期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Comparison of Beijing MST Radar and Radiosonde Horizontal Wind Measurements 被引量:4
1
作者 Yufang TIAN Daren LU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第1期39-53,共15页
To determine the performance and data accuracy of the 50 MHz Beijing Mesosphere-Stratosphere-Troposphere (MST) radar, comparisons of radar measured horizontal winds in the height range 3-25 km with radiosonde observ... To determine the performance and data accuracy of the 50 MHz Beijing Mesosphere-Stratosphere-Troposphere (MST) radar, comparisons of radar measured horizontal winds in the height range 3-25 km with radiosonde observations were made during 2012. A total of 427 profiles and 15 210 data pairs were compared. There was very good agreement between the two types of measurement. Standard deviations of difference (mean difference) for wind direction, wind speed, zonal wind and meridional wind were 24.86° (0.77°), 3.37 (-0.44), 3.33 (-0.32) and 3.58 (-0.25) m s^-1, respectively. The annual standard deviations of differences for wind speed were within 2.5-3 m s^-1 at all heights apart from 10-15 km, the area of strong winds, where the values were 3-4 m s^-1. The relatively larger differences were mainly due to wind field variations in height regions with larger wind speeds, stronger wind shear and the quasi-zero wind layer. A lower MST radar SNR and a lower percentage of data pairs compared will also result in larger inconsistencies. Importantly, this study found that differences between the MST radar and radiosonde observations did not simply increase when balloon drift resulted in an increase in the real-time distance between the two instruments, but also depended on spatiotemporal structures and their respective positions in the contemporary synoptic systems. In this sense, the MST radar was shown to be a unique observation facility for atmospheric dynamics studies, as well as an operational meteorological observation system with a high temporal and vertical resolution. 展开更多
关键词 MST radar RADIOSONDE horizontal wind measurement comparison and analysis
下载PDF
QUALITY CONTROL OF SINGLE DOPPLER RADAR DATA AND RETRIEVAL OF HORIZONTAL WIND FOR A LANDING TYPHOON 被引量:1
2
作者 刘淑媛 闫丽凤 孙健 《Journal of Tropical Meteorology》 SCIE 2008年第2期165-167,共3页
The removal of noise and velocity ambiguity and retrieval and verification of horizontal wind field is a prerequisite to make the best and fullest use of Doppler radar measurements. This approach was applied to the Do... The removal of noise and velocity ambiguity and retrieval and verification of horizontal wind field is a prerequisite to make the best and fullest use of Doppler radar measurements. This approach was applied to the Doppler radar data collected during August 2005 for a landing typhoon Matsa (0509) in Yantai, Shangdong Province, and the verified result shows that the quality control for this dataset was successful. The horizontal wind field was retrieved and then verified by studying the characteristics of the radar radial velocity and large-scale wind field and the vertical cross section of the radial velocity determined with the typhoon center as the circle center and comparing it with satellite imagery. The results show that the meso- and small-scale systems in Matsa and its horizontal and vertical structure could be clearly retrieved using the dataset collected by single Doppler radar, and a shear or a convergence was corresponding with a band of severe storm around Matsa. At the same time, the retrieved wind field from single Doppler radar is proved to be a reliable and high-resolution dataset in analyzing the inner meso-scale structure of Matsa. It is also proved that the method for removing the velocity ambiguity could be an effective approach for preliminary quality control of the Doppler radar data, and the VAP method could also be a reasonable solution for the analysis of mesoscale wind field. 展开更多
关键词 Doppler radar horizontal wind RETRIEVAL velocity ambiguity landing typhoon
下载PDF
Analysis of the correlation between horizontal wind and 11-year solar activity over Langfang, China 被引量:1
3
作者 Bing Cai QingChen Xu +3 位作者 Xiong Hu Xuan Cheng JunFeng Yang Wen Li 《Earth and Planetary Physics》 CSCD 2021年第3期270-279,共10页
In this study,long term observations of medium frequency(MF)radar at Langfang site(39.4°N,116.7°E)from 2009 to 2020 have been used to analyze the dependence of the 11-year solar cycle on horizontal winds in ... In this study,long term observations of medium frequency(MF)radar at Langfang site(39.4°N,116.7°E)from 2009 to 2020 have been used to analyze the dependence of the 11-year solar cycle on horizontal winds in the local mesosphere and lower thermosphere(MLT).The results show that the zonal wind is positively correlated with solar activity during spring at 80–84 km,and during summer at 80–82 km;the meridional wind is positively correlated with solar activity during spring at 84–88 km and during summer at 84–90 km.In contrast,the results show no correlation between the horizontal wind and solar activity in autumn and winter.We attempt to explain the correlations in terms of the changes in stratospheric temperature and the net flux of gravity waves during solar activities.In addition,annual and semiannual oscillations of the zonal/meridional wind were found by using the least squares fitting method on daily horizontal winds,which show negative correlations with solar activity at heights of 80–90 km. 展开更多
关键词 MF radar MLT horizontal wind solar cycle
下载PDF
A computational platform for considering the effects of aerodynamic and seismic load combination for utility scale horizontal axis wind turbines 被引量:12
4
作者 Mohammad-Amin Asareh Ian Prowell +1 位作者 Jeffery Volz William Schonberg 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第1期91-102,共12页
The wide deployment of wind turbines in locations with high seismic hazard has led engineers to take into account a more comprehensive seismic design of such structures. Turbine specific guidelines usually use simplif... The wide deployment of wind turbines in locations with high seismic hazard has led engineers to take into account a more comprehensive seismic design of such structures. Turbine specific guidelines usually use simplified methods and consider many assumptions to combine seismic demand with the other operational loads effecting the design of these structures. As the turbines increase in size and capacity, the interaction between seismic loads and aerodynamic loads becomes even more important. In response to the need for a computational tool that can perform coupled simulations of wind and seismic loads, a seismic module is developed for the FAST code and described in this research. This platform allows engineers working in this industry to directly consider interaction between seismic and other environmental loads for turbines. This paper details the practical application and theory of this platform and provides examples for the use of different capabilities. The platform is then used to show the suitable earthquake and operational load combination with the implicit consideration of aerodynamic damping by estimating appropriate load factors. 展开更多
关键词 renewable energy horizontal axis wind turbines aerodynamic-seismic load interaction aerodynamicdamping coupled simulations
下载PDF
PREDICTION OF THE AERODYNAMIC PERFORMANCE OF HORIZONTAL AXIS WIND TURBINES IN CONDITION OF UNIFORM WIND 被引量:1
5
作者 Wang Tongguang Tang Ruiyuan Nanjing Aeronautical Institute Nanjing 210016, P.R. of China 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1991年第2期207-213,共7页
The classical momentum-blade element theory is improved by using the empirical formula while part of rotor blades enters into the turbulent wake state, and the performance of a horizontal-axis wind turbine (HAWT) at a... The classical momentum-blade element theory is improved by using the empirical formula while part of rotor blades enters into the turbulent wake state, and the performance of a horizontal-axis wind turbine (HAWT) at all speed ratios can be predicted. By using an improved version of the so-called secant method, the convergent solutions of the system of two-dimensional equations concerning the induced velocity factors a and a' are guaranteed. Besides, a solving method of multiple solutions for a and a' is proposed and discussed. The method provided in this paper can be used for computing the aerodynamic performance of HAWTs both ofrlow solidity and of high solidity. The calculated results coincide well with the experimental data. 展开更多
关键词 wind AXIS PREDICTION OF THE AERODYNAMIC PERFORMANCE OF horizontal AXIS wind TURBINES IN CONDITION OF UNIFORM wind
下载PDF
Criterion of aerodynamic performance of large-scale offshore horizontal axis wind turbines
6
作者 程兆雪 李仁年 +1 位作者 杨从新 胡文瑞 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第1期13-20,共8页
With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic paramete... With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic parameters such as the rated wind speed, blade tip speed, and rotor solidity. We show that the essential criterion of a high- performance wind turbine is a highest possible annual usable energy pattern factor and a smallest possible dimension, capturing the maximum wind energy and producing the maximum annual power. The influence of the above-mentioned three parameters on the pattern factor and rotor geometry of wind turbine operated in China's offshore meteoro- logical environment is investigated. The variation patterns of aerodynamic and geometric parameters are obtained, analyzed, and compared with each other. The present method for aerodynamic analysis and its results can form a basis for evaluating aerodynamic performance of large-scale offshore wind turbine rotors. 展开更多
关键词 offshore wind energy project horizontal axis wind turbine rotor aerody-namic design annual usable energy pattern factor power coefficient wind turbine rotor wind turbine blade
下载PDF
Analysis of Near-Wake Deflection Characteristics of Horizontal Axis Wind Turbine Tower under Yaw State
7
作者 Zhen Liu Jianwen Wang +2 位作者 Fuzhong Bai Caifeng Wen Yunchao Du 《Energy Engineering》 EI 2021年第6期1627-1640,共14页
The yaw of the horizontal axis wind turbine results in the deflection of the wake flow field of the tower.The reasonable layout of wind farm can reduce the power loss of the downstream wind turbine generators due to t... The yaw of the horizontal axis wind turbine results in the deflection of the wake flow field of the tower.The reasonable layout of wind farm can reduce the power loss of the downstream wind turbine generators due to the blocking effect of the upstream wake flow and increase the output power of the whole wind farm.However,there is still much space for further research.In this paper,experimental research is conducted on the near-wake deflection characteristics of wind turbine tower under yaw state,expecting the effect of throwing away a brick in order to get a gem.In the low-turbulence wind tunnel test,regarding the most unfavorable position where the rotating blades coincide with the tower,Particle image velocimetry(PIV)technology is used to test the instantaneous velocity field and output power and analyze experimental data at four different yaw angles,different inflow velocities and heights.Meanwhile,in order to quantitatively analyze the laws on wake deflection,the radon transformation is used to analyze the velocity contour for calculating the wake direction angle,and the results show high reliability.The comprehensive experimental results indicate that the near-wake flow field of the tower obviously deflects towards a side in the horizontal plane.With the increase of the yaw angle,the deflection angle of the wake flow field further increases,and the recovery of wake velocity accelerates.The closer to the blade root,the more complex the flow is,and the influence of the blade on the near wake of the tower is gradually weakened.The change laws on the wake direction angle with the yaw angle and the blade spanwise direction are obtained.The experiment in this paper can provide guidance for layout optimization of wind farm,and the obtained data can provide a scientific basis for the research on performance prediction of horizontal axis wind turbine. 展开更多
关键词 horizontal axis wind turbine yaw TOWER NEAR-WAKE
下载PDF
The Effects of Turbulence Intensity and Tip Speed Ratio on the Coherent Structure of Horizontal-Axis Wind Turbine Wake:A Wind Tunnel Experiment
8
作者 Yuxia Han Jianwen Wang +2 位作者 Xin Li Xueqing Dong Caifeng Wen 《Energy Engineering》 EI 2022年第6期2297-2317,共21页
The evolution laws of the large-eddy coherent structure of the wind turbine wake have been evaluated via wind tunnel experiments under uniform and turbulent inflow conditions.The spatial correlation coefficients,the t... The evolution laws of the large-eddy coherent structure of the wind turbine wake have been evaluated via wind tunnel experiments under uniform and turbulent inflow conditions.The spatial correlation coefficients,the turbulence integral scales and power spectrum are obtained at different tip speed ratios(TSRs)based on the time-resolved particle image velocity(TR-PIV)technique.The results indicate that the large-eddy coherent structures are more likely to dissipate with an increase in turbulence intensity and TSR.Furthermore,the spatial correlation of the longitudinal pulsation velocity is greater than its axial counterpart,resulting into a wake turbulence dominated by the longitudinal pulsation.With an increase of turbulence intensity,the integral scale of the axial turbulence increases,meanwhile,its longitudinal counterpart decreases.Owing to an increase in TSR,the integral scale of axial turbulence decreases,whereas,that of the longitudinal turbulence increases.By analyzing the wake power spectrum,it is found that the turbulent pulsation kinetic energy of the wake structure is mainly concentrated in the low-frequency vortex region.The dissipation rate of turbulent kinetic energy increases with an increase of turbulence intensity and the turbulence is transported and dissipated on a smaller scale vortex,thus promoting the recovery of wake. 展开更多
关键词 horizontal axis wind turbine coherent structure turbulence integral scale TR-PIV spatial correlation
下载PDF
Computational Fluid Dynamics Analysis of Multi-Bladed Horizontal Axis Wind Turbine Rotor
9
作者 Nasim A. Mamaghani Peter E. Jenkins 《World Journal of Mechanics》 2020年第9期121-138,共18页
The principal objective of this work was to investigate the 3D flow field around a multi-bladed horizontal axis wind turbine (HAWT) rotor and to investigate its performance characteristics. The aerodynamic performance... The principal objective of this work was to investigate the 3D flow field around a multi-bladed horizontal axis wind turbine (HAWT) rotor and to investigate its performance characteristics. The aerodynamic performance of this novel rotor design was evaluated by means of a Computational Fluid Dynamics commercial package. The Reynolds Averaged Navier-Stokes (RANS) equations were selected to model the physics of the incompressible Newtonian fluid around the blades. The Shear Stress Transport (SST) <em>k</em>-<em>ω</em> turbulence model was chosen for the assessment of the 3D flow behavior as it had widely used in other HAWT studies. The pressure-based simulation was done on a model representing one-ninth of the rotor using a 40-degree periodicity in a single moving reference frame system. Analyzing the wake flow behavior over a wide range of wind speeds provided a clear vision of this novel rotor configuration. From the analysis, it was determined that the flow becomes accelerated in outer wake region downstream of the rotor and by placing a multi-bladed rotor with a larger diameter behind the forward rotor resulted in an acceleration of this wake flow which resulted in an increase the overall power output of the wind machine. 展开更多
关键词 Computational Fluid Dynamics horizontal Axis wind Turbine Multi-Bladed Rotor Aerodynamic Torque
下载PDF
Effect of Yaw Angle on Large Scale Three-blade Horizontal Axis Wind Turbines
10
作者 Thomas Posenauer Ming Zhao Ee Long Tan 《Hydro Science & Marine Engineering》 2022年第1期8-15,共8页
Offshore Horizontal Axis Wind Turbines(HAWT)are used globally as a source of clean and renewable energy.Turbine efficiency can be improved by optimizing the geometry of the turbine blades.Turbines are generally design... Offshore Horizontal Axis Wind Turbines(HAWT)are used globally as a source of clean and renewable energy.Turbine efficiency can be improved by optimizing the geometry of the turbine blades.Turbines are generally designed in a way that its orientation is adjustable to ensure the wind direction is aligned with the axis of the turbine shaft.The deflection angle from this position is defined as yaw angle of the turbine.Understanding the effects of the yaw angle on the wind turbine performance is important for the turbine safety and performance analysis.In this study,performance of a yawed HAWT is studied by computational fluid dynamics.The wind flow around the turbine is simulated by solving the Reynolds-Averaged Navier-Stokes equations using software ANSYS Fluent.The principal aim of this study is to quantify the yaw angle on the efficiency of the turbine and to check the accuracy of existing empirical formula.A three-bladed 100-m diameter prototype HAWT was analysed through comprehensive Computational Fluid Dynamics(CFD)simulations.The turbine efficiency reaches its maximum value of 33.9%at 0°yaw angle and decreases with the increase of yaw angle.It was proved that the cosine law can estimate the turbine efficiency with a yaw angle with an error less 10%when the yaw angle is between-30°and 30°.The relative error of the cosine law increase at larger yaw angles because of the power is reduced significantly. 展开更多
关键词 horizontal axis wind turbines Computational fluid dynamics Yaw angle Numerical method AERODYNAMICS
下载PDF
A comparison of MLT wind between meteor radar chain data and SDWACCM results 被引量:1
11
作者 BaoZhu Zhou XiangHui Xue +6 位作者 Wen Yi HaiLun Ye Jie Zeng JinSong Chen JianFei Wu TingDi Chen XianKang Dou 《Earth and Planetary Physics》 EI CSCD 2022年第5期451-464,共14页
A meteor radar chain located along the 120°E meridian in the Northern Hemisphere from low to middle latitudes provides longterm horizontal wind observations of the mesosphere and lower thermosphere(MLT)region.In ... A meteor radar chain located along the 120°E meridian in the Northern Hemisphere from low to middle latitudes provides longterm horizontal wind observations of the mesosphere and lower thermosphere(MLT)region.In this study,we report a seasonal variation and its latitudinal feature in the horizontal mean wind in the MLT region observed by six meteor radar instruments located at Mohe(53.5°N,122.3°E),Beijing(40.3°N,116.2°E),Mengcheng(33.4°N,116.5°E),Wuhan(30.6°N,114.4°E),Kunming(25.6°N,108.3°E),and Fuke(19.5°N,109.1°E)stations.In addition,we compare the wind in the MLT region measured by the meteor radar stations with those simulated by the Whole Atmosphere Community Climate Model(WACCM).In general,the WACCM appears to capture well the seasonal and latitudinal variations in the zonal wind component.In particular,the temporal evolution of the eastward zonal wind maximum shifts from July to May as the latitude decreases.However,the simulated WACCM meridional wind exhibits differences from the meteor radar observations. 展开更多
关键词 meteor radar chain MLT horizontal wind TIDE SD-WACCM
下载PDF
Decoupling Adaptive Sliding Mode Observer Design for Wind Turbines Subject to Simultaneous Faults in Sensors and Actuators 被引量:3
12
作者 Hamed Habibi Ian Howard +1 位作者 Silvio Simani Afef Fekih 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第4期837-847,共11页
This paper proposes an adaptive sliding mode observer(ASMO)-based approach for wind turbines subject to simultaneous faults in sensors and actuators.The proposed approach enables the simultaneous detection of actuator... This paper proposes an adaptive sliding mode observer(ASMO)-based approach for wind turbines subject to simultaneous faults in sensors and actuators.The proposed approach enables the simultaneous detection of actuator and sensor faults without the need for any redundant hardware components.Additionally,wind speed variations are considered as unknown disturbances,thus eliminating the need for accurate measurement or estimation.The proposed ASMO enables the accurate estimation and reconstruction of the descriptor states and disturbances.The proposed design implements the principle of separation to enable the use of the nominal controller during faulty conditions.Fault tolerance is achieved by implementing a signal correction scheme to recover the nominal behavior.The performance of the proposed approach is validated using a 4.8 MW wind turbine benchmark model subject to various faults.Monte-Carlo analysis is also carried out to further evaluate the reliability and robustness of the proposed approach in the presence of measurement errors.Simplicity,ease of implementation and the decoupling property are among the positive features of the proposed approach. 展开更多
关键词 Fault tolerant control horizontal axis wind turbines Monte-Carlo analysis principle of separation simultaneous faults sliding mode observer
下载PDF
Mesopause temperatures and relative densities at midlatitudes observed by the Mengcheng meteor radar 被引量:2
13
作者 Wen Yi XiangHui Xue +5 位作者 MaoLin Lu Jie Zeng HaiLun Ye JianFei Wu Chong Wang TingDi Chen 《Earth and Planetary Physics》 CAS CSCD 2023年第6期665-674,共10页
The atmospheric temperatures and densities in the mesosphere and lower thermosphere(MLT)region are essential for studying the dynamics and climate of the middle and upper atmosphere.In this study,we present more than ... The atmospheric temperatures and densities in the mesosphere and lower thermosphere(MLT)region are essential for studying the dynamics and climate of the middle and upper atmosphere.In this study,we present more than 9 years of mesopause temperatures and relative densities estimated by using ambipolar diffusion coefficient measurements observed by the Mengcheng meteor radar(33.4°N,116.5°E).The intercomparison between the meteor radar and Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere by Broadband Emission Radiometry(TIMED/SABER)and Earth Observing System(EOS)Aura/Microwave Limb Sounder(MLS)observations indicates that the meteor radar temperatures and densities agree well with the simultaneous satellite measurements.Annual variations dominate the mesopause temperatures,with the maximum during winter and the minimum during summer.The mesopause relative densities also show annual variations,with strong maxima near the spring equinox and weak maxima before the winter solstice,and with a minimum during summer.In addition,the mesopause density exhibits a structure similar to that of the zonal wind:as the zonal wind flows eastward(westward),the mesopause density decreases(increases).At the same time,the meridional wind shows a structure similar to that of the mesopause temperature:as the meridional wind shows northward(southward)enhancements,the mesopause temperature increases(decreases).Simultaneous horizontal wind,temperature,and density observations provide multiple mesospheric parameters for investigating mesospheric dynamics and thermodynamic processes and have the potential to improve widely used empirical atmospheric models. 展开更多
关键词 meteor radar MESOPAUSE horizontal wind temperature density
下载PDF
Design and Parametric Investigation of Horizontal Axis Wind Turbine
14
作者 ABBAS Zulkarnain ABBAS Saqlain +1 位作者 BUTT Zubair PASHA Riffat Asim 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第3期345-351,共7页
This research focuses on design and calculations for the horizontal axis wind turbine to fulfill energy demands at small scales in Pakistan. This is the design to produce about 5 kilowatts of electricity to share the ... This research focuses on design and calculations for the horizontal axis wind turbine to fulfill energy demands at small scales in Pakistan. This is the design to produce about 5 kilowatts of electricity to share the load of average home appliances. Area chosen for this research is Pasni, Balochistan in Pakistan to build the wind turbine for electricity. Design values are approximated by appropriate formulas of wind energy design. In current research, turbine blade profile is designed by blade element momentum(BEM) theory. Warlock wind turbine calculator is used to verify the design parameters like wind speed, tip speed ratio(TSR) and efficiency factor.Effects of wind speed, wind power, TSR, pitch angle, blade tip angle, number of blades, blade design and tower height on power coefficient are analyzed in this research. Maximum power coefficient is achieved at a designed velocity of 6 m/s. Design analysis is also performed on simulation software ANSYS Fluent. It is observed that designed velocity parameter of this research is very suitable for the turbine blade, so blade designing is perfect according to wind speed range. 展开更多
关键词 horizontal axis wind turbine Warlock wind turbine calculator planetary gear box
原文传递
Wind Tunnel Study on Wind and Turbulence Intensity Profiles in Wind Turbine Wake 被引量:4
15
作者 Takao MAEDA Yasunari KAMADA +4 位作者 Junsuke MURATA Sayaka YONEKURA Takafumi ITO Atsushi OKAWA Tetsuya KOGAKI 《Journal of Thermal Science》 SCIE EI CAS CSCD 2011年第2期127-132,共6页
In recent years, there has been a rapid development of the wind farms in Japan. It becomes very important to investigate the wind turbine arrangement in wind farm, in order that the wake of one wind turbine does not t... In recent years, there has been a rapid development of the wind farms in Japan. It becomes very important to investigate the wind turbine arrangement in wind farm, in order that the wake of one wind turbine does not to interfere with the flow in other wind turbines. In such a case, in order to achieve the highest possible efficiency from the wind, and to install as many as possible wind turbines within a limited area, it becomes a necessity to study the mutual interference of the wake developed by wind turbines. However, there is no report related to the effect of the turbulence intensity of the external flow on the wake behind a wind turbine generated in the wind tunnel. In this paper, the measurement results of the averaged wind profile and turbulence intensity profile in the wake in the wind tunnel are shown when the turbulence intensity of the external wind was changed. The wind tunnel experiment is performed with 500mm-diameter two-bladed horizontal axis wind turbine and the wind velocity in wake is measured by an I-type hot wire probe. As a result, it is clarified that high turbulence intensities enable to the entrainment of the main flow and the wake and to recover quickly the velocity in the wake. 展开更多
关键词 horizontal axis wind turbine WAKE wind profile Turbulence intensity Power output
原文传递
Study on the Rotor Design Method for a Small Propeller-Type Wind Turbine
16
作者 Yasuyuki Nishi Yusuke Yamashita Terumi Inagaki 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第4期355-362,共8页
Small propeller-type wind turbines have a low Reynolds number,limiting the number of usable airfoil materials.Thus,their design method is not sufBciently established,and their performance is often low.The ultimate goa... Small propeller-type wind turbines have a low Reynolds number,limiting the number of usable airfoil materials.Thus,their design method is not sufBciently established,and their performance is often low.The ultimate goal of this research is to establish high-performance design guidelines and design methods for small propeller-type wind turbines.To that end,we designed two rotors:Rotor A,based on the rotor optimum design method from the blade element momentum theory,and Rotor B,in which the chord length of the tip is extended and the chord length distribution is linearized.We examined performance characteristics and flow fields of the two rotors through wind tunnel experiments and numerical analysis.Our results revealed that the maximum output tip speed ratio of Rotor B shifted lower than that of Rotor A,but the maximum output coefficient increased by approximately 38.7%.Rotors A and B experienced a large-scale separation on the hub side,which extended to the mean in Rotor A.This difference in separation had an impact on the significant decrease in Rotor A's output compared to the design value and the increase in Rotor B's output compared to Rotor A. 展开更多
关键词 wind Turbine Propeller-Type horizontal Axis Blade Element Momentum Theory Rotor Design Method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部