期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A Closed-Loop Dynamic Controller for Active Vibration Isolation Working on A Parallel Wheel-Legged Robot
1
作者 Fei Guo Shoukun Wang +1 位作者 Daohe Liu Junzheng Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期147-160,共14页
Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.How... Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.However,it is difficult to obtain its precise dynamic model,because of the nonlinearity and uncertainty of the heavy robot.This paper presents a dynamic control framework with a decentralized structure for single wheel-leg,position tracking based on model predictive control(MPC)and adaptive impedance module from inside to outside.Through the Newton-Euler dynamic model of the Stewart mechanism,the controller first creates a predictive model by combining Newton-Raphson iteration of forward kinematic and inverse kinematic calculation of Stewart.The actuating force naturally enables each strut to stretch and retract,thereby realizing six degrees-of-freedom(6-DOFs)position-tracking for Stewart wheel-leg.The adaptive impedance control in the outermost loop adjusts environmental impedance parameters by current position and force feedback of wheel-leg along Z-axis.This adjustment allows the robot to adequately control the desired support force tracking,isolating the robot body from vibration that is generated from unknown terrain.The availability of the proposed control methodology on a physical prototype is demonstrated by tracking a Bezier curve and active vibration isolation while the robot is rolling on decelerate strips.By comparing the proportional and integral(PI)and constant impedance controllers,better performance of the proposed algorithm was operated and evaluated through displacement and force sensors internally-installed in each cylinder,as well as an inertial measurement unit(IMU)mounted on the robot body.The proposed algorithm structure significantly enhances the control accuracy and vibration isolation capacity of parallel wheel-legged robot. 展开更多
关键词 Wheel-legged hybrid robot Adaptive impedance control Model predictive control Stewart mechanism Vibration isolation Parallel robot
下载PDF
Adaptive Harmonic Virtual Impedance Control for Improving Voltage Quality of Microgrids
2
作者 Yang Wang Xiang Zhou +3 位作者 Junmiao Tang Xianyong Xiao Shu Zhang Jiandong Si 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2024年第5期1548-1558,共11页
The effects of nonlinear loads on voltage quality represent an emerging concern for islanded microgrids.Existing research works have mainly focused on harmonic power sharing among multiple inverters,which ignores the ... The effects of nonlinear loads on voltage quality represent an emerging concern for islanded microgrids.Existing research works have mainly focused on harmonic power sharing among multiple inverters,which ignores the diversity of different inverters to mitigate harmonics from nonlinear loads.As a result,the voltage quality of microgrids cannot be effectively improved.To address this issue,this study proposes an adaptive harmonic virtual impedance(HVI)control for improving voltage quality of microgrids.Based on the premise that no inverter is overloaded,the main objective of the proposed control is to maximize harmonic power absorption by shaping the lowest output impedances of inverters.To achieve this,the proposed control is utilized to adjust the HVI of each inverter based on its operation conditions.In addition,the evaluation based on Monte Carlo harmonic power flow is designed to assess the performance of the proposed control in practice.Finally,comparative studies and control-in-the-loop experiments are conducted. 展开更多
关键词 Microgrid nonlinear load residual capacity harmonic power inverter adaptive harmonic virtual impedance control
原文传递
Data-Driven Human-Robot Interaction Without Velocity Measurement Using Off-Policy Reinforcement Learning 被引量:3
3
作者 Yongliang Yang Zihao Ding +2 位作者 Rui Wang Hamidreza Modares Donald C.Wunsch 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第1期47-63,共17页
In this paper,we present a novel data-driven design method for the human-robot interaction(HRI)system,where a given task is achieved by cooperation between the human and the robot.The presented HRI controller design i... In this paper,we present a novel data-driven design method for the human-robot interaction(HRI)system,where a given task is achieved by cooperation between the human and the robot.The presented HRI controller design is a two-level control design approach consisting of a task-oriented performance optimization design and a plant-oriented impedance controller design.The task-oriented design minimizes the human effort and guarantees the perfect task tracking in the outer-loop,while the plant-oriented achieves the desired impedance from the human to the robot manipulator end-effector in the inner-loop.Data-driven reinforcement learning techniques are used for performance optimization in the outer-loop to assign the optimal impedance parameters.In the inner-loop,a velocity-free filter is designed to avoid the requirement of end-effector velocity measurement.On this basis,an adaptive controller is designed to achieve the desired impedance of the robot manipulator in the task space.The simulation and experiment of a robot manipulator are conducted to verify the efficacy of the presented HRI design framework. 展开更多
关键词 Adaptive impedance control data-driven method human-robot interaction(HRI) reinforcement learning velocity-free
下载PDF
Power quality enhancement in islanded microgrids via closed-loop adaptive virtual impedance control 被引量:6
4
作者 Yang Wang Junmiao Tang +3 位作者 Jiandong Si Xianyong Xiao Peter Zhou Jinshuai Zhao 《Protection and Control of Modern Power Systems》 SCIE EI 2023年第1期163-179,共17页
The high proportion of nonlinear and unbalanced loads results in power quality issues in islanded microgrids.This paper presents a novel control strategy for harmonic and unbalanced power allocation among distributed ... The high proportion of nonlinear and unbalanced loads results in power quality issues in islanded microgrids.This paper presents a novel control strategy for harmonic and unbalanced power allocation among distributed genera-tors(DGs)in microgrids.Different from the existing sharing strategies that allocate the harmonic and unbalanced power according to the rated capacities of DGs,the proposed control strategy intends to shape the lowest output impedances of DGs to optimize the power quality of the microgrid.To achieve this goal,the feasible range of virtual impedance is analyzed in detail by eigenvalue analysis,and the findings suggest a simultaneous adjustment of real and imaginary parts of virtual impedance.Because virtual impedance is an open-loop control that imposes DG to the risk of overload,a new closed-loop structure is designed that uses residual capacity and absorbed power as feedback.Accordingly,virtual impedance can be safely adjusted in the feasible range until the power limit is reached.In addi-tion,a fuzzy integral controller is adopted to improve the dynamics and convergence of the power distribution,and its performance is found to be superior to linear integral controllers.Finally,simulations and control hardware-in-the-loop experiments are conducted to verify the effectiveness and usefulness of the proposed control strategy. 展开更多
关键词 Islanded microgrid Harmonic power Unbalanced power Residual capacity Adaptive virtual impedance
下载PDF
Circulating Current Suppression Method with Adaptive Virtual Impedance for Multi-bidirectional Power Converters Under Unbalanced Conditions 被引量:1
5
作者 Baifu Zhang Xiaoqing Han +3 位作者 Chunguang Ren Dongxia Zhang Lei Wang Tianhao Song 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第1期77-87,共11页
Multi-paralleled bidirectional power converters(BPCs)are commonly used to improve the power capacity and reliability in an AC/DC hybrid microgrid.However,circulating current through multi-BPCs has been one of the chal... Multi-paralleled bidirectional power converters(BPCs)are commonly used to improve the power capacity and reliability in an AC/DC hybrid microgrid.However,circulating current through multi-BPCs has been one of the challenges and it can be aggravated in the presence of non-ideal operating conditions,such as unbalanced AC voltages,and the mismatch of hardware parameters.In order to suppress the circulating current,this paper proposes a distributed method based on adaptive virtual impedance,which also employs positive sequence power droop control and voltage deviation compensation control.The traditional positive sequence power droop control is adopted to only regulate the positive components of the BPCs output voltage.The negative sequence power term is fed to an adaptive virtual impedance generator to modify the damping characteristics of the BPCs.Also,an adaptive virtual impedance-based voltage deviation compensation method is proposed to recover the fluctuated output voltage of the BPCs due to droop action and the power fluctuations.The fully distributed regulation of adaptive virtual impedance enables the load power to be shared accurately among BPC modules and thus the circulating current can be effectively suppressed.The proposed control strategy does not require an additional communication system and the precise parameters of hardware equipment and line impedance.Furthermore,the effectiveness of the proposed method is verified by the experimental results. 展开更多
关键词 Adaptive virtual impedance bidirectional power converters(BPCs) hybrid microgrid unbalance operation Circulating current
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部