期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Analysis on the deformation and fracture behavior of carbon steel by in situ tensile test 被引量:1
1
作者 Fan Li Haibo Huang 《Journal of University of Science and Technology Beijing》 CSCD 2006年第6期504-507,共4页
The deformation and fracture behaviors of low-carbon steel, medium-carbon steel, and high-carbon steel were studied on internal microstructure using the scanning electron microscopy in situ tensile test. The microstru... The deformation and fracture behaviors of low-carbon steel, medium-carbon steel, and high-carbon steel were studied on internal microstructure using the scanning electron microscopy in situ tensile test. The microstructure mechanism of their deformation and fracture behavior was analyzed. The results show that the deformation and fracture behavior of low-carbon steel depends on the grain size of ferrite, the deformation and fracture behavior of medium-carbon steel depends on the size of ferrite grain and pearlite lump, and the deformation and fracture behavior of high-carbon steel depends on the size of pearlite lump and the pearlitic interlamellar spacing. 展开更多
关键词 carbon steel DEFORMATION FRACTURE microstructure mechanism in situ tensile test
下载PDF
Forming Limit Stress Diagram Prediction of Aluminum Alloy 5052 Based on GTN Model Parameters Determined by In Situ Tensile Test 被引量:21
2
作者 HE Min LI Fuguo WANG Zhigang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第3期378-386,共9页
The conventional forming limit diagram (FLD) is described as a plot of major strain versus minor strain. However, FLD is dependent on forming history and strain path. In the present study, a forming limit stress-bas... The conventional forming limit diagram (FLD) is described as a plot of major strain versus minor strain. However, FLD is dependent on forming history and strain path. In the present study, a forming limit stress-based diagram (FLSD) has been adopted to predict the fracture limit of aluminum alloy (AA) 5052-O1 sheet. Nakazima test is simulated by plastic constitutive formula derived from the modified Gurson-Tvergaard-Needleman (GTN) model. An in situ tensile test with scanning electron microscope (SEM) is proposed to determine the parameters in GTN model. The damage evolution is observed and recorded, and the parameters of GTN model are identified through counting void fraction at three damage stages of AA5052-O 1. According to the experimental results, the original void volume fraction, the volume fraction of potential nucleated voids, the critical void volume fraction, the void volume fraction at the final failure of material are assigned as 0.002 918, 0.024 9, 0.030 103, 0.048 54, respectively. The stress and strain are obtained at the last loading step before crack. FLSD and FLD of AA5052-O 1 are plotted. Compared with the experimental Nakazima test and uniaxial tensile test, the predicted results show a good agreement. The parameters determined by in situ tensile test can be applied to the research of the forming limit for ductile metals. 展开更多
关键词 forming limit stress diagram GTN model in situ tensile test void damage aluminum alloy 5052-O1 sheet metal forming
原文传递
Effects of zinc on static and dynamic mechanical properties of copper-zinc alloy 被引量:1
3
作者 马志超 赵宏伟 +1 位作者 鲁帅 程虹丙 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2440-2445,共6页
The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy w... The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37%(mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively. 展开更多
关键词 tensile behavior low cycle fatigue copper alloy in situ test piezoelectric actuator
下载PDF
Microstructure, property and deformation and fracture behavior of 800 MPa complex phase steel with different coiling temperatures 被引量:2
4
作者 Jian-zhong Xue Zheng-zhi Zhao +5 位作者 Di Tang Hui Li Hao-hong Wu Wei-liang Xiong Liang Liang Yao Huang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2021年第3期346-359,共14页
The microstructure characteristics and properties(especially hole expansion property)of 800 MPa hot-rolled complex phase steel with different coiling temperatures were studied.The microstructure consisted of polygonal... The microstructure characteristics and properties(especially hole expansion property)of 800 MPa hot-rolled complex phase steel with different coiling temperatures were studied.The microstructure consisted of polygonal ferrite and precipitates when the steel was coiled at 550℃,and when the steel was coiled between 460–520℃,the microstructure was composed of granular bainite and martensite and austenite(M/A)islands.The morphology of the crack was analyzed by scanning electron microscopy,and the in situ scanning electron microscope tensile test was used to find out the fracture mechanism and deformation behavior of the steel with different coiling temperatures.When the steel was coiled at 550℃,the cracks initiated at the ferrite grain boundary and propagated through the grains or along the grain boundaries.When the steel was coiled at 520℃,the cracks first initiated at the junction of ferrite and M/A island and then propagated through the grains.The steel coiled at 520℃ has quite good mechanical properties and relatively high hole expansion ratio. 展开更多
关键词 Complex phase steel Coiling temperature Strength in situ tensile test Hole expansion ratio CRACK
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部