Pedestrian self-organizing movement plays a significant role in evacuation studies and architectural design.Lane formation,a typical self-organizing phenomenon,helps pedestrian system to become more orderly,the majori...Pedestrian self-organizing movement plays a significant role in evacuation studies and architectural design.Lane formation,a typical self-organizing phenomenon,helps pedestrian system to become more orderly,the majority of following behavior model and overtaking behavior model are imprecise and unrealistic compared with pedestrian movement in the real world.In this study,a pedestrian dynamic model considering detailed modelling of the following behavior and overtaking behavior is constructed,and a method of measuring the lane formation and pedestrian system order based on information entropy is proposed.Simulation and analysis demonstrate that the following and avoidance behaviors are important factors of lane formation.A high tendency of following results in good lane formation.Both non-selective following behavior and aggressive overtaking behavior cause the system order to decrease.The most orderly following strategy for a pedestrian is to overtake the former pedestrian whose speed is lower than approximately 70%of his own.The influence of the obstacle layout on pedestrian lane and egress efficiency is also studied with this model.The presence of a small obstacle does not obstruct the walking of pedestrians;in contrast,it may help to improve the egress efficiency by guiding the pedestrian flow and mitigating the reduction of pedestrian system orderliness.展开更多
Formation condition of high-entropy alloys with solid solution structure was investigated. Seventeen kinds of the high-entropy alloys with different components were prepared, the influencing factors (the comprehensiv...Formation condition of high-entropy alloys with solid solution structure was investigated. Seventeen kinds of the high-entropy alloys with different components were prepared, the influencing factors (the comprehensive atomic radius difference δ, the mixing enthalpy AH and the mixing entropy AS) of phase composition of the alloys were calculated, and the microstructure and phase compositions of alloys were analyzed by using SEM and XRD. The result shows that only the systems with δ≤2.77 and △H≥-8.8 kJ/mol will form high entropy alloy with simple solid solution. Otherwise, intermetallic compounds will exist in the alloys. So, selection of the type of element has important effects on microstructure and properties of high entropy alloys.展开更多
The vapor pressures of n-butyl carbamate were measured in the temperature range from 372.37 K to 479.27 K and fitted with Antoine equation. The compressibility factor of the vapor was calculated with the Virial equati...The vapor pressures of n-butyl carbamate were measured in the temperature range from 372.37 K to 479.27 K and fitted with Antoine equation. The compressibility factor of the vapor was calculated with the Virial equation and the second virial coefficient was determined by the Vetere model. Then the standard enthalpy of vaporization for n-butyl carbamate was estimated. The heat capacity was measured for the solid state(299.39–324.2 K) and liquid state(336.65–453.21 K) by means of adiabatic calorimeter. The standard enthalpy of formation ΔfH[crystal(cr),298.15 K] and standard entropy S(crystal,298.15 K) of the substance were calculated on the basis of the gas-phase standard enthalpy of formation ΔfH(g,298.15 K)and gas-phase standard entropy S(g,298.15 K), which were estimated by the Benson method. The results are acceptable, validated by a thermochemical cycle.展开更多
The succession of lithofacies of a part of the Barakar Formation of the Singrauli coalfield has been studied by statistical techniques. The lithologies have been grouped under five facies states viz. coarse-, medium-,...The succession of lithofacies of a part of the Barakar Formation of the Singrauli coalfield has been studied by statistical techniques. The lithologies have been grouped under five facies states viz. coarse-, medium-, and fine-grained sandstones, shale and coal for statistical analyses. Markov chain analysis indicates the arrangement of Barakar lithofacies in the form of fining-upward cycles. A complete cycle consists of conglomerate or coarse-grained sandstone at the base sequentially succeeded by medium- and fine-grained sandstones, shales and coal seam at the top. The entropy analysis puts the Barakar cycles in A-4 type of cyclicity, which consists of different proportions of lower-, side- and upper-truncated cycles of lithologic states. Regression analysis indicates a sympathetic relationship between total thickness of strata (net subsidence) and number of coal cycles and an antipathic relationship between average thickness and number of coal cycles. The cyclic sedimentation of the Barakar Formation was controlled by autocyclic process, which occurred due to the lateral migration of streams triggered by intrabasinal differential subsidence. In many instances, the clastic sediments issued from the laterally migrating rivers interrupted the sedimentation resulting in thinner cycles in areas where the numbers of cycles are more. Principal component and multivariate regression analyses suggest that the net subsidence of the basin is mostly controlled by number and thickness of sandstone beds and coal seams.展开更多
Saline aquifers are the most popular waste and CO_(2)injection and storage reservoirs worldwide.This project proposes that several optimal injection positions should be investigated as hydraulic pressure-focused posit...Saline aquifers are the most popular waste and CO_(2)injection and storage reservoirs worldwide.This project proposes that several optimal injection positions should be investigated as hydraulic pressure-focused positions,in order to relieve the high demands of pump performance.The comprehensive indices(F_(i))representing the injectivity of different burial depths were obtained by using information entropy,based on the mercury injection experimental data of 13 rock samples.The results demonstrated that the burial depths of No.4,No.1 and No.2 in the Liujiagou Formation were the most suitable positions for hydraulic focused injection,which means the upper 30 m thickness could be regarded as the hydraulic focused range in the saline aquifer with an average thickness of 400 m.In addition,some laboratory experiments and in situ tests were carried out for the purpose of certifying and analyzing results,including SEM,XRD,brittleness index and logging.The results suggested that the rock samples at the No.4,No.1 and No.2 burial depth ranges have loose microstructure,weak cementation,as well as dual pores and fractures.The lithology is mainly quartz and feldspar,but the clay mineral content is high(10%-25%),which is positive for dissolution.The lithology is suitable for hydraulic fracturing to form extended cracks and micro-fissures during high-TDS(total dissolved solids)mine water injection,because of the high brittleness index.Finally,a theoretical and technical framework for high-TDS mine water injection was established,based on operating pilot engineering.Some theoretical defects and drawbacks learned from the field practices were summarized and solutions proposed.The research in this study could provide guidance and a paradigm for the inexpensive treatment of high-TDS mine water by injection and storage.展开更多
As an emerging alloy material,high-entropy alloy has potential applications that distinguish it from traditional alloys due to its special physicochemical properties.In this work,a low melting point GaInSnBiZn high-en...As an emerging alloy material,high-entropy alloy has potential applications that distinguish it from traditional alloys due to its special physicochemical properties.In this work,a low melting point GaInSnBiZn high-entropy alloy was designed based on Miedema model,and its surface tension was measured by the continuous pendant-drop method.The results show that the intrinsic surface tension of GaInSnBiZn high-entropy alloy at 80°C is 545±5 mN/m,and the surface tension of the liquid alloy is significantly reduced by the formation of surface oxide film.The surface tension of GaInSnBiZn high-entropy alloy was analyzed by using theoretical models(Guggenheim model,GSM(general solution)model and Butler model),and the thermodynamic characteristics of the surface tension formation were further verified by combining with thermodynamic calculations,among which the calculated results of Butler model were in good agreement with the experimental data.Meanwhile,it is found that the surface concentration of Bi in the alloy is much larger than the nominal concentration of its bulk phase,which contributes the most to the surface tension of the alloy,however,it contributes the least to the entropy of the alloy formation in combination with the Butler model.展开更多
The dynamics of polymeric and other glass-forming liquids dramatically slows down upon cooling toward the glass transition temperature without any obvious significant change in their static structure.A quantitative un...The dynamics of polymeric and other glass-forming liquids dramatically slows down upon cooling toward the glass transition temperature without any obvious significant change in their static structure.A quantitative understanding of this extraordinary dynamic slowdown remains one of the most significant challenges in condensed matter physics.Historically,extensive efforts have been devoted to explaining the dynamics of glass-forming liquids in terms of thermodynamic properties,leading to a number of semi-empirical models emphasizing distinct thermodynamic properties.Here,a thermodynamic perspective is provided on the glass formation of polymeric and other materials.We begin with an overview of the thermodynamic models of glass formation,including the intuitively appealing“free volume”models,enthalpy models originally emphasized by Goldstein and later by others,and the highly influential configurational entropy-based models.The review of these models is followed by a discussion of the advances that attempt to bring together some of the seemingly disparate thermodynamic viewpoints on glass formation by revealing a close interrelation between thermodynamic properties.We conclude this review with remarks on several key topics in this field,along with our viewpoint for future work.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.71603146).
文摘Pedestrian self-organizing movement plays a significant role in evacuation studies and architectural design.Lane formation,a typical self-organizing phenomenon,helps pedestrian system to become more orderly,the majority of following behavior model and overtaking behavior model are imprecise and unrealistic compared with pedestrian movement in the real world.In this study,a pedestrian dynamic model considering detailed modelling of the following behavior and overtaking behavior is constructed,and a method of measuring the lane formation and pedestrian system order based on information entropy is proposed.Simulation and analysis demonstrate that the following and avoidance behaviors are important factors of lane formation.A high tendency of following results in good lane formation.Both non-selective following behavior and aggressive overtaking behavior cause the system order to decrease.The most orderly following strategy for a pedestrian is to overtake the former pedestrian whose speed is lower than approximately 70%of his own.The influence of the obstacle layout on pedestrian lane and egress efficiency is also studied with this model.The presence of a small obstacle does not obstruct the walking of pedestrians;in contrast,it may help to improve the egress efficiency by guiding the pedestrian flow and mitigating the reduction of pedestrian system orderliness.
基金Project(HIT.NSRIF.2009090) supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology,China
文摘Formation condition of high-entropy alloys with solid solution structure was investigated. Seventeen kinds of the high-entropy alloys with different components were prepared, the influencing factors (the comprehensive atomic radius difference δ, the mixing enthalpy AH and the mixing entropy AS) of phase composition of the alloys were calculated, and the microstructure and phase compositions of alloys were analyzed by using SEM and XRD. The result shows that only the systems with δ≤2.77 and △H≥-8.8 kJ/mol will form high entropy alloy with simple solid solution. Otherwise, intermetallic compounds will exist in the alloys. So, selection of the type of element has important effects on microstructure and properties of high entropy alloys.
文摘The vapor pressures of n-butyl carbamate were measured in the temperature range from 372.37 K to 479.27 K and fitted with Antoine equation. The compressibility factor of the vapor was calculated with the Virial equation and the second virial coefficient was determined by the Vetere model. Then the standard enthalpy of vaporization for n-butyl carbamate was estimated. The heat capacity was measured for the solid state(299.39–324.2 K) and liquid state(336.65–453.21 K) by means of adiabatic calorimeter. The standard enthalpy of formation ΔfH[crystal(cr),298.15 K] and standard entropy S(crystal,298.15 K) of the substance were calculated on the basis of the gas-phase standard enthalpy of formation ΔfH(g,298.15 K)and gas-phase standard entropy S(g,298.15 K), which were estimated by the Benson method. The results are acceptable, validated by a thermochemical cycle.
文摘The succession of lithofacies of a part of the Barakar Formation of the Singrauli coalfield has been studied by statistical techniques. The lithologies have been grouped under five facies states viz. coarse-, medium-, and fine-grained sandstones, shale and coal for statistical analyses. Markov chain analysis indicates the arrangement of Barakar lithofacies in the form of fining-upward cycles. A complete cycle consists of conglomerate or coarse-grained sandstone at the base sequentially succeeded by medium- and fine-grained sandstones, shales and coal seam at the top. The entropy analysis puts the Barakar cycles in A-4 type of cyclicity, which consists of different proportions of lower-, side- and upper-truncated cycles of lithologic states. Regression analysis indicates a sympathetic relationship between total thickness of strata (net subsidence) and number of coal cycles and an antipathic relationship between average thickness and number of coal cycles. The cyclic sedimentation of the Barakar Formation was controlled by autocyclic process, which occurred due to the lateral migration of streams triggered by intrabasinal differential subsidence. In many instances, the clastic sediments issued from the laterally migrating rivers interrupted the sedimentation resulting in thinner cycles in areas where the numbers of cycles are more. Principal component and multivariate regression analyses suggest that the net subsidence of the basin is mostly controlled by number and thickness of sandstone beds and coal seams.
基金supported by the National Key Research and Development Program of China(No.2023YFC3012103 and No.2019YFC1805400)the National Science Foundation of Jiangsu Province,China(No.BK20210524)+1 种基金the National Natural Science Foundation of China(No.42202268 and No.42172272)the Fundamental Research Funds for the Central Universities,China(No.2020ZDPY0201)。
文摘Saline aquifers are the most popular waste and CO_(2)injection and storage reservoirs worldwide.This project proposes that several optimal injection positions should be investigated as hydraulic pressure-focused positions,in order to relieve the high demands of pump performance.The comprehensive indices(F_(i))representing the injectivity of different burial depths were obtained by using information entropy,based on the mercury injection experimental data of 13 rock samples.The results demonstrated that the burial depths of No.4,No.1 and No.2 in the Liujiagou Formation were the most suitable positions for hydraulic focused injection,which means the upper 30 m thickness could be regarded as the hydraulic focused range in the saline aquifer with an average thickness of 400 m.In addition,some laboratory experiments and in situ tests were carried out for the purpose of certifying and analyzing results,including SEM,XRD,brittleness index and logging.The results suggested that the rock samples at the No.4,No.1 and No.2 burial depth ranges have loose microstructure,weak cementation,as well as dual pores and fractures.The lithology is mainly quartz and feldspar,but the clay mineral content is high(10%-25%),which is positive for dissolution.The lithology is suitable for hydraulic fracturing to form extended cracks and micro-fissures during high-TDS(total dissolved solids)mine water injection,because of the high brittleness index.Finally,a theoretical and technical framework for high-TDS mine water injection was established,based on operating pilot engineering.Some theoretical defects and drawbacks learned from the field practices were summarized and solutions proposed.The research in this study could provide guidance and a paradigm for the inexpensive treatment of high-TDS mine water by injection and storage.
基金This work is supported by National Natural Science Foundation of China(No.52165044).
文摘As an emerging alloy material,high-entropy alloy has potential applications that distinguish it from traditional alloys due to its special physicochemical properties.In this work,a low melting point GaInSnBiZn high-entropy alloy was designed based on Miedema model,and its surface tension was measured by the continuous pendant-drop method.The results show that the intrinsic surface tension of GaInSnBiZn high-entropy alloy at 80°C is 545±5 mN/m,and the surface tension of the liquid alloy is significantly reduced by the formation of surface oxide film.The surface tension of GaInSnBiZn high-entropy alloy was analyzed by using theoretical models(Guggenheim model,GSM(general solution)model and Butler model),and the thermodynamic characteristics of the surface tension formation were further verified by combining with thermodynamic calculations,among which the calculated results of Butler model were in good agreement with the experimental data.Meanwhile,it is found that the surface concentration of Bi in the alloy is much larger than the nominal concentration of its bulk phase,which contributes the most to the surface tension of the alloy,however,it contributes the least to the entropy of the alloy formation in combination with the Butler model.
基金support from the National Natural Science Foundation of China(Nos.22222307 and 21973089)support from the National Natural Science Foundation of China(Nos.21833008 and 52293471)the National Key R&D Program of China(No.2022YFB3707303)。
文摘The dynamics of polymeric and other glass-forming liquids dramatically slows down upon cooling toward the glass transition temperature without any obvious significant change in their static structure.A quantitative understanding of this extraordinary dynamic slowdown remains one of the most significant challenges in condensed matter physics.Historically,extensive efforts have been devoted to explaining the dynamics of glass-forming liquids in terms of thermodynamic properties,leading to a number of semi-empirical models emphasizing distinct thermodynamic properties.Here,a thermodynamic perspective is provided on the glass formation of polymeric and other materials.We begin with an overview of the thermodynamic models of glass formation,including the intuitively appealing“free volume”models,enthalpy models originally emphasized by Goldstein and later by others,and the highly influential configurational entropy-based models.The review of these models is followed by a discussion of the advances that attempt to bring together some of the seemingly disparate thermodynamic viewpoints on glass formation by revealing a close interrelation between thermodynamic properties.We conclude this review with remarks on several key topics in this field,along with our viewpoint for future work.