In this paper the hit force of firing bullet on bulletproof helmet has been computed and the test device has been described. The device is divided into two parts: 1) The bullet, helmet and mould are in one system, u...In this paper the hit force of firing bullet on bulletproof helmet has been computed and the test device has been described. The device is divided into two parts: 1) The bullet, helmet and mould are in one system, using moment theorem to calculate the hit force; 2) The mould, sensor and support pole are in one system, using the method in reference [1] that measures the dynamic strain and displacement of simulate target of bulletproof clothes. We compute the transfigure energy and momentum energy when hitting the mould, the work done by the sensor and the expend energy of support pole. We get the hit force of helmet using energy balance principle. The result is according with the test and has been used to design the GGK93T bulletproof helmet and other serial products.展开更多
文摘In this paper the hit force of firing bullet on bulletproof helmet has been computed and the test device has been described. The device is divided into two parts: 1) The bullet, helmet and mould are in one system, using moment theorem to calculate the hit force; 2) The mould, sensor and support pole are in one system, using the method in reference [1] that measures the dynamic strain and displacement of simulate target of bulletproof clothes. We compute the transfigure energy and momentum energy when hitting the mould, the work done by the sensor and the expend energy of support pole. We get the hit force of helmet using energy balance principle. The result is according with the test and has been used to design the GGK93T bulletproof helmet and other serial products.