To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. Th...To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry(PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array(peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the superdense array plasma actuator created a wavy wall-parallel jet(magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level,the super-dense array plasma actuator array significantly outperformed the grid-type configuration,reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s.The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio(r), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned.展开更多
A numerical method has been used to analyze the flow field related to a NACA 0015 airfoil with and without a flap and assess the influence of the flap height and angle on the surface pressure coefficient,lift coeffici...A numerical method has been used to analyze the flow field related to a NACA 0015 airfoil with and without a flap and assess the influence of the flap height and angle on the surface pressure coefficient,lift coefficient,and drag coefficient.The numerical results demonstrate that the flap can effectively improve the lift coefficient of the airfoil;however,at small attack angles,its influence is significantly reduced.When the angle of attack exceeds the critical stall angle and the flap height is 1.5%of the chord length,the influence of the flap becomes very evident.As the flap height increases,the starting point of the separation vortex gradually moves forward and generates a larger wake vortex.Optimal aerodynamic characteristics are obtained for 1.5%(of the chord length)flap height and a 45°flap angle;in this case,the separation vortex is effectively reduced.展开更多
The aerodynamic performance of wind turbine needs to be improved day by day.In this paper,the bionic airfoil of wind turbine and the traditional airfoil are combined to optimize the aerodynamic performance.The new air...The aerodynamic performance of wind turbine needs to be improved day by day.In this paper,the bionic airfoil of wind turbine and the traditional airfoil are combined to optimize the aerodynamic performance.The new airfoil is synthesized by the method of the mean camber line superposition thickness synthesis.The flow field characteristics of 4 synthetic airfoils were calculated by using the numerical simulation of CFD commercial software Fluent,and compared with 3 original airfoils,new airfoils of different shapes were obtained,and an incomplete synthetic parameterization method for airfoils optimization was proved,which has certain engineering practical value.展开更多
The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on ...The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on the Reynolds Averaged Navier-Stokes equations(RANS).The results indicate that when sand-induced holes and small pits are involved as leading edge wear features,they have a minimal influence on the lift and drag coefficients of the airfoil.However,if delamination occurs in the same airfoil region,it significantly impacts the lift and resistance characteristics of the airfoil.Specifically,as the angle of attack grows,there is a significant decrease in the lift coefficient accompanied by a sharp increase in the drag coefficient.As wear intensifies,these effects gradually increase.Moreover,the leading edge wear can exacerbate flow separation near the trailing edge suction surface of the airfoil and cause forward displacement of the separation point.展开更多
The impact of boundary layer suction on the aerodynamic performance of a high-turning compressor cascade was numerically simulated and discussed.The aerodynamic performance of a curved and a straight cascade with and ...The impact of boundary layer suction on the aerodynamic performance of a high-turning compressor cascade was numerically simulated and discussed.The aerodynamic performance of a curved and a straight cascade with and without boundary layer suction were comparatively studied at several suction flow rates.The results showed that boundary layer suction dramatically improved the flow behavior within the flow passage.Moreover,higher loading over the whole blade height,lower total pressure loss,and higher passage throughflow were achieved with a relatively small amount of boundary layer removal.The integration of curved blade and boundary layer suction contributed to better aerodynamic performance than the cascades with only curved blade or boundary layer suction used,and the more favorable effect resulted from the weakening of the three dimensional effects of the boundary layer close to the endwalls.展开更多
High-speed rotor rotation under the low-density condition creates a special low-Reynolds compressible flow around the rotor blade airfoil where the compressibility effect on the laminar separated shear layer occurs. H...High-speed rotor rotation under the low-density condition creates a special low-Reynolds compressible flow around the rotor blade airfoil where the compressibility effect on the laminar separated shear layer occurs. However, the compressibility effect and shock wave generation associated with the increase in the Mach number (M) and the trend change due to their interference have not been clarified. The purpose is to clear the compressibility effect and its impact of shock wave generation on the flow field and aerodynamics. Therefore, we perform a two-dimensional unsteady calculation by Computational fluid dynamics (CFD) analysis using the CLF5605 airfoil used in the Mars helicopter Ingenuity, which succeeded in its first flight on Mars. The calculation conditions are set to the Reynolds number (Re) at 75% rotor span in hovering (Re = 15,400), and the Mach number was varied from incompressible (M = 0.2) to transonic (M = 1.2). The compressible fluid dynamics solver FaSTAR developed by the Japan aerospace exploration agency (JAXA) is used, and calculations are performed under multiple conditions in which the Mach number and angle of attack (α) are swept. The results show that a flow field is similar to that in the Earth’s atmosphere above M = 1.0, such as bow shock at the leading edge, whereas multiple λ-type shock waves are observed over the separated shear layer above α = 3° at M = 0.80. However, no significant difference is found in the C<sub>p</sub> distribution around the airfoil between M = 0.6 and M = 0.8. From the results, it is found that multiple λ-type shock waves have no significant effect on the airfoil surface pressure distribution, the separated shear layer effect is dominant in the surface pressure change and aerodynamic characteristics.展开更多
An efficient data-driven approach for predicting steady airfoil flows is proposed based on the Fourier neural operator(FNO),which is a new framework of neural networks.Theoretical reasons and experimental results are ...An efficient data-driven approach for predicting steady airfoil flows is proposed based on the Fourier neural operator(FNO),which is a new framework of neural networks.Theoretical reasons and experimental results are provided to support the necessity and effectiveness of the improvements made to the FNO,which involve using an additional branch neural operator to approximate the contribution of boundary conditions to steady solutions.The proposed approach runs several orders of magnitude faster than the traditional numerical methods.The predictions for flows around airfoils and ellipses demonstrate the superior accuracy and impressive speed of this novel approach.Furthermore,the property of zero-shot super-resolution enables the proposed approach to overcome the limitations of predicting airfoil flows with Cartesian grids,thereby improving the accuracy in the near-wall region.There is no doubt that the unprecedented speed and accuracy in forecasting steady airfoil flows have massive benefits for airfoil design and optimization.展开更多
The plenum chamber of a heat setting machine is a key structure for distributing hot air to different air channels.Its outlet velocity uniformity directly determines the heating uniformity of textiles,significantly af...The plenum chamber of a heat setting machine is a key structure for distributing hot air to different air channels.Its outlet velocity uniformity directly determines the heating uniformity of textiles,significantly affecting the heat setting performance.In a traditional heat setting machine,the outlet airflow maldistribution of the plenum chamber still exists.In this study,a novel plenum chamber with an airfoil baffle was established to improve the uniformity of the velocity distribution at the outlet in a heat setting machine.The structural influence of the plenum chamber on the velocity distribution was investigated using a computational fluid dynamics program.It was found that a chamber with a smaller outlet partition thickness had a better outlet velocity uniformity.The structural optimization of the plenum chamber was conducted using the particle swarm optimization algorithm.The outlet partition thickness,the transverse distance and the longitudinal distance of the optimized plenum chamber were 20,686.2 and 274.6 mm,respectively.Experiments were carried out.The experimental and simulated results showed that the optimized plenum chamber with an airfoil baffle could improve the outlet velocity uniformity.The air outlet velocity uniformity index of the optimized plenum chamber with an airfoil baffle was 4.75%higher than that of the plenum chamber without an airfoil baffle and 5.98%higher than that of the conventional chamber with a square baffle in a commercial heat setting machine.展开更多
Numerical simulations are conducted to improve the energy acquisition efficiency of H-type vertical axis wind turbines through the optimization of the related blade airfoil aerodynamic performance.The Bézier curve...Numerical simulations are conducted to improve the energy acquisition efficiency of H-type vertical axis wind turbines through the optimization of the related blade airfoil aerodynamic performance.The Bézier curve is initi-ally used tofit the curve profile of a NACA2412 airfoil,and the moving asymptote algorithm is then exploited to optimize the design of the considered H-type vertical-axis wind-turbine blade airfoil for a certain attack angle.The results show that the maximum lift coefficient of the optimized airfoil is 8.33%higher than that of the original airfoil.The maximum lift-to-drag ratio of the optimized airfoil exceeds the maximum lift-to-drag ratio of the ori-ginal airfoil by 11.22%.Moreover,the power coefficient is increased by 12.19%and the torque coefficient of the wind turbine is significantly improved.展开更多
基金supported by National Natural Science Foundation of China (Nos.12002384, U2341277,and 52025064)Foundation Strengthening Program (No.2021JJ-0786)。
文摘To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry(PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array(peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the superdense array plasma actuator created a wavy wall-parallel jet(magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level,the super-dense array plasma actuator array significantly outperformed the grid-type configuration,reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s.The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio(r), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned.
基金supported by the National Natural Science Foundation Project(Grant Numbers 51966018 and 51466015)the Key Research&Development Program of Xinjiang(Grant Number 2022B01003).
文摘A numerical method has been used to analyze the flow field related to a NACA 0015 airfoil with and without a flap and assess the influence of the flap height and angle on the surface pressure coefficient,lift coefficient,and drag coefficient.The numerical results demonstrate that the flap can effectively improve the lift coefficient of the airfoil;however,at small attack angles,its influence is significantly reduced.When the angle of attack exceeds the critical stall angle and the flap height is 1.5%of the chord length,the influence of the flap becomes very evident.As the flap height increases,the starting point of the separation vortex gradually moves forward and generates a larger wake vortex.Optimal aerodynamic characteristics are obtained for 1.5%(of the chord length)flap height and a 45°flap angle;in this case,the separation vortex is effectively reduced.
基金National Natural Science Foundation of China(Grant Nos.52376202)。
文摘The aerodynamic performance of wind turbine needs to be improved day by day.In this paper,the bionic airfoil of wind turbine and the traditional airfoil are combined to optimize the aerodynamic performance.The new airfoil is synthesized by the method of the mean camber line superposition thickness synthesis.The flow field characteristics of 4 synthetic airfoils were calculated by using the numerical simulation of CFD commercial software Fluent,and compared with 3 original airfoils,new airfoils of different shapes were obtained,and an incomplete synthetic parameterization method for airfoils optimization was proved,which has certain engineering practical value.
基金Natural Science Foundation of Liaoning Province(2022-MS-305)Foundation of Liaoning Province Education Administration(LJKZ1108).
文摘The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on the Reynolds Averaged Navier-Stokes equations(RANS).The results indicate that when sand-induced holes and small pits are involved as leading edge wear features,they have a minimal influence on the lift and drag coefficients of the airfoil.However,if delamination occurs in the same airfoil region,it significantly impacts the lift and resistance characteristics of the airfoil.Specifically,as the angle of attack grows,there is a significant decrease in the lift coefficient accompanied by a sharp increase in the drag coefficient.As wear intensifies,these effects gradually increase.Moreover,the leading edge wear can exacerbate flow separation near the trailing edge suction surface of the airfoil and cause forward displacement of the separation point.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50646021).
文摘The impact of boundary layer suction on the aerodynamic performance of a high-turning compressor cascade was numerically simulated and discussed.The aerodynamic performance of a curved and a straight cascade with and without boundary layer suction were comparatively studied at several suction flow rates.The results showed that boundary layer suction dramatically improved the flow behavior within the flow passage.Moreover,higher loading over the whole blade height,lower total pressure loss,and higher passage throughflow were achieved with a relatively small amount of boundary layer removal.The integration of curved blade and boundary layer suction contributed to better aerodynamic performance than the cascades with only curved blade or boundary layer suction used,and the more favorable effect resulted from the weakening of the three dimensional effects of the boundary layer close to the endwalls.
文摘High-speed rotor rotation under the low-density condition creates a special low-Reynolds compressible flow around the rotor blade airfoil where the compressibility effect on the laminar separated shear layer occurs. However, the compressibility effect and shock wave generation associated with the increase in the Mach number (M) and the trend change due to their interference have not been clarified. The purpose is to clear the compressibility effect and its impact of shock wave generation on the flow field and aerodynamics. Therefore, we perform a two-dimensional unsteady calculation by Computational fluid dynamics (CFD) analysis using the CLF5605 airfoil used in the Mars helicopter Ingenuity, which succeeded in its first flight on Mars. The calculation conditions are set to the Reynolds number (Re) at 75% rotor span in hovering (Re = 15,400), and the Mach number was varied from incompressible (M = 0.2) to transonic (M = 1.2). The compressible fluid dynamics solver FaSTAR developed by the Japan aerospace exploration agency (JAXA) is used, and calculations are performed under multiple conditions in which the Mach number and angle of attack (α) are swept. The results show that a flow field is similar to that in the Earth’s atmosphere above M = 1.0, such as bow shock at the leading edge, whereas multiple λ-type shock waves are observed over the separated shear layer above α = 3° at M = 0.80. However, no significant difference is found in the C<sub>p</sub> distribution around the airfoil between M = 0.6 and M = 0.8. From the results, it is found that multiple λ-type shock waves have no significant effect on the airfoil surface pressure distribution, the separated shear layer effect is dominant in the surface pressure change and aerodynamic characteristics.
文摘An efficient data-driven approach for predicting steady airfoil flows is proposed based on the Fourier neural operator(FNO),which is a new framework of neural networks.Theoretical reasons and experimental results are provided to support the necessity and effectiveness of the improvements made to the FNO,which involve using an additional branch neural operator to approximate the contribution of boundary conditions to steady solutions.The proposed approach runs several orders of magnitude faster than the traditional numerical methods.The predictions for flows around airfoils and ellipses demonstrate the superior accuracy and impressive speed of this novel approach.Furthermore,the property of zero-shot super-resolution enables the proposed approach to overcome the limitations of predicting airfoil flows with Cartesian grids,thereby improving the accuracy in the near-wall region.There is no doubt that the unprecedented speed and accuracy in forecasting steady airfoil flows have massive benefits for airfoil design and optimization.
基金National Natural Science Foundation of China(No.62173307)the Key R&D Projects of Science and Technology Department of Zhejiang Province,China(Nos.2023C01158,2022C01065 and 2022C01188)the Fundamental Research Funds of Zhejiang Sci-Tech University,China(No.22242298-Y)。
文摘The plenum chamber of a heat setting machine is a key structure for distributing hot air to different air channels.Its outlet velocity uniformity directly determines the heating uniformity of textiles,significantly affecting the heat setting performance.In a traditional heat setting machine,the outlet airflow maldistribution of the plenum chamber still exists.In this study,a novel plenum chamber with an airfoil baffle was established to improve the uniformity of the velocity distribution at the outlet in a heat setting machine.The structural influence of the plenum chamber on the velocity distribution was investigated using a computational fluid dynamics program.It was found that a chamber with a smaller outlet partition thickness had a better outlet velocity uniformity.The structural optimization of the plenum chamber was conducted using the particle swarm optimization algorithm.The outlet partition thickness,the transverse distance and the longitudinal distance of the optimized plenum chamber were 20,686.2 and 274.6 mm,respectively.Experiments were carried out.The experimental and simulated results showed that the optimized plenum chamber with an airfoil baffle could improve the outlet velocity uniformity.The air outlet velocity uniformity index of the optimized plenum chamber with an airfoil baffle was 4.75%higher than that of the plenum chamber without an airfoil baffle and 5.98%higher than that of the conventional chamber with a square baffle in a commercial heat setting machine.
基金This study was supported by the following research funding.Natural Science Foundation of Anhui Province,China,Grant Number 1908085ME166Research on the Key Technology of Multipole Grain Sampling and Inspection Equipment Based on Machine Vision,Anhui Provincial Grain Machinery Rural Development Collaborative Technology Service Center,Grant Number GXXT-2022-077+3 种基金Research on the Preparation Process and Application of Biochar Made of Bamboo,Science and Technology Bureau of Chuzhou City,Grant Number 2022ZN014The Development and Industrialization of Fruit Sorting Equipment,Science and Technology Bureau of Chuzhou City,Grant Number 2022ZN016Natural Science Major Project of Anhui Provincial Education Department,Anhui Provincial Education Department,Grant Number 2022AH040238Key Scientific Research Project of Anhui Provincial Education Department,Anhui Provincial Education Department,Grant Number KJ2021A0877.
文摘Numerical simulations are conducted to improve the energy acquisition efficiency of H-type vertical axis wind turbines through the optimization of the related blade airfoil aerodynamic performance.The Bézier curve is initi-ally used tofit the curve profile of a NACA2412 airfoil,and the moving asymptote algorithm is then exploited to optimize the design of the considered H-type vertical-axis wind-turbine blade airfoil for a certain attack angle.The results show that the maximum lift coefficient of the optimized airfoil is 8.33%higher than that of the original airfoil.The maximum lift-to-drag ratio of the optimized airfoil exceeds the maximum lift-to-drag ratio of the ori-ginal airfoil by 11.22%.Moreover,the power coefficient is increased by 12.19%and the torque coefficient of the wind turbine is significantly improved.