Based on blade element momentum theory and generator characteristic test,a dynamic simulation model of 150 kW horizontal-axis tidal current turbine was established.The matching of the dynamic characteristics between t...Based on blade element momentum theory and generator characteristic test,a dynamic simulation model of 150 kW horizontal-axis tidal current turbine was established.The matching of the dynamic characteristics between the turbine and generator under various current velocities is studied,and the influence of the pitch angle on the matching is analyzed.For the problem of maximum power output in case of low current speed and limiting power in high current speed,the relation between optimal pitch angle and output power is analyzed.On the basis of dynamic characteristic analysis,the variable pitch control strategy is developed.The performance of the turbine under various tidal conditions is simulated.The research results show that the designed controller enables the turbine to operate efficiently under the condition of low current speed,and achieve the goal of limited power at high current speed.展开更多
Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerical...Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.展开更多
There is a strong magnetic coupling between poloidal field coils of superconducting tokamak HT-7, especially between ohinic heating and vertical field coils. These coils are connected to individual power supply. The c...There is a strong magnetic coupling between poloidal field coils of superconducting tokamak HT-7, especially between ohinic heating and vertical field coils. These coils are connected to individual power supply. The control system for the plasma current and horizontal position control has been designed and showed satisfactory results with the feedback control of multivari- able feedforward-decoupling and var-parameter PID controller to simultaneously modulate power supplies. The design and analysls of the control system is presented.展开更多
Based on the remote sensing images of algae, the present work analyzes the horizontal distribution characteristics of algal blooms in Chaohu Lake, China, which also reveals the frequency of algal blooms under differen...Based on the remote sensing images of algae, the present work analyzes the horizontal distribution characteristics of algal blooms in Chaohu Lake, China, which also reveals the frequency of algal blooms under different wind directions. Further, an unstructured-grid, three-dimensional finite-volume coastal ocean model (FVCOM) is applied to investigate the wind-induced currents and the transport pro- cess to explain the reason why algal blooms occur at the detected places. We first deduce the primary distribution of biomass from overlaid satellite images, and explain the formation mechanism by analyzing the pollution sources, and simulating the flow field and transportation process under prevailing wind over Chaohu Lake. And then, we consider the adjustment action of the wind on the corresponding day and develop a two-time scale approach to describe the whole formation process of algae horizontal distribution in Chaohu Lake. That is, on the longer time scale, i.e., during bloom season, prevailing wind determines the primary distribution of biomass by inducing the characteristic flow field; on the shorter time scale, i.e., on the day when bloom occurs, the wind force adjusts the primary distribution of biomass to form the final distribution of algal bloom.展开更多
基金the Special Funds for Scientific Research in Marine Public Welfare Industry(Grant No.201205019-3).
文摘Based on blade element momentum theory and generator characteristic test,a dynamic simulation model of 150 kW horizontal-axis tidal current turbine was established.The matching of the dynamic characteristics between the turbine and generator under various current velocities is studied,and the influence of the pitch angle on the matching is analyzed.For the problem of maximum power output in case of low current speed and limiting power in high current speed,the relation between optimal pitch angle and output power is analyzed.On the basis of dynamic characteristic analysis,the variable pitch control strategy is developed.The performance of the turbine under various tidal conditions is simulated.The research results show that the designed controller enables the turbine to operate efficiently under the condition of low current speed,and achieve the goal of limited power at high current speed.
基金funded by by the National Science Fund for Distinguished Young Scholars(Grant No.51425901)the National Natural Science Foundation of China(Grant Nos.51479053 and 51137002)+4 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK2011026)the 111 Project(Grant No.B2012032)the Specialized Research Funding for the Doctoral Program of Higher Education(Grant No.20130094110014)the Marine Renewable Energy Research Project of State Oceanic Administration(Grant No.GHME2013GC03)the Fundamental Research Funds for the Central University(Hohai University,Grant Nos.2013B31614 and 2014B04114)
文摘Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.
文摘There is a strong magnetic coupling between poloidal field coils of superconducting tokamak HT-7, especially between ohinic heating and vertical field coils. These coils are connected to individual power supply. The control system for the plasma current and horizontal position control has been designed and showed satisfactory results with the feedback control of multivari- able feedforward-decoupling and var-parameter PID controller to simultaneously modulate power supplies. The design and analysls of the control system is presented.
基金supported by the Hundred Talents Program of Chinese Academy of Sciencesthe National Natural Science Fundation of China for Distinguished Young Scholar(10825211)
文摘Based on the remote sensing images of algae, the present work analyzes the horizontal distribution characteristics of algal blooms in Chaohu Lake, China, which also reveals the frequency of algal blooms under different wind directions. Further, an unstructured-grid, three-dimensional finite-volume coastal ocean model (FVCOM) is applied to investigate the wind-induced currents and the transport pro- cess to explain the reason why algal blooms occur at the detected places. We first deduce the primary distribution of biomass from overlaid satellite images, and explain the formation mechanism by analyzing the pollution sources, and simulating the flow field and transportation process under prevailing wind over Chaohu Lake. And then, we consider the adjustment action of the wind on the corresponding day and develop a two-time scale approach to describe the whole formation process of algae horizontal distribution in Chaohu Lake. That is, on the longer time scale, i.e., during bloom season, prevailing wind determines the primary distribution of biomass by inducing the characteristic flow field; on the shorter time scale, i.e., on the day when bloom occurs, the wind force adjusts the primary distribution of biomass to form the final distribution of algal bloom.