Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS m...Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS method for the global variance reduction problem based on the AIS method,which was implemented in the Monte Carlo program MCShield.The proposed method was validated using the VENUS-Ⅲ international benchmark problem and a self-shielding calculation example.The results from the VENUS-Ⅲ benchmark problem showed that the grid-AIS method achieved a significant reduction in the variance of the statistical errors of the MESH grids,decreasing from 1.08×10^(-2) to 3.84×10^(-3),representing a 64.00% reduction.This demonstrates that the grid-AIS method is effective in addressing global issues.The results of the selfshielding calculation demonstrate that the grid-AIS method produced accurate computational results.Moreover,the grid-AIS method exhibited a computational efficiency approximately one order of magnitude higher than that of the AIS method and approximately two orders of magnitude higher than that of the conventional Monte Carlo method.展开更多
The reliability and sensitivity analyses of stator blade regulator usually involve complex characteristics like highnonlinearity,multi-failure regions,and small failure probability,which brings in unacceptable computi...The reliability and sensitivity analyses of stator blade regulator usually involve complex characteristics like highnonlinearity,multi-failure regions,and small failure probability,which brings in unacceptable computing efficiency and accuracy of the current analysismethods.In this case,by fitting the implicit limit state function(LSF)with active Kriging(AK)model and reducing candidate sample poolwith adaptive importance sampling(AIS),a novel AK-AIS method is proposed.Herein,theAKmodel andMarkov chainMonte Carlo(MCMC)are first established to identify the most probable failure region(s)(MPFRs),and the adaptive kernel density estimation(AKDE)importance sampling function is constructed to select the candidate samples.With the best samples sequentially attained in the reduced candidate samples and employed to update the Kriging-fitted LSF,the failure probability and sensitivity indices are acquired at a lower cost.The proposed method is verified by twomulti-failure numerical examples,and then applied to the reliability and sensitivity analyses of a typical stator blade regulator.Withmethods comparison,the proposed AK-AIS is proven to hold the computing advantages on accuracy and efficiency in complex reliability and sensitivity analysis problems.展开更多
The condensation tracking algorithm uses a prior transition probability as the proposal distribution, which does not make full use of the current observation. In order to overcome this shortcoming, a new face tracking...The condensation tracking algorithm uses a prior transition probability as the proposal distribution, which does not make full use of the current observation. In order to overcome this shortcoming, a new face tracking algorithm based on particle filter with mean shift importance sampling is proposed. First, the coarse location of the face target is attained by the efficient mean shift tracker, and then the result is used to construct the proposal distribution for particle propagation. Because the particles obtained with this method can cluster around the true state region, particle efficiency is improved greatly. The experimental results show that the performance of the proposed algorithm is better than that of the standard condensation tracking algorithm.展开更多
Based on the observation of importance sampling and second order information about the failure surface of a structure, an importance sampling region is defined in V-space which is obtained by rotating a U-space at the...Based on the observation of importance sampling and second order information about the failure surface of a structure, an importance sampling region is defined in V-space which is obtained by rotating a U-space at the point of maximum likelihood. The sampling region is a hyper-ellipsoid that consists of the sampling ellipse on each plane of main curvature in V-space. Thus, the sampling probability density function can be constructed by the sampling region center and ellipsoid axes. Several examples have shown the efficiency and generality of this method.展开更多
In this paper, an importance sampling maximum likelihood(ISML) estimator for direction-of-arrival(DOA) of incoherently distributed(ID) sources is proposed. Starting from the maximum likelihood estimation description o...In this paper, an importance sampling maximum likelihood(ISML) estimator for direction-of-arrival(DOA) of incoherently distributed(ID) sources is proposed. Starting from the maximum likelihood estimation description of the uniform linear array(ULA), a decoupled concentrated likelihood function(CLF) is presented. A new objective function based on CLF which can obtain a closed-form solution of global maximum is constructed according to Pincus theorem. To obtain the optimal value of the objective function which is a complex high-dimensional integral,we propose an importance sampling approach based on Monte Carlo random calculation. Next, an importance function is derived, which can simplify the problem of generating random vector from a high-dimensional probability density function(PDF) to generate random variable from a one-dimensional PDF. Compared with the existing maximum likelihood(ML) algorithms for DOA estimation of ID sources, the proposed algorithm does not require initial estimates, and its performance is closer to CramerRao lower bound(CRLB). The proposed algorithm performs better than the existing methods when the interval between sources to be estimated is small and in low signal to noise ratio(SNR)scenarios.展开更多
It is assumed that the storm wave takes place once a year during the design period, and Nhistories of storm waves are generated on the basis of wave spectrum corresponding to the N-year design period. The responses of...It is assumed that the storm wave takes place once a year during the design period, and Nhistories of storm waves are generated on the basis of wave spectrum corresponding to the N-year design period. The responses of the breakwater to the N histories of storm waves in the N-year design period are calculated by mass-spring-dashpot mode and taken as a set of samples. The failure probability of caisson breakwaters during the design period of N years is obtained by the statistical analysis of many sets of samples. It is the key issue to improve the efficiency of the common Monte Carlo simulation method in the failure probability estimation of caisson breakwaters in the complete life cycle. In this paper, the kernel method of importance sampling, which can greatly increase the efficiency of failure probability calculation of caisson breakwaters, is proposed to estimate the failure probability of caisson breakwaters in the complete life cycle. The effectiveness of the kernel method is investigated by an example. It is indicated that the calculation efficiency of the kernel method is over 10 times the common Monte Carlo simulation method.展开更多
The rejection sampling method is one of the most popular methods used in Monte Carlo methods. It turns out that the standard rejection method is closely related to the problem of quasi-Monte Carlo integration of chara...The rejection sampling method is one of the most popular methods used in Monte Carlo methods. It turns out that the standard rejection method is closely related to the problem of quasi-Monte Carlo integration of characteristic functions, whose accuracy may be lost due to the discontinuity of the characteristic functions. We proposed a B-splines smoothed rejection sampling method, which smoothed the characteristic function by B-splines smoothing technique without changing the integral quantity. Numerical experiments showed that the convergence rate of nearly O( N^-1 ) is regained by using the B-splines smoothed rejection method in importance sampling.展开更多
We investigate the phenomena of spontaneous symmetry breaking for φ^4 model on a square lattice in the parameter space by using the potential importance samplingmethod, which was proposed by Milchev, Heermann, and Bi...We investigate the phenomena of spontaneous symmetry breaking for φ^4 model on a square lattice in the parameter space by using the potential importance samplingmethod, which was proposed by Milchev, Heermann, and Binder [J. Star. Phys. 44 (1986) 749]. The critical values of the parameters allow us to determine the phase diagram of the model. At the same time, some relevant quantifies such as susceptibility and specific heat are also obtained.展开更多
This paper contributes to the structural reliability problem by presenting a novel approach that enables for identification of stochastic oscillatory processes as a critical input for given mechanical models. Identifi...This paper contributes to the structural reliability problem by presenting a novel approach that enables for identification of stochastic oscillatory processes as a critical input for given mechanical models. Identification development follows a transparent image processing paradigm completely independent of state-of-the-art structural dynamics, aiming at delivering a simple and wide purpose method. Validation of the proposed importance sampling strategy is based on multi-scale clusters of realizations of digitally generated non-stationary stochastic processes. Good agreement with the reference pure Monte Carlo results indicates a significant potential in reducing the computational task of first passage probabilities estimation, an important feature in the field of e.g., probabilistic seismic design or risk assessment generally.展开更多
In structural reliability analysis,simulation methods are widely used.The statistical characteristics of failure probability estimate of these methods have been well investigated.In this study,the sensitivities of the...In structural reliability analysis,simulation methods are widely used.The statistical characteristics of failure probability estimate of these methods have been well investigated.In this study,the sensitivities of the failure probability estimate and its statistical characteristics with regard to sample,called‘contribution indexes’,are proposed to measure the contribution of sample.The contribution indexes in four widely simulation methods,i.e.,Monte Carlo simulation(MCS),importance sampling(IS),line sampling(LS)and subset simulation(SS)are derived and analyzed.The proposed contribution indexes of sample can provide valuable information understanding the methods deeply,and enlighten potential improvement of methods.It is found that the main differences between these investigated methods lie in the contribution indexes of the safety samples,which are the main factors to the efficiency of the methods.Moreover,numerical examples are used to validate these findings.展开更多
The tracking, telemetry and command (TT&C) mission is extremely reliable for its characters of small time horizon and high redundancy. The combined forcing and failure biasing (CFFB) method that is usually used f...The tracking, telemetry and command (TT&C) mission is extremely reliable for its characters of small time horizon and high redundancy. The combined forcing and failure biasing (CFFB) method that is usually used for simulating the unreliability of the highly dependable mission system seems not so efficient for the TT&C mission. The concept about the importance of failure transition is proposed based on the logical relationship between TT&C mission and its involved resources. Then, the importance is used for readjusting the transition rate of the failure transition when using the forcing and failure biasing during the simulation. Examples show that the improved CFFB method can evidently increase the occurrence of the TT&C mission failure event and decrease the sample variance. More redundancy of the TT&C mission leads to the improved CFFB method more efficient.展开更多
An efficient importance sampling algorithm is presented to analyze reliability of complex structural system with multiple failure modes and fuzzy-random uncertainties in basic variables and failure modes. In order to ...An efficient importance sampling algorithm is presented to analyze reliability of complex structural system with multiple failure modes and fuzzy-random uncertainties in basic variables and failure modes. In order to improve the sampling efficiency, the simulated annealing algorithm is adopted to optimize the density center of the importance sampling for each failure mode, and results that the more significant contribution the points make to fuzzy failure probability, the higher occurrence possibility the points are sampled. For the system with multiple fuzzy failure modes, a weighted and mixed importance sampling function is constructed. The contribution of each fuzzy failure mode to the system failure probability is represented by the appropriate factors, and the efficiency of sampling is improved furthermore. The variances and the coefficients of variation are derived for the failure probability estimations. Two examples are introduced to illustrate the rationality of the present method. Comparing with the direct Monte-Carlo method, the improved efficiency and the precision of the method are verified by the examples.展开更多
During the life of an offshore structure, its structural strength declines due to various kinds of damages related to the time factor. In this paper, four major kinds of damages, including damages caused by fatigue, d...During the life of an offshore structure, its structural strength declines due to various kinds of damages related to the time factor. In this paper, four major kinds of damages, including damages caused by fatigue, dent, corrosion and marine life, are discussed. Based on these analyses, formulas for the evaluation of the damaged structure reliability are derived. Furthermore the computer program ISM for the analysis of structural reliability is developed by the use of Advanced First Order Second Moment method and Monte-Carlo Importance Sampling method. The reliability of a turbular joint and a beam are studied as numerical examples. The results show that the theory and the analysis method given in this paper are reasonable and effective.展开更多
An alternative Monte Carlo strategy for the computation of global illumination problem was presented.The proposed approach provided a new and optimal way for solving Monte Carlo global illumination based on the zero v...An alternative Monte Carlo strategy for the computation of global illumination problem was presented.The proposed approach provided a new and optimal way for solving Monte Carlo global illumination based on the zero variance importance sampling procedure. A new importance driven Monte Carlo global illumination algorithm in the framework of the new computing scheme was developed and implemented. Results, which were obtained by rendering test scenes, show that this new framework and the newly derived algorithm are effective and promising.展开更多
Value-at-Risk (VaR) estimation via Monte Carlo (MC) simulation is studied here. The variance reduction technique is proposed in order to speed up MC algorithm. The algorithm for estimating the probability of high ...Value-at-Risk (VaR) estimation via Monte Carlo (MC) simulation is studied here. The variance reduction technique is proposed in order to speed up MC algorithm. The algorithm for estimating the probability of high portfolio losses (more general risk measure) based on the Cross - Entropy importance sampling is developed. This algorithm can easily be applied in any light- or heavy-tailed case without an extra adaptation. Besides, it does not loose in the performance in comparison to other known methods. A numerical study in both cases is performed and the variance reduction rate is compared with other known methods. The problem of VaR estimation using procedures for estimating the probability of high portfolio losses is also discussed.展开更多
A random simulation method was used for treatment of systems of Volterra integral equations of the second kind. Firstly, a linear algebra system was obtained by discretization using quadrature formula. Secondly, this ...A random simulation method was used for treatment of systems of Volterra integral equations of the second kind. Firstly, a linear algebra system was obtained by discretization using quadrature formula. Secondly, this algebra system was solved by using relaxed Monte Carlo method with importance sampling and numerical approximation solutions of the integral equations system were achieved. It is theoretically proved that the validity of relaxed Monte Carlo method is based on importance sampling to solve the integral equations system. Finally, some numerical examples from literatures are given to show the efficiency of the method.展开更多
In this paper, we propose a K-means clustering-based integral level-value estimation algorithm to solve a kind of box-constrained global optimization problem. For this purpose, we introduce the generalized variance fu...In this paper, we propose a K-means clustering-based integral level-value estimation algorithm to solve a kind of box-constrained global optimization problem. For this purpose, we introduce the generalized variance function associated with the level-value of the objective function to be minimized. The variance function has a good property when Newton’s method is used to solve a variance equation resulting by setting the variance function to zero. We prove that the largest root of the variance equation is equal to the global minimum value of the corresponding optimization problem. Based on the K-means clustering algorithm, the multiple importance sampling technique is proposed in the implementable algorithm. The main idea of the cross-entropy method is used to update the parameters of sampling density function. The asymptotic convergence of the algorithm is proved, and the validity of the algorithm is verified by numerical experiments.展开更多
This note introduces a method for sampling Ising models with mixed boundary conditions.As an application of annealed importance sampling and the Swendsen-Wang algorithm,the method adopts a sequence of intermediate dis...This note introduces a method for sampling Ising models with mixed boundary conditions.As an application of annealed importance sampling and the Swendsen-Wang algorithm,the method adopts a sequence of intermediate distributions that keeps the temperature fixed but turns on the boundary condition gradually.The numerical results show that the variance of the sample weights is relatively small.展开更多
Concerning the issue of high-dimensions and low-failure probabilities including implicit and highly nonlinear limit state function, reliability analysis based on the directional importance sampling in combination with...Concerning the issue of high-dimensions and low-failure probabilities including implicit and highly nonlinear limit state function, reliability analysis based on the directional importance sampling in combination with the radial basis function (RBF) neural network is used, and the RBF neural network based on first-order reliability method (FORM) is to approximate the unknown implicit limit state functions and calculate the most probable point (MPP) with iterative algorithm. For good efficiency, based on the ideas that directional sampling reduces dimensionality and importance sampling focuses on the domain contributing to failure probability, the joint probability density function of importance sampling is constructed, and the sampling center is moved to MPP to ensure that more random sample points draw belong to the failure domain and the simulation efficiency is improved. Then the numerical example of initiating explosive devices for rocket booster explosive bolts demonstrates the applicability, versatility and accuracy of the approach compared with other reliability simulation algorithm.展开更多
Combining the advantages of the stratified sampling and the importance sampling, a stratified importance sampling method (SISM) is presented to analyze the reliability sensitivity for structure with multiple failure...Combining the advantages of the stratified sampling and the importance sampling, a stratified importance sampling method (SISM) is presented to analyze the reliability sensitivity for structure with multiple failure modes. In the presented method, the variable space is divided into several disjoint subspace by n-dimensional coordinate planes at the mean point of the random vec- tor, and the importance sampling functions in the subspaces are constructed by keeping the sampling center at the mean point and augmenting the standard deviation by a factor of 2. The sample size generated from the importance sampling function in each subspace is determined by the contribution of the subspace to the reliability sensitivity, which can be estimated by iterative simulation in the sampling process. The formulae of the reliability sensitivity estimation, the variance and the coefficient of variation are derived for the presented SISM. Comparing with the Monte Carlo method, the stratified sampling method and the importance sampling method, the presented SISM has wider applicability and higher calculation efficiency, which is demonstrated by numerical examples. Finally, the reliability sensitivity analysis of flap structure is illustrated that the SISM can be applied to engineering structure.展开更多
基金supported by the Platform Development Foundation of the China Institute for Radiation Protection(No.YP21030101)the National Natural Science Foundation of China(General Program)(Nos.12175114,U2167209)+1 种基金the National Key R&D Program of China(No.2021YFF0603600)the Tsinghua University Initiative Scientific Research Program(No.20211080081).
文摘Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS method for the global variance reduction problem based on the AIS method,which was implemented in the Monte Carlo program MCShield.The proposed method was validated using the VENUS-Ⅲ international benchmark problem and a self-shielding calculation example.The results from the VENUS-Ⅲ benchmark problem showed that the grid-AIS method achieved a significant reduction in the variance of the statistical errors of the MESH grids,decreasing from 1.08×10^(-2) to 3.84×10^(-3),representing a 64.00% reduction.This demonstrates that the grid-AIS method is effective in addressing global issues.The results of the selfshielding calculation demonstrate that the grid-AIS method produced accurate computational results.Moreover,the grid-AIS method exhibited a computational efficiency approximately one order of magnitude higher than that of the AIS method and approximately two orders of magnitude higher than that of the conventional Monte Carlo method.
基金supported by the National Natural Science Foundation of China under Grant Nos.52105136,51975028China Postdoctoral Science Foundation under Grant[No.2021M690290]the National Science and TechnologyMajor Project under Grant No.J2019-IV-0002-0069.
文摘The reliability and sensitivity analyses of stator blade regulator usually involve complex characteristics like highnonlinearity,multi-failure regions,and small failure probability,which brings in unacceptable computing efficiency and accuracy of the current analysismethods.In this case,by fitting the implicit limit state function(LSF)with active Kriging(AK)model and reducing candidate sample poolwith adaptive importance sampling(AIS),a novel AK-AIS method is proposed.Herein,theAKmodel andMarkov chainMonte Carlo(MCMC)are first established to identify the most probable failure region(s)(MPFRs),and the adaptive kernel density estimation(AKDE)importance sampling function is constructed to select the candidate samples.With the best samples sequentially attained in the reduced candidate samples and employed to update the Kriging-fitted LSF,the failure probability and sensitivity indices are acquired at a lower cost.The proposed method is verified by twomulti-failure numerical examples,and then applied to the reliability and sensitivity analyses of a typical stator blade regulator.Withmethods comparison,the proposed AK-AIS is proven to hold the computing advantages on accuracy and efficiency in complex reliability and sensitivity analysis problems.
基金The National Natural Science Foundation of China(No60672094)
文摘The condensation tracking algorithm uses a prior transition probability as the proposal distribution, which does not make full use of the current observation. In order to overcome this shortcoming, a new face tracking algorithm based on particle filter with mean shift importance sampling is proposed. First, the coarse location of the face target is attained by the efficient mean shift tracker, and then the result is used to construct the proposal distribution for particle propagation. Because the particles obtained with this method can cluster around the true state region, particle efficiency is improved greatly. The experimental results show that the performance of the proposed algorithm is better than that of the standard condensation tracking algorithm.
文摘Based on the observation of importance sampling and second order information about the failure surface of a structure, an importance sampling region is defined in V-space which is obtained by rotating a U-space at the point of maximum likelihood. The sampling region is a hyper-ellipsoid that consists of the sampling ellipse on each plane of main curvature in V-space. Thus, the sampling probability density function can be constructed by the sampling region center and ellipsoid axes. Several examples have shown the efficiency and generality of this method.
基金supported by the basic research program of Natural Science in Shannxi province of China (2021JQ-369)。
文摘In this paper, an importance sampling maximum likelihood(ISML) estimator for direction-of-arrival(DOA) of incoherently distributed(ID) sources is proposed. Starting from the maximum likelihood estimation description of the uniform linear array(ULA), a decoupled concentrated likelihood function(CLF) is presented. A new objective function based on CLF which can obtain a closed-form solution of global maximum is constructed according to Pincus theorem. To obtain the optimal value of the objective function which is a complex high-dimensional integral,we propose an importance sampling approach based on Monte Carlo random calculation. Next, an importance function is derived, which can simplify the problem of generating random vector from a high-dimensional probability density function(PDF) to generate random variable from a one-dimensional PDF. Compared with the existing maximum likelihood(ML) algorithms for DOA estimation of ID sources, the proposed algorithm does not require initial estimates, and its performance is closer to CramerRao lower bound(CRLB). The proposed algorithm performs better than the existing methods when the interval between sources to be estimated is small and in low signal to noise ratio(SNR)scenarios.
基金financially supported by the National Natural Science Foundation of China(Grant No.51279128)the Innovative Research Groups Science Foundation of China(Grant No.51321065)the Construction Science and Technology Project of Ministry of Transport of the People's Republic of China(Grant No.2013328224070)
文摘It is assumed that the storm wave takes place once a year during the design period, and Nhistories of storm waves are generated on the basis of wave spectrum corresponding to the N-year design period. The responses of the breakwater to the N histories of storm waves in the N-year design period are calculated by mass-spring-dashpot mode and taken as a set of samples. The failure probability of caisson breakwaters during the design period of N years is obtained by the statistical analysis of many sets of samples. It is the key issue to improve the efficiency of the common Monte Carlo simulation method in the failure probability estimation of caisson breakwaters in the complete life cycle. In this paper, the kernel method of importance sampling, which can greatly increase the efficiency of failure probability calculation of caisson breakwaters, is proposed to estimate the failure probability of caisson breakwaters in the complete life cycle. The effectiveness of the kernel method is investigated by an example. It is indicated that the calculation efficiency of the kernel method is over 10 times the common Monte Carlo simulation method.
文摘The rejection sampling method is one of the most popular methods used in Monte Carlo methods. It turns out that the standard rejection method is closely related to the problem of quasi-Monte Carlo integration of characteristic functions, whose accuracy may be lost due to the discontinuity of the characteristic functions. We proposed a B-splines smoothed rejection sampling method, which smoothed the characteristic function by B-splines smoothing technique without changing the integral quantity. Numerical experiments showed that the convergence rate of nearly O( N^-1 ) is regained by using the B-splines smoothed rejection method in importance sampling.
文摘We investigate the phenomena of spontaneous symmetry breaking for φ^4 model on a square lattice in the parameter space by using the potential importance samplingmethod, which was proposed by Milchev, Heermann, and Binder [J. Star. Phys. 44 (1986) 749]. The critical values of the parameters allow us to determine the phase diagram of the model. At the same time, some relevant quantifies such as susceptibility and specific heat are also obtained.
文摘This paper contributes to the structural reliability problem by presenting a novel approach that enables for identification of stochastic oscillatory processes as a critical input for given mechanical models. Identification development follows a transparent image processing paradigm completely independent of state-of-the-art structural dynamics, aiming at delivering a simple and wide purpose method. Validation of the proposed importance sampling strategy is based on multi-scale clusters of realizations of digitally generated non-stationary stochastic processes. Good agreement with the reference pure Monte Carlo results indicates a significant potential in reducing the computational task of first passage probabilities estimation, an important feature in the field of e.g., probabilistic seismic design or risk assessment generally.
基金NSAF(Grant No.U1530122)the Aeronautical Science Foundation of China(Grant No.ASFC-20170968002)the Fundamental Research Funds for the Central Universities of China(XMU,20720180072).
文摘In structural reliability analysis,simulation methods are widely used.The statistical characteristics of failure probability estimate of these methods have been well investigated.In this study,the sensitivities of the failure probability estimate and its statistical characteristics with regard to sample,called‘contribution indexes’,are proposed to measure the contribution of sample.The contribution indexes in four widely simulation methods,i.e.,Monte Carlo simulation(MCS),importance sampling(IS),line sampling(LS)and subset simulation(SS)are derived and analyzed.The proposed contribution indexes of sample can provide valuable information understanding the methods deeply,and enlighten potential improvement of methods.It is found that the main differences between these investigated methods lie in the contribution indexes of the safety samples,which are the main factors to the efficiency of the methods.Moreover,numerical examples are used to validate these findings.
基金supported by the National Natural Science Foundation of China (71071159)
文摘The tracking, telemetry and command (TT&C) mission is extremely reliable for its characters of small time horizon and high redundancy. The combined forcing and failure biasing (CFFB) method that is usually used for simulating the unreliability of the highly dependable mission system seems not so efficient for the TT&C mission. The concept about the importance of failure transition is proposed based on the logical relationship between TT&C mission and its involved resources. Then, the importance is used for readjusting the transition rate of the failure transition when using the forcing and failure biasing during the simulation. Examples show that the improved CFFB method can evidently increase the occurrence of the TT&C mission failure event and decrease the sample variance. More redundancy of the TT&C mission leads to the improved CFFB method more efficient.
基金This project is supported by National Natural Science Foundation of China (No.10572117)Aerospace Science Foundation of China(No.N3CH0502,No.N5CH0001)Provincial Natural Science Foundation of Shanxi, China(No.N3CS0501).
文摘An efficient importance sampling algorithm is presented to analyze reliability of complex structural system with multiple failure modes and fuzzy-random uncertainties in basic variables and failure modes. In order to improve the sampling efficiency, the simulated annealing algorithm is adopted to optimize the density center of the importance sampling for each failure mode, and results that the more significant contribution the points make to fuzzy failure probability, the higher occurrence possibility the points are sampled. For the system with multiple fuzzy failure modes, a weighted and mixed importance sampling function is constructed. The contribution of each fuzzy failure mode to the system failure probability is represented by the appropriate factors, and the efficiency of sampling is improved furthermore. The variances and the coefficients of variation are derived for the failure probability estimations. Two examples are introduced to illustrate the rationality of the present method. Comparing with the direct Monte-Carlo method, the improved efficiency and the precision of the method are verified by the examples.
文摘During the life of an offshore structure, its structural strength declines due to various kinds of damages related to the time factor. In this paper, four major kinds of damages, including damages caused by fatigue, dent, corrosion and marine life, are discussed. Based on these analyses, formulas for the evaluation of the damaged structure reliability are derived. Furthermore the computer program ISM for the analysis of structural reliability is developed by the use of Advanced First Order Second Moment method and Monte-Carlo Importance Sampling method. The reliability of a turbular joint and a beam are studied as numerical examples. The results show that the theory and the analysis method given in this paper are reasonable and effective.
文摘An alternative Monte Carlo strategy for the computation of global illumination problem was presented.The proposed approach provided a new and optimal way for solving Monte Carlo global illumination based on the zero variance importance sampling procedure. A new importance driven Monte Carlo global illumination algorithm in the framework of the new computing scheme was developed and implemented. Results, which were obtained by rendering test scenes, show that this new framework and the newly derived algorithm are effective and promising.
文摘Value-at-Risk (VaR) estimation via Monte Carlo (MC) simulation is studied here. The variance reduction technique is proposed in order to speed up MC algorithm. The algorithm for estimating the probability of high portfolio losses (more general risk measure) based on the Cross - Entropy importance sampling is developed. This algorithm can easily be applied in any light- or heavy-tailed case without an extra adaptation. Besides, it does not loose in the performance in comparison to other known methods. A numerical study in both cases is performed and the variance reduction rate is compared with other known methods. The problem of VaR estimation using procedures for estimating the probability of high portfolio losses is also discussed.
文摘A random simulation method was used for treatment of systems of Volterra integral equations of the second kind. Firstly, a linear algebra system was obtained by discretization using quadrature formula. Secondly, this algebra system was solved by using relaxed Monte Carlo method with importance sampling and numerical approximation solutions of the integral equations system were achieved. It is theoretically proved that the validity of relaxed Monte Carlo method is based on importance sampling to solve the integral equations system. Finally, some numerical examples from literatures are given to show the efficiency of the method.
文摘In this paper, we propose a K-means clustering-based integral level-value estimation algorithm to solve a kind of box-constrained global optimization problem. For this purpose, we introduce the generalized variance function associated with the level-value of the objective function to be minimized. The variance function has a good property when Newton’s method is used to solve a variance equation resulting by setting the variance function to zero. We prove that the largest root of the variance equation is equal to the global minimum value of the corresponding optimization problem. Based on the K-means clustering algorithm, the multiple importance sampling technique is proposed in the implementable algorithm. The main idea of the cross-entropy method is used to update the parameters of sampling density function. The asymptotic convergence of the algorithm is proved, and the validity of the algorithm is verified by numerical experiments.
文摘This note introduces a method for sampling Ising models with mixed boundary conditions.As an application of annealed importance sampling and the Swendsen-Wang algorithm,the method adopts a sequence of intermediate distributions that keeps the temperature fixed but turns on the boundary condition gradually.The numerical results show that the variance of the sample weights is relatively small.
文摘Concerning the issue of high-dimensions and low-failure probabilities including implicit and highly nonlinear limit state function, reliability analysis based on the directional importance sampling in combination with the radial basis function (RBF) neural network is used, and the RBF neural network based on first-order reliability method (FORM) is to approximate the unknown implicit limit state functions and calculate the most probable point (MPP) with iterative algorithm. For good efficiency, based on the ideas that directional sampling reduces dimensionality and importance sampling focuses on the domain contributing to failure probability, the joint probability density function of importance sampling is constructed, and the sampling center is moved to MPP to ensure that more random sample points draw belong to the failure domain and the simulation efficiency is improved. Then the numerical example of initiating explosive devices for rocket booster explosive bolts demonstrates the applicability, versatility and accuracy of the approach compared with other reliability simulation algorithm.
基金National Natural Science Foundation of China (10572117,10802063,50875213)Aeronautical Science Foundation of China (2007ZA53012)+1 种基金New Century Program For Excellent Talents of Ministry of Education of China (NCET-05-0868)National High-tech Research and Development Program (2007AA04Z401)
文摘Combining the advantages of the stratified sampling and the importance sampling, a stratified importance sampling method (SISM) is presented to analyze the reliability sensitivity for structure with multiple failure modes. In the presented method, the variable space is divided into several disjoint subspace by n-dimensional coordinate planes at the mean point of the random vec- tor, and the importance sampling functions in the subspaces are constructed by keeping the sampling center at the mean point and augmenting the standard deviation by a factor of 2. The sample size generated from the importance sampling function in each subspace is determined by the contribution of the subspace to the reliability sensitivity, which can be estimated by iterative simulation in the sampling process. The formulae of the reliability sensitivity estimation, the variance and the coefficient of variation are derived for the presented SISM. Comparing with the Monte Carlo method, the stratified sampling method and the importance sampling method, the presented SISM has wider applicability and higher calculation efficiency, which is demonstrated by numerical examples. Finally, the reliability sensitivity analysis of flap structure is illustrated that the SISM can be applied to engineering structure.