic schizophrenia patients with severe negative symptoms on stable treatment regimens were randomly assigned to receive active rTMS to the DLPFC(n=25)or sham stimulation(n=22)on weekdays for four consecutive weeks.Patients performed the pattern recognition memory(PRM)task from the Cambridge Neuropsychological Test Automated Battery at baseline,at the end of rTMS treatment(week 4),and 4 wk after rTMS treatment(week 8).Clinical symptoms were also measured at these same time points using the Scale for the Assessment of Negative Symptoms(SANS)and the Positive and Negative Syndrome Scale(PANSS).RESULTS There were no significant differences in PRM performance metrics,SANS total score,SANS subscores,PANSS total score,and PANSS subscores between active and sham rTMS groups at the end of the 4-wk treatment period,but PRM performance metrics(percent correct and number correct)and changes in these metrics from baseline were significantly greater in the active rTMS group at week 8 compared to the sham group(all P<0.05).Active rTMS treatment also significantly reduced SANS score at week 8 compared to sham treatment.Moreover,the improvement in visual memory was correlated with the reduction in negative symptoms at week 8.In contrast,there were no between-group differences in PANSS total score and subscale scores at either week 4 or week 8(all P>0.05).CONCLUSION High-frequency transcranial magnetic stimulation improves visual memory and reduces negative symptoms in schizophrenia,but these effects are delayed,potentially due to the requirement for extensive neuroplastic changes within DLPFC networks. 展开更多
关键词 COGNITION high-frequency repetitive transcranial magnetic stimulation Non-invasive brain stimulation Randomized controlled study SCHIZOPHRENIA Visual memory deficits
下载PDF
Effects of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper limb motor dysfunction in patients with subacute cerebral infarction 被引量:31
4
作者 Jiang Li Xiang-min Meng +3 位作者 Ru-yi Li Ru Zhang Zheng Zhang Yi-feng Du 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第10期1584-1590,共7页
Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the ex... Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the excitability of cortical neurons. However, there are few studies concerning the use of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper-limb motor function after cerebral infarction. We hypothesized that different frequencies of repetitive transcranial magnetic stimulation in patients with cerebral infarction would produce different effects on the recovery of upper-limb motor function. This study enrolled 127 patients with upper-limb dysfunction during the subacute phase of cerebral infarction. These patients were randomly assigned to three groups. The low-frequency group comprised 42 patients who were treated with 1 Hz repetitive transcranial magnetic stimulation on the contralateral hemisphere primary motor cortex(M1). The high-frequency group comprised 43 patients who were treated with 10 Hz repetitive transcranial magnetic stimulation on ipsilateral M1. Finally, the sham group comprised 42 patients who were treated with 10 Hz of false stimulation on ipsilateral M1. A total of 135 seconds of stimulation was applied in the sham group and high-frequency group. At 2 weeks after treatment, cortical latency of motor-evoked potentials and central motor conduction time were significantly lower compared with before treatment. Moreover, motor function scores were significantly improved. The above indices for the low- and high-frequency groups were significantly different compared with the sham group. However, there was no significant difference between the low- and high-frequency groups. The results show that low- and high-frequency repetitive transcranial magnetic stimulation can similarly improve upper-limb motor function in patients with cerebral infarction. 展开更多
关键词 nerve regeneration brain injury repetitive transcranial magnetic stimulation cerebral infarction low-frequency stimulation high-frequency stimulation upper-limb motor function cerebral cortex stroke rehabilitation motor-evoked potential central motor conduction time primary motor cortex NEUROPLASTICITY neural reorganization neural regeneration
下载PDF
Long-term potentiation-based screening identifies neuronal PYGM as a synaptic plasticity regulator participating in Alzheimer's disease
5
作者 Ting Wang Yun-Qiang Zhou +11 位作者 Yong Wang Liang Zhang Xiang Zhu Xiu-Yan Wang Jing-Hui Wang Lin-Kun Han Jian Meng Xian Zhang Hong Luo Qi-Lin Ma Zhan-Xiang Wang Yun-Wu Zhang 《Zoological Research》 SCIE CSCD 2023年第5期867-881,共15页
Synaptic dysfunction is an important pathological hallmark and cause of Alzheimer's disease(AD).High-frequency stimulation(HFS)-induced long-term potentiation(LTP)has been widely used to study synaptic plasticity,... Synaptic dysfunction is an important pathological hallmark and cause of Alzheimer's disease(AD).High-frequency stimulation(HFS)-induced long-term potentiation(LTP)has been widely used to study synaptic plasticity,with impaired LTP found to be associated with AD.However,the exact molecular mechanism underlying synaptic plasticity has yet to be completely elucidated.Whether genes regulating synaptic plasticity are altered in AD and contribute to disease onset also remains unclear.Herein,we induced LTP in the hippocampal CA1 region of wildtype(WT)and AD model mice by administering HFS to the CA3 region and then studied transcriptome changes in the CA1 region.We identified 89 genes that may participate in normal synaptic plasticity by screening HFS-induced differentially expressed genes(DEGs)in mice with normal LTP,and 43 genes that may contribute to synaptic dysfunction in AD by comparing HFS-induced DEGs in mice with normal LTP and AD mice with impaired LTP.We further refined the 43 genes down to 14 by screening for genes with altered expression in pathological-stage AD mice without HFS induction.Among them,we found that the expression of Pygm,which catabolizes glycogen,was also decreased in AD patients.We further demonstrated that down-regulation of PYGM in neurons impaired synaptic plasticity and cognition in WT mice,while its overexpression attenuated synaptic dysfunction and cognitive deficits in AD mice.Moreover,we showed that PYGM directly regulated energy generation in neurons.Our study not only indicates that PYGM-mediated energy production in neurons plays an important role in synaptic function,but also provides a novel LTP-based strategy to systematically identify genes regulating synaptic plasticity under physiological and pathological conditions. 展开更多
关键词 Alzheimer's disease high-frequency stimulation Long-term potentiation PYGM Synaptic plasticity TRANSCRIPTOME
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部