The influence of solid particles size,density and loading on the critical gas-inducing impeller speed was investigated in a gas–liquid–solid stirring tank equipped with a hollow Rushton impeller.Three types of solid...The influence of solid particles size,density and loading on the critical gas-inducing impeller speed was investigated in a gas–liquid–solid stirring tank equipped with a hollow Rushton impeller.Three types of solid particles,hollow glass beads with diameters of 300 μm,200 μm,100 μm,and 60 μm,silica gel and desalting resin,were used.It was found that the adding solid particles would change the critical impeller speed.For hollow glass beads and silica gel,whose relative densities were less than or equal to 1.5,the critical impeller speeds increased with the solid loading before reaching the maximum values,and then decreased to a value even lower than that without added solids.The size of the solids also had apparent influence on the critical impeller speed,and larger solid particles correspond to a smaller critical impeller speed.The experimental data also showed that the gasinducing was beneficial to the suspension of the solid particles.展开更多
A series of steady and unsteady numerical calculations of the internal flow in mixed-flow pumps with three different specific speeds were carried out based on the N-S equation coupled with the standard k-εturbulence ...A series of steady and unsteady numerical calculations of the internal flow in mixed-flow pumps with three different specific speeds were carried out based on the N-S equation coupled with the standard k-εturbulence model under different operating conditions to investigate the relationship between the impeller specific speed and the pump performance as well as pressure pulsations.Meanwhile,the pump performance and pressure pulsations inside the mixed-flow pump with three different specific speeds were also analyzed and compared with the corresponding test data.From the results,the averaged deviations between the predicted and tested head among different impellers are below 5%,and with respect to the equivalent impeller specific speeds of 280 and 260,the values are 4.30%and 3.69%,respectively.For all the impeller schemes,the best efficiency point of the mixed-flow pump is found at the flow rate of 1.2 Q_(d) and the higher head deviation occurs at lower flow rates.Especially,it can be found that the specific speed has a slight effect on the pressure fluctuation in the impellers.Eventually,it is determined that the pump performance curves calculated by numerical simu-lations have good agreement with the relevant experimental results,which verifies that the numerical methods used in the present study are accurate to a certain extent.Furthermore,the results also provide some references to the pressure pulsation analysis and the performance improvement of the mixed-flow pump design.展开更多
The critical impeller speed, N_(JS), for complete suspension of solidparticles in the agitated solid-liquid two-phase system in baffled stirred tanks with a standardRushton impeller is predicted using the computationa...The critical impeller speed, N_(JS), for complete suspension of solidparticles in the agitated solid-liquid two-phase system in baffled stirred tanks with a standardRushton impeller is predicted using the computational procedure proposed in Part Ⅰ. Three differentnumerical criteria are tested for determining the critical solid suspension. The predicted N_(JS)is compared with those obtained from several empirical correlations. It is suggested the mostreasonable criterion for determining the complete suspension of solid particles is the positive signof simulated axial velocity of solid phase at the location where the solid particles are mostdifficult to be suspended.展开更多
The classification performance of model coal mill classifiers with different bottom incoming flow inlets was experimentally and numerically studied.The flow field adjacent to two neighboring impeller blades was measur...The classification performance of model coal mill classifiers with different bottom incoming flow inlets was experimentally and numerically studied.The flow field adjacent to two neighboring impeller blades was measured using the particle image velocimetry technique.The results showed that the flow field adjacent to two neighboring blades with the swirling inlet was significantly different from that with the non-swirling inlet.With the swirling inlet,there was a vortex located between two neighboring blades,while with the nonswirling inlet,the vortex was attached to the blade tip.The vorticity of the vortex with the non-swirling inlet was much lower than that with the swirling inlet.The classifier with the non-swirling inlet demonstrated a larger cut size than that with the swirling inlet when the impeller was stationary(~0 r·min-1).As the impeller rotational speed increased,the cut size of the cases with non-swirling and swirling inlets both decreased,and the one with the non-swirling inlet decreased more dramatically.The values of the cut size of the two classifiers were close to each other at a high impeller rotational speed(≥120 r·min-1).The overall separation efficiency of the classifier with the non-swirling inlet was lower than that with the swirling inlet,and monotonically increased as the impeller rotational speed increased.With the swirling inlet,the overall separation efficiency first increased with the impeller rotational speed and then decreased when the rotational speed was above 120 r·min-1,and the variation trend of the separation efficiency was more moderate.As the initial particle concentration increased,the cut sizes of both swirling and non-swirling inlet cases decreased first and then barely changed.At a low initial particle concentration(b 0.04 kg·m-3),the classifier with the swirling inlet had a larger cut size than that with the non-swirling inlet.展开更多
基金Supported by the National Natural Science Foundation of China(51308215)
文摘The influence of solid particles size,density and loading on the critical gas-inducing impeller speed was investigated in a gas–liquid–solid stirring tank equipped with a hollow Rushton impeller.Three types of solid particles,hollow glass beads with diameters of 300 μm,200 μm,100 μm,and 60 μm,silica gel and desalting resin,were used.It was found that the adding solid particles would change the critical impeller speed.For hollow glass beads and silica gel,whose relative densities were less than or equal to 1.5,the critical impeller speeds increased with the solid loading before reaching the maximum values,and then decreased to a value even lower than that without added solids.The size of the solids also had apparent influence on the critical impeller speed,and larger solid particles correspond to a smaller critical impeller speed.The experimental data also showed that the gasinducing was beneficial to the suspension of the solid particles.
基金National Natural Science Foundation of China(51976078)Senior Personnel Scientific Research Foundation of Jiangsu University:(15JDG073)Open Research Subject of Key Laboratory of Fluid and Power Machinery,Ministry of Education(szjj2016-065)。
文摘A series of steady and unsteady numerical calculations of the internal flow in mixed-flow pumps with three different specific speeds were carried out based on the N-S equation coupled with the standard k-εturbulence model under different operating conditions to investigate the relationship between the impeller specific speed and the pump performance as well as pressure pulsations.Meanwhile,the pump performance and pressure pulsations inside the mixed-flow pump with three different specific speeds were also analyzed and compared with the corresponding test data.From the results,the averaged deviations between the predicted and tested head among different impellers are below 5%,and with respect to the equivalent impeller specific speeds of 280 and 260,the values are 4.30%and 3.69%,respectively.For all the impeller schemes,the best efficiency point of the mixed-flow pump is found at the flow rate of 1.2 Q_(d) and the higher head deviation occurs at lower flow rates.Especially,it can be found that the specific speed has a slight effect on the pressure fluctuation in the impellers.Eventually,it is determined that the pump performance curves calculated by numerical simu-lations have good agreement with the relevant experimental results,which verifies that the numerical methods used in the present study are accurate to a certain extent.Furthermore,the results also provide some references to the pressure pulsation analysis and the performance improvement of the mixed-flow pump design.
文摘The critical impeller speed, N_(JS), for complete suspension of solidparticles in the agitated solid-liquid two-phase system in baffled stirred tanks with a standardRushton impeller is predicted using the computational procedure proposed in Part Ⅰ. Three differentnumerical criteria are tested for determining the critical solid suspension. The predicted N_(JS)is compared with those obtained from several empirical correlations. It is suggested the mostreasonable criterion for determining the complete suspension of solid particles is the positive signof simulated axial velocity of solid phase at the location where the solid particles are mostdifficult to be suspended.
基金financial support from the National Key Technologies R&D Program of China(2018YFF0216002)。
文摘The classification performance of model coal mill classifiers with different bottom incoming flow inlets was experimentally and numerically studied.The flow field adjacent to two neighboring impeller blades was measured using the particle image velocimetry technique.The results showed that the flow field adjacent to two neighboring blades with the swirling inlet was significantly different from that with the non-swirling inlet.With the swirling inlet,there was a vortex located between two neighboring blades,while with the nonswirling inlet,the vortex was attached to the blade tip.The vorticity of the vortex with the non-swirling inlet was much lower than that with the swirling inlet.The classifier with the non-swirling inlet demonstrated a larger cut size than that with the swirling inlet when the impeller was stationary(~0 r·min-1).As the impeller rotational speed increased,the cut size of the cases with non-swirling and swirling inlets both decreased,and the one with the non-swirling inlet decreased more dramatically.The values of the cut size of the two classifiers were close to each other at a high impeller rotational speed(≥120 r·min-1).The overall separation efficiency of the classifier with the non-swirling inlet was lower than that with the swirling inlet,and monotonically increased as the impeller rotational speed increased.With the swirling inlet,the overall separation efficiency first increased with the impeller rotational speed and then decreased when the rotational speed was above 120 r·min-1,and the variation trend of the separation efficiency was more moderate.As the initial particle concentration increased,the cut sizes of both swirling and non-swirling inlet cases decreased first and then barely changed.At a low initial particle concentration(b 0.04 kg·m-3),the classifier with the swirling inlet had a larger cut size than that with the non-swirling inlet.