Smith (1997) proposes three stages of a situation from the imprefective veiwpoints in English: preliminary, internal and resultant stage and three readings of imperfective aspect. In the essay, the different readings ...Smith (1997) proposes three stages of a situation from the imprefective veiwpoints in English: preliminary, internal and resultant stage and three readings of imperfective aspect. In the essay, the different readings of imperfective aspect in English and Chinese will be explored.展开更多
Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com...Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.展开更多
Osteogenesis imperfecta(OI)is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding typeⅠcollagen.While it is well known that ...Osteogenesis imperfecta(OI)is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding typeⅠcollagen.While it is well known that OI reflects defects in the activity of bone-forming osteoblasts,it is currently unclear whether OI also reflects defects in the many other cell types comprising bone,including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility.展开更多
In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem i...In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem is formulated under the constraints of maximum power and minimum rate of each user.Then,we develop a near-optimal power allocation(PA)scheme by using the successive convex approximation(SCA)method,Lagrange multiplier method,and block coordinate descent(BCD)method,and it can obtain almost the same SE as the benchmark scheme with lower complexity.Since this scheme needs three-layer iteration,a suboptimal PA scheme is developed to further reduce the complexity,where the characteristic of massive MIMO(i.e.,numerous receive antennas)is utilized for convex reformulation,and the rate constraint is converted to linear constraints.This suboptimal scheme only needs single-layer iteration,thus has lower complexity than the near-optimal scheme.Finally,we joint design the pilot power and data power to further improve the performance,and propose an two-stage algorithm to obtain joint PA.Simulation results verify the effectiveness of the proposed schemes,and superior SE performance is achieved.展开更多
This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state...This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.展开更多
Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications r...Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.展开更多
To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal...To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal frequency division multiple access(OFDMA)and non-orthogonal multiple access(NOMA).The idea of this protocol is that OFMDA is used to divide the entire frequency field into multiple orthogonal resource units(RUs),and NOMA is used on each RU to enable more users to access the channel and improve spectrum efficiency.Based on the protocol designed in this paper,in the case of imperfect successive interference cancellation(SIC),the probability of successful competition subchannels and the outage probability are derived for two scenarios:Users occupy the subchannel individually and users share the subchannel.Moreover,when two users share the channel,the decoding order of the users and the corresponding probabilities are considered.Then,the system throughput is obtained.To achieve better outage performance in the system,the optimal power allocation algorithm is proposed in this paper,which enables the optimal power allocation strategy to be obtained.Numerical results show that the larger the imperfect SIC coefficient,the worse the outage performance of weak users.Compared with pure OFDMA and NOMA,OFDMA-NOMA-RA always maintains an advantage when the imperfect SIC coefficient is less than a specific value.展开更多
The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when th...The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.展开更多
Ultra-reliable and low-latency communication(URLLC)is still in the early stage of research due to its two strict and conflicting requirements,i.e.,ultra-low latency and ultra-high reliability,and its impact on securit...Ultra-reliable and low-latency communication(URLLC)is still in the early stage of research due to its two strict and conflicting requirements,i.e.,ultra-low latency and ultra-high reliability,and its impact on security performance is still unclear.Specifically,short-packet communication is expected to meet the delay requirement of URLLC,while the degradation of reliability caused by it makes traditional physical-layer security metrics not applicable.In this paper,we investigate the secure short-packet transmission in uplink massive multiuser multiple-inputmultiple-output(MU-MIMO)system under imperfect channel state information(CSI).We propose an artificial noise scheme to improve the security performance of the system and use the system average secrecy throughput(AST)as the analysis metric.We derive the approximate closed-form expression of the system AST and further analyze the system asymptotic performance in two regimes.Furthermore,a one-dimensional search method is used to optimize the maximum system AST for a given pilot length.Numerical results verify the correctness of theoretical analysis,and show that there are some parameters that affect the tradeoff between security and latency.Moreover,appropriately increasing the number of antennas at the base station(BS)and transmission power at user devices(UDs)can increase the system AST to achieve the required threshold.展开更多
Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a n...Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a nonlinear random coefficient regression(RCR) model with fusing failure time data.Firstly, some interesting natures of parameters estimation based on the nonlinear RCR model are given. Based on these natures,the failure time data can be fused as the prior information reasonably. Specifically, the fixed parameters are calculated by the field degradation data of the evaluated equipment and the prior information of random coefficient is estimated with fusing the failure time data of congeneric equipment. Then, the prior information of the random coefficient is updated online under the Bayesian framework, the probability density function(PDF) of the RUL with considering the limitation of the failure threshold is performed. Finally, two case studies are used for experimental verification. Compared with the traditional Bayesian method, the proposed method can effectively reduce the influence of imperfect prior information and improve the accuracy of RUL prediction.展开更多
Because non-buried submarine pipelines under cyclic thermal loading are prone to global buckling,sleepers are commonly laid along the pipeline route to induce a series of relatively small and controllable lateral buck...Because non-buried submarine pipelines under cyclic thermal loading are prone to global buckling,sleepers are commonly laid along the pipeline route to induce a series of relatively small and controllable lateral buckling.A finite element model which can simulate the transformation of pipeline laid on a sleeper from vertical buckling to lateral buckling is established in this work.The parameters of sleeper affecting pipeline buckling modes are analysed,and a new kind of sleeper is proposed aimed at avoiding antisymmetric buckling.Results show that the lateral trigger force can avoid antisymmetric lateral buckling when acting between 1℃and 13℃before the critical buckling temperature.The range increases slightly with increasing trigger force.Compared with an ordinary sleeper,the proposed new sleeper with slider can reduce the critical buckling temperature by 25%,which significantly improves the success rate of sleepers.展开更多
The huge discrepancies between actual devices and theoretical assumptions severely threaten the security of quantum key distribution.Recently,a general new framework called the reference technique has attracted wide a...The huge discrepancies between actual devices and theoretical assumptions severely threaten the security of quantum key distribution.Recently,a general new framework called the reference technique has attracted wide attention in defending against the imperfect sources of quantum key distribution.Here,the state preparation flaws,the side channels of mode dependencies,the Trojan horse attacks,and the pulse classical correlations are studied by using the reference technique on the phase-matching protocol.Our simulation results highlight the importance of the actual secure parameters choice for transmitters,which is necessary to achieve secure communication.Increasing the single actual secure parameter will reduce the secure key rate.However,as long as the parameters are set properly,the secure key rate is still high.Considering the influences of multiple actual secure parameters will significantly reduce the secure key rate.These actual secure parameters must be considered when scientists calibrate transmitters.This work is an important step towards the practical and secure implementation of phase-matching protocol.In the future,it is essential to study the main parameters,find out their maximum and general values,classify the multiple parameters as the same parameter,and give countermeasures.展开更多
With the rapid development of emerging 5G and beyond(B5G),Unmanned Aerial Vehicles(UAVs)are increasingly important to improve the performance of dense cellular networks.As a conventional metric,coverage probability ha...With the rapid development of emerging 5G and beyond(B5G),Unmanned Aerial Vehicles(UAVs)are increasingly important to improve the performance of dense cellular networks.As a conventional metric,coverage probability has been widely studied in communication systems due to the increasing density of users and complexity of the heterogeneous environment.In recent years,stochastic geometry has attracted more attention as a mathematical tool for modeling mobile network systems.In this paper,an analytical approach to the coverage probability analysis of UAV-assisted cellular networks with imperfect beam alignment has been proposed.An assumption was considered that all users are distributed according to Poisson Cluster Process(PCP)around base stations,in particular,Thomas Cluster Process(TCP).Using thismodel,the impact of beam alignment errors on the coverage probabilitywas investigated.Initially,the ProbabilityDensity Function(PDF)of directional antenna gain between the user and its serving base station was obtained.Then,association probability with each tier was achieved.A tractable expression was derived for coverage probability in both Line-of-Sight(LoS)andNon-Line-of-Sight(NLoS)condition links.Numerical results demonstrated that at low UAVs altitude,beam alignment errors significantly degrade coverage performance.Moreover,for a small cluster size,alignment errors do not necessarily affect the coverage performance.展开更多
Hardware impairments(HI)are always present in low-cost wireless devices.This paper investigates the outage behaviors of intelligent reflecting surface(IRS)assisted non-orthogonal multiple access(NOMA)networks by takin...Hardware impairments(HI)are always present in low-cost wireless devices.This paper investigates the outage behaviors of intelligent reflecting surface(IRS)assisted non-orthogonal multiple access(NOMA)networks by taking into account the impact of HI.Specifically,we derive the approximate and asymptotic expressions of the outage probability for the IRS-NOMA-HI networks.Based on the asymptotic results,the diversity orders under perfect self-interference cancellation and imperfect self-interference cancellation scenarios are obtained to evaluate the performance of the considered network.In addition,the system throughput of IRS-NOMA-HI is discussed in delay-limited mode.The obtained results are provided to verify the accuracy of the theoretical analyses and reveal that:1)The outage performance and system throughput for IRS-NOMA-HI outperforms that of the IRS-assisted orthogonal multiple access-HI(IRS-OMA-HI)networks;2)The number of IRS elements,the pass loss factors,the Rician factors,and the value of HI are pivotal to enhancing the performance of IRS-NOMAHI networks;and 3)It is recommended that effective methods of reducing HI should be used to ensure system performance,in addition to self-interference cancellation techniques.展开更多
In this study,an optimization model of a single machine system integrating imperfect preventive maintenance planning and production scheduling based on game theory is proposed.The costs of the production department an...In this study,an optimization model of a single machine system integrating imperfect preventive maintenance planning and production scheduling based on game theory is proposed.The costs of the production department and the maintenance department are minimized,respectively.Two kinds of three-stage dynamic game models and a backward induction method are proposed to determine the preventive maintenance(PM)threshold.A lemma is presented to obtain the exact solution.A comprehensive numerical study is provided to illustrate the proposed maintenance model.The effectiveness is also validated by comparison with other two existed optimization models.展开更多
Tissues in biological objects from the point of view of electromagnetic effects must be modeled not only for their conductivity. The ionic double layer induced by the electric field, built by electrolytic diffusion, m...Tissues in biological objects from the point of view of electromagnetic effects must be modeled not only for their conductivity. The ionic double layer induced by the electric field, built by electrolytic diffusion, must be counted. The micro (frequency dispersion phenomena) and macro (interfacial polarization), as well as more generalized by Nernst-Planck cells describe the biophysical aspects of this phenomena. The charge distribution depends on the processes and produces charge gradients in space. The dynamic feasibility of the-charge transition layer has memory and adaptability, working like a memristor in cancerous development. The memristor processes may complete the adaptation mechanisms of cancer cells to extremely stressful conditions. Our objective is to show the distribution and redistribution of space charges that generate memristors and internal currents like injury current (IC) in the development of cancer. We show some connected aspects of the modulated electrohyperthermia (mEHT) limiting the proliferation process in the micro-range like the macro-range electrochemotherapy (ECT) processes do. The internal polarization effects form space-charge, which characteristically differ in malignant and healthy environments. The electrical resistivity of the electrolytes depends on the distribution of the charges and concentrations of ions in the electrolytes, consequently the space-charge differences appear in the conductivity parameters too. The polarization heterogeneities caused by the irregularities of the healthy tissue induce a current (called injury current), which appears in the cancerous tumor as well. Due to the nonlinearity of the space-charge production and the differences of the relaxation time of the processes in various subunits. The tumor develops the space-charge which appears as an inductive component in the otherwise capacitive setting and forms a memristive behavior of the tumorous tissue. This continuously developing space-charge accommodates the tumor to the permanently changing conditions and helps the adopting the malignant cells in the new environment. Applying external radiofrequency electric field, the disturbance of the space-charge may change the conditions, and seek to reestablish the healthy homeostatic equilibrium, blocking the pathologic injury current components. The hypothetical memristive behavior of the tumor microenvironment and the tumor mass may be a biophysical addition to the adaption mechanisms of tumor cell and could provide a way to block the pathogen biophysical processes. An electric field in the direction of the place of disturbance from the healthy neighborhood appears, starting a current, which promotes cell migrations and wound healing, re-establishing homeostatic equilibrium. In pathological disturbance, the same process starts, which supports further proliferation, so its blocking is desired.展开更多
Digital television is part of our daily lives. We took an interest in the DVB-S2 standard in particular, because it is the one that governs the transmission by satellite of multimedia content from television programs....Digital television is part of our daily lives. We took an interest in the DVB-S2 standard in particular, because it is the one that governs the transmission by satellite of multimedia content from television programs. With ever-changing user needs, there are new challenges that the DVB-S2 standard is no longer able to meet due to errors caused by weather and hardware limitations. The main purpose of a satellite TV transmission is to obtain a video signal in reception of the best possible quality and at a high bit rate. It is therefore important to determine all the factors which could intervene in the process of transmission and which have a negative impact on the yield at the reception of the signal. We therefore designed and simulated the DVB-S and DVB-S2 transmission chains with QPSK modulation (and an FEC coding rate of 1/2), on MATLAB software (Simulink), and with an AWGN channel for the sake of comparison performance between these two chains. Then we carried out the design of the DVB-S2 transmission chain with an RF (Radio Frequency) satellite channel, by materializing all the elements which intervene in the downlink to evaluate the performance of this chain according to the factors which influence and/or degrade the signal quality between transmission and reception at the receiving earth station. The main results obtained relate to the DVB-S2 transmission chain and were interpreted using the visualization of the error rate blocks: With an AWGN channel, increasing the signal-to-noise ratio decreases the rate of erroneous packets and therefore improves the quality of the received signal. With an RF satellite channel on the downlink: increasing the transmit power improves the receive performance, this is useful for correcting most RF imperfections;having larger parabolic antennas is an advantage because they have greater gains;this makes it possible to minimize the rate of erroneous packets. These simulations allowed us to determine the precise and numerical impact of RF degradations on the performance of the downlink DVB-S2 transmission chain.展开更多
I consider a system whose deterioration follows a discrete-time and discrete-state Markov chain with an absorbing state. When the system is put into practice, I may select operation (wait), imperfect repair, or replac...I consider a system whose deterioration follows a discrete-time and discrete-state Markov chain with an absorbing state. When the system is put into practice, I may select operation (wait), imperfect repair, or replacement at each discrete-time point. The true state of the system is not known when it is operated. Instead, the system is monitored after operation and some incomplete information concerned with the deterioration is obtained for decision making. Since there are multiple imperfect repairs, I can select one option from them when the imperfect repair is preferable to operation and replacement. To express this situation, I propose a POMDP model and theoretically investigate the structure of an optimal maintenance policy minimizing a total expected discounted cost for an unbounded horizon. Then two stochastic orders are used for the analysis of our problem.展开更多
According to the failure characteristics of aircraft structure, a delay-time model is an effective method to optimize maintenance for aircraft structure. To imitate the practical situation as much as possible, imperfe...According to the failure characteristics of aircraft structure, a delay-time model is an effective method to optimize maintenance for aircraft structure. To imitate the practical situation as much as possible, imperfect inspections, thresholds and repeated intervals are concerned in delay-time models. Since the suggestion by the existing delay-time models that the inspections are implemented in an infinite time span lacks practical value, a de- lay-time model with imperfect inspection within a finite time span is proposed. In the model, the nonhomogenous Poisson process is adopted to obtain the renewal probabilities between two different successive inspections on de- fects or failures. An algorithm is applied based on the Nelder-Mead downhill simplex method to solve the model. Finally, a numerical example proves the validity and effectiveness of the model.展开更多
A two-period model is developed to investigate the competitive effects of targeted advertising with imperfect targeting in a duopolistic market. In the first period, two firms compete in price in order to recognize cu...A two-period model is developed to investigate the competitive effects of targeted advertising with imperfect targeting in a duopolistic market. In the first period, two firms compete in price in order to recognize customers. In the second period, targeted advertising plays an informative role and acts as a price discrimination device. The firms' optimal advertising and pricing strategies under imperfect targeting are compared with those under perfect targeting. Equilibrium decisions show that, under imperfect targeting, when the advertising cost is low enough, both firms will choose to target ads at the rivals' old segments. This equilibrium, which could not exist under perfect targeting, results in two opposite results. When cost is high, the effect of mis-targeting will soften price competition and increase profits; on the contrary, when cost is low enough, it will lead to aggressive price competition and profit loss with the increase of imperfect targeting, so firms may have incentives to reduce the mis- targeting degree.展开更多
文摘Smith (1997) proposes three stages of a situation from the imprefective veiwpoints in English: preliminary, internal and resultant stage and three readings of imperfective aspect. In the essay, the different readings of imperfective aspect in English and Chinese will be explored.
基金supported in part by the Sichuan Science and Technology Program(Grant No.2023YFG0316)the Industry-University Research Innovation Fund of China University(Grant No.2021ITA10016)+1 种基金the Key Scientific Research Fund of Xihua University(Grant No.Z1320929)the Special Funds of Industry Development of Sichuan Province(Grant No.zyf-2018-056).
文摘Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.
基金supported by the National Natural Science Foundation of China (81972034,92068104 and 82002262 to R.X.)the National Key R&D Program of China (2020YFA0112900 to R.X.)+5 种基金Project of Xiamen Cell Therapy Research Center (3502Z20214001 to R.X.)supported by a the NIH grant of US (R01AR075585,R01HD115274,R01CA282815 to M.B.G.)Career Award for Medical Scientists from the Burroughs Wellcome Funda Pershing Square Sohn Cancer Research Alliance and the Maximizing Innovation in Neuroscience Discovery (MIND)Prizesupported by a Jump Start Research Career Development Award from Weill Cornell Medicinea Study Abroad Scholarships from the Mogam Science Scholarship Foundation。
文摘Osteogenesis imperfecta(OI)is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding typeⅠcollagen.While it is well known that OI reflects defects in the activity of bone-forming osteoblasts,it is currently unclear whether OI also reflects defects in the many other cell types comprising bone,including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility.
基金supported by the Fundamental Research Funds for the Central Universities of NUAA(No.kfjj20200414)Natural Science Foundation of Jiangsu Province in China(No.BK20181289).
文摘In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem is formulated under the constraints of maximum power and minimum rate of each user.Then,we develop a near-optimal power allocation(PA)scheme by using the successive convex approximation(SCA)method,Lagrange multiplier method,and block coordinate descent(BCD)method,and it can obtain almost the same SE as the benchmark scheme with lower complexity.Since this scheme needs three-layer iteration,a suboptimal PA scheme is developed to further reduce the complexity,where the characteristic of massive MIMO(i.e.,numerous receive antennas)is utilized for convex reformulation,and the rate constraint is converted to linear constraints.This suboptimal scheme only needs single-layer iteration,thus has lower complexity than the near-optimal scheme.Finally,we joint design the pilot power and data power to further improve the performance,and propose an two-stage algorithm to obtain joint PA.Simulation results verify the effectiveness of the proposed schemes,and superior SE performance is achieved.
基金supported by the National Natural Science Foundation of China under grant 61941106。
文摘This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.
文摘Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.
基金funded in part by the National Natural Science Foundation of China under Grant 61663024in part by the Hongliu First Class Discipline Development Project of Lanzhou University of Technology(25-225305).
文摘To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal frequency division multiple access(OFDMA)and non-orthogonal multiple access(NOMA).The idea of this protocol is that OFMDA is used to divide the entire frequency field into multiple orthogonal resource units(RUs),and NOMA is used on each RU to enable more users to access the channel and improve spectrum efficiency.Based on the protocol designed in this paper,in the case of imperfect successive interference cancellation(SIC),the probability of successful competition subchannels and the outage probability are derived for two scenarios:Users occupy the subchannel individually and users share the subchannel.Moreover,when two users share the channel,the decoding order of the users and the corresponding probabilities are considered.Then,the system throughput is obtained.To achieve better outage performance in the system,the optimal power allocation algorithm is proposed in this paper,which enables the optimal power allocation strategy to be obtained.Numerical results show that the larger the imperfect SIC coefficient,the worse the outage performance of weak users.Compared with pure OFDMA and NOMA,OFDMA-NOMA-RA always maintains an advantage when the imperfect SIC coefficient is less than a specific value.
基金Project supported by the National Natural Science Foundation of China(No.12102131)the Natural Science Foundation of Henan Province of China(No.242300420248)the International Science and Technology Cooperation Project of Henan Province of China(No.242102521010)。
文摘The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.
基金supported by the National Key R&D Program of China under Grant 2018YFB1801103the National Natural Science Foundation of China under Grant(no.62171464,no.62122094)。
文摘Ultra-reliable and low-latency communication(URLLC)is still in the early stage of research due to its two strict and conflicting requirements,i.e.,ultra-low latency and ultra-high reliability,and its impact on security performance is still unclear.Specifically,short-packet communication is expected to meet the delay requirement of URLLC,while the degradation of reliability caused by it makes traditional physical-layer security metrics not applicable.In this paper,we investigate the secure short-packet transmission in uplink massive multiuser multiple-inputmultiple-output(MU-MIMO)system under imperfect channel state information(CSI).We propose an artificial noise scheme to improve the security performance of the system and use the system average secrecy throughput(AST)as the analysis metric.We derive the approximate closed-form expression of the system AST and further analyze the system asymptotic performance in two regimes.Furthermore,a one-dimensional search method is used to optimize the maximum system AST for a given pilot length.Numerical results verify the correctness of theoretical analysis,and show that there are some parameters that affect the tradeoff between security and latency.Moreover,appropriately increasing the number of antennas at the base station(BS)and transmission power at user devices(UDs)can increase the system AST to achieve the required threshold.
基金supported by National Natural Science Foundation of China (61703410,61873175,62073336,61873273,61773386,61922089)。
文摘Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a nonlinear random coefficient regression(RCR) model with fusing failure time data.Firstly, some interesting natures of parameters estimation based on the nonlinear RCR model are given. Based on these natures,the failure time data can be fused as the prior information reasonably. Specifically, the fixed parameters are calculated by the field degradation data of the evaluated equipment and the prior information of random coefficient is estimated with fusing the failure time data of congeneric equipment. Then, the prior information of the random coefficient is updated online under the Bayesian framework, the probability density function(PDF) of the RUL with considering the limitation of the failure threshold is performed. Finally, two case studies are used for experimental verification. Compared with the traditional Bayesian method, the proposed method can effectively reduce the influence of imperfect prior information and improve the accuracy of RUL prediction.
基金financially supported by the National Science Fund for Distinguished Young Scholars of China (Grant No.51825904)。
文摘Because non-buried submarine pipelines under cyclic thermal loading are prone to global buckling,sleepers are commonly laid along the pipeline route to induce a series of relatively small and controllable lateral buckling.A finite element model which can simulate the transformation of pipeline laid on a sleeper from vertical buckling to lateral buckling is established in this work.The parameters of sleeper affecting pipeline buckling modes are analysed,and a new kind of sleeper is proposed aimed at avoiding antisymmetric buckling.Results show that the lateral trigger force can avoid antisymmetric lateral buckling when acting between 1℃and 13℃before the critical buckling temperature.The range increases slightly with increasing trigger force.Compared with an ordinary sleeper,the proposed new sleeper with slider can reduce the critical buckling temperature by 25%,which significantly improves the success rate of sleepers.
基金the National Key Research and Development Program of China(Grant Nos.2020YFA0309702 and 2020YFA0309701)the National Natural Science Foundation of China(Grant No.62101597)+2 种基金the China Postdoctoral Science Foundation(Grant No.2021M691536)the Natural Science Foundation of Henan(Grant Nos.202300410534 and 202300410532)the Anhui Initiative in Quantum Information Technologies。
文摘The huge discrepancies between actual devices and theoretical assumptions severely threaten the security of quantum key distribution.Recently,a general new framework called the reference technique has attracted wide attention in defending against the imperfect sources of quantum key distribution.Here,the state preparation flaws,the side channels of mode dependencies,the Trojan horse attacks,and the pulse classical correlations are studied by using the reference technique on the phase-matching protocol.Our simulation results highlight the importance of the actual secure parameters choice for transmitters,which is necessary to achieve secure communication.Increasing the single actual secure parameter will reduce the secure key rate.However,as long as the parameters are set properly,the secure key rate is still high.Considering the influences of multiple actual secure parameters will significantly reduce the secure key rate.These actual secure parameters must be considered when scientists calibrate transmitters.This work is an important step towards the practical and secure implementation of phase-matching protocol.In the future,it is essential to study the main parameters,find out their maximum and general values,classify the multiple parameters as the same parameter,and give countermeasures.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R323)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia,and Taif University Researchers Supporting Project Number TURSP-2020/34,Taif,Saudi Arabia.
文摘With the rapid development of emerging 5G and beyond(B5G),Unmanned Aerial Vehicles(UAVs)are increasingly important to improve the performance of dense cellular networks.As a conventional metric,coverage probability has been widely studied in communication systems due to the increasing density of users and complexity of the heterogeneous environment.In recent years,stochastic geometry has attracted more attention as a mathematical tool for modeling mobile network systems.In this paper,an analytical approach to the coverage probability analysis of UAV-assisted cellular networks with imperfect beam alignment has been proposed.An assumption was considered that all users are distributed according to Poisson Cluster Process(PCP)around base stations,in particular,Thomas Cluster Process(TCP).Using thismodel,the impact of beam alignment errors on the coverage probabilitywas investigated.Initially,the ProbabilityDensity Function(PDF)of directional antenna gain between the user and its serving base station was obtained.Then,association probability with each tier was achieved.A tractable expression was derived for coverage probability in both Line-of-Sight(LoS)andNon-Line-of-Sight(NLoS)condition links.Numerical results demonstrated that at low UAVs altitude,beam alignment errors significantly degrade coverage performance.Moreover,for a small cluster size,alignment errors do not necessarily affect the coverage performance.
基金supported by the National Natural Science Foundation of China under Grants 62071052,61901043the R&D Program of Beijing Municipal Education Commission under Grant KM202011232003+1 种基金supported by Talent Engineering Training Funds of Hebei Province under Grant A202101106Science and Technology Project of Hebei Education Department under Grant QN2020508.
文摘Hardware impairments(HI)are always present in low-cost wireless devices.This paper investigates the outage behaviors of intelligent reflecting surface(IRS)assisted non-orthogonal multiple access(NOMA)networks by taking into account the impact of HI.Specifically,we derive the approximate and asymptotic expressions of the outage probability for the IRS-NOMA-HI networks.Based on the asymptotic results,the diversity orders under perfect self-interference cancellation and imperfect self-interference cancellation scenarios are obtained to evaluate the performance of the considered network.In addition,the system throughput of IRS-NOMA-HI is discussed in delay-limited mode.The obtained results are provided to verify the accuracy of the theoretical analyses and reveal that:1)The outage performance and system throughput for IRS-NOMA-HI outperforms that of the IRS-assisted orthogonal multiple access-HI(IRS-OMA-HI)networks;2)The number of IRS elements,the pass loss factors,the Rician factors,and the value of HI are pivotal to enhancing the performance of IRS-NOMAHI networks;and 3)It is recommended that effective methods of reducing HI should be used to ensure system performance,in addition to self-interference cancellation techniques.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.72061022 and 72171037).
文摘In this study,an optimization model of a single machine system integrating imperfect preventive maintenance planning and production scheduling based on game theory is proposed.The costs of the production department and the maintenance department are minimized,respectively.Two kinds of three-stage dynamic game models and a backward induction method are proposed to determine the preventive maintenance(PM)threshold.A lemma is presented to obtain the exact solution.A comprehensive numerical study is provided to illustrate the proposed maintenance model.The effectiveness is also validated by comparison with other two existed optimization models.
文摘Tissues in biological objects from the point of view of electromagnetic effects must be modeled not only for their conductivity. The ionic double layer induced by the electric field, built by electrolytic diffusion, must be counted. The micro (frequency dispersion phenomena) and macro (interfacial polarization), as well as more generalized by Nernst-Planck cells describe the biophysical aspects of this phenomena. The charge distribution depends on the processes and produces charge gradients in space. The dynamic feasibility of the-charge transition layer has memory and adaptability, working like a memristor in cancerous development. The memristor processes may complete the adaptation mechanisms of cancer cells to extremely stressful conditions. Our objective is to show the distribution and redistribution of space charges that generate memristors and internal currents like injury current (IC) in the development of cancer. We show some connected aspects of the modulated electrohyperthermia (mEHT) limiting the proliferation process in the micro-range like the macro-range electrochemotherapy (ECT) processes do. The internal polarization effects form space-charge, which characteristically differ in malignant and healthy environments. The electrical resistivity of the electrolytes depends on the distribution of the charges and concentrations of ions in the electrolytes, consequently the space-charge differences appear in the conductivity parameters too. The polarization heterogeneities caused by the irregularities of the healthy tissue induce a current (called injury current), which appears in the cancerous tumor as well. Due to the nonlinearity of the space-charge production and the differences of the relaxation time of the processes in various subunits. The tumor develops the space-charge which appears as an inductive component in the otherwise capacitive setting and forms a memristive behavior of the tumorous tissue. This continuously developing space-charge accommodates the tumor to the permanently changing conditions and helps the adopting the malignant cells in the new environment. Applying external radiofrequency electric field, the disturbance of the space-charge may change the conditions, and seek to reestablish the healthy homeostatic equilibrium, blocking the pathologic injury current components. The hypothetical memristive behavior of the tumor microenvironment and the tumor mass may be a biophysical addition to the adaption mechanisms of tumor cell and could provide a way to block the pathogen biophysical processes. An electric field in the direction of the place of disturbance from the healthy neighborhood appears, starting a current, which promotes cell migrations and wound healing, re-establishing homeostatic equilibrium. In pathological disturbance, the same process starts, which supports further proliferation, so its blocking is desired.
文摘Digital television is part of our daily lives. We took an interest in the DVB-S2 standard in particular, because it is the one that governs the transmission by satellite of multimedia content from television programs. With ever-changing user needs, there are new challenges that the DVB-S2 standard is no longer able to meet due to errors caused by weather and hardware limitations. The main purpose of a satellite TV transmission is to obtain a video signal in reception of the best possible quality and at a high bit rate. It is therefore important to determine all the factors which could intervene in the process of transmission and which have a negative impact on the yield at the reception of the signal. We therefore designed and simulated the DVB-S and DVB-S2 transmission chains with QPSK modulation (and an FEC coding rate of 1/2), on MATLAB software (Simulink), and with an AWGN channel for the sake of comparison performance between these two chains. Then we carried out the design of the DVB-S2 transmission chain with an RF (Radio Frequency) satellite channel, by materializing all the elements which intervene in the downlink to evaluate the performance of this chain according to the factors which influence and/or degrade the signal quality between transmission and reception at the receiving earth station. The main results obtained relate to the DVB-S2 transmission chain and were interpreted using the visualization of the error rate blocks: With an AWGN channel, increasing the signal-to-noise ratio decreases the rate of erroneous packets and therefore improves the quality of the received signal. With an RF satellite channel on the downlink: increasing the transmit power improves the receive performance, this is useful for correcting most RF imperfections;having larger parabolic antennas is an advantage because they have greater gains;this makes it possible to minimize the rate of erroneous packets. These simulations allowed us to determine the precise and numerical impact of RF degradations on the performance of the downlink DVB-S2 transmission chain.
文摘I consider a system whose deterioration follows a discrete-time and discrete-state Markov chain with an absorbing state. When the system is put into practice, I may select operation (wait), imperfect repair, or replacement at each discrete-time point. The true state of the system is not known when it is operated. Instead, the system is monitored after operation and some incomplete information concerned with the deterioration is obtained for decision making. Since there are multiple imperfect repairs, I can select one option from them when the imperfect repair is preferable to operation and replacement. To express this situation, I propose a POMDP model and theoretically investigate the structure of an optimal maintenance policy minimizing a total expected discounted cost for an unbounded horizon. Then two stochastic orders are used for the analysis of our problem.
基金Supported by the National Natural Science Foundation of China(61079013)the Natural Science Fund Project in Jiangsu Province(BK2011737)~~
文摘According to the failure characteristics of aircraft structure, a delay-time model is an effective method to optimize maintenance for aircraft structure. To imitate the practical situation as much as possible, imperfect inspections, thresholds and repeated intervals are concerned in delay-time models. Since the suggestion by the existing delay-time models that the inspections are implemented in an infinite time span lacks practical value, a de- lay-time model with imperfect inspection within a finite time span is proposed. In the model, the nonhomogenous Poisson process is adopted to obtain the renewal probabilities between two different successive inspections on de- fects or failures. An algorithm is applied based on the Nelder-Mead downhill simplex method to solve the model. Finally, a numerical example proves the validity and effectiveness of the model.
基金The National Natural Science Foundation of China(No.71371050)
文摘A two-period model is developed to investigate the competitive effects of targeted advertising with imperfect targeting in a duopolistic market. In the first period, two firms compete in price in order to recognize customers. In the second period, targeted advertising plays an informative role and acts as a price discrimination device. The firms' optimal advertising and pricing strategies under imperfect targeting are compared with those under perfect targeting. Equilibrium decisions show that, under imperfect targeting, when the advertising cost is low enough, both firms will choose to target ads at the rivals' old segments. This equilibrium, which could not exist under perfect targeting, results in two opposite results. When cost is high, the effect of mis-targeting will soften price competition and increase profits; on the contrary, when cost is low enough, it will lead to aggressive price competition and profit loss with the increase of imperfect targeting, so firms may have incentives to reduce the mis- targeting degree.