期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Alloying effect of silver in magnesium on the development of microstructure and mechanical properties by indirect extrusion 被引量:4
1
作者 Bjorn Wiese Regine Willumeit-Römer +1 位作者 Dietmar Letzig Jan Bohlen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期112-122,共11页
The effect of Ag in solid solution on the microstructure,texture and the deformation behaviour of indirectly extruded Mg was investigated.Ag as a solid solution strengthener affects the behaviour during extrusion,resu... The effect of Ag in solid solution on the microstructure,texture and the deformation behaviour of indirectly extruded Mg was investigated.Ag as a solid solution strengthener affects the behaviour during extrusion,resulting in enhanced deformation related heating and corresponding coarser grained microstructures.No substantial effect on the texture development is revealed.The mechanical properties simultaneously increase in stress and strain levels with increasing Ag content,especially in tension as a result of the changing impact of the slip modes which can be associated with a decrease of the lattice parameters as well as the c/a ratio of the hcp lattice structure.In compression tests with twin dominated flow,the impact is much smaller on the compressive yield stress but higher with respect to the twinning related strain hardening rate.Solid solution strength functions for Fleischer and Labusch were determined,also confirming the anisotropic behaviour of the extruded Mg alloys. 展开更多
关键词 Mg-Ag-alloys Lattice parameters indirect extrusion Microstructure Mechanical properties
下载PDF
Grain refinement and weak-textured structures based on the dynamic recrystallization of Mg–9.80Gd–3.78Y–1.12Sm–0.48Zr alloy 被引量:4
2
作者 Yunwei Gui Lingxiao Ouyang +3 位作者 Yujie Cui Huakang Bian Quanan Li Akihiko Chiba 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第2期456-466,共11页
We utilized electron backscatter diffraction to investigate the microstructure evolutions of a newly developed magnesium-rare earth alloy(Mg–9.80 Gd–3.78 Y–1.12 Sm–0.48 Zr)during instantaneous hot indirect extrusi... We utilized electron backscatter diffraction to investigate the microstructure evolutions of a newly developed magnesium-rare earth alloy(Mg–9.80 Gd–3.78 Y–1.12 Sm–0.48 Zr)during instantaneous hot indirect extrusion.An equiaxed fine-grained(average grain size of 3.4±0.2μm)microstructure with a weak texture was obtained.The grain refinement was mainly attributed to the discontinuous dynamic recrystallization(DDRX)and continuous DRX(CDRX)processes during the hot indirect extrusion process.The twin boundaries formed during the initial deformation stage effectively increased the number of high angle grain boundaries(HAGBs),which provided sites for new grain nuclei,and hence,resulted in an improved DDRX process.Along with DDRX,CDRX processes characterized by low angle grain boundary(LAGB)networks were also observed in the grain interior due to effective dynamic recovery(DRV)at a relatively high temperature of 773 K and high strain rates.Thereafter,LAGB networks were transformed into HAGB networks by the progressive rotation of subgrains during the CDRX process. 展开更多
关键词 Magnesium-rare earth(Mg-Re)alloy Grain refinement Discontinuous dynamic recrystallization(DDRX) Continuous dynamic recrystallization(CDRX) Hot indirect extrusion
下载PDF
Microstructure,Mechanical Properties and Fracture Behavior of As-Extruded Zn-Mg Binary Alloys 被引量:8
3
作者 Li-Qing Wang Yu-Ping Ren +3 位作者 Shi-Neng Sun Hong Zhao Song Li Gao-Wu Qin 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第10期931-940,共10页
In the present work, Zn-(0-1)Mg(wt%) alloys were prepared by casting and indirect extrusion at 200 and300 ℃, respectively. With Mg addition, both the size and amount of second phase Mg2Zn(11) increased, and the... In the present work, Zn-(0-1)Mg(wt%) alloys were prepared by casting and indirect extrusion at 200 and300 ℃, respectively. With Mg addition, both the size and amount of second phase Mg2Zn(11) increased, and the equiaxed grains were significantly refined. The extrusion temperature had little influence on Mg2Zn(11), but the grains were refined at low extrusion temperature. For the alloys extruded at 200 ℃, as Mg content increased, the tensile yield strength(TYS)increased from 64 MPa for pure Zn to 262 MPa for Zn-1Mg; the elongation increased from 14.3% for pure Zn to 25% for Zn-0.02Mg and then decreased to 5% for Zn-1Mg. For the alloys extruded at 300 ℃, as Mg content increased, the TYS increased from 67 MPa for pure Zn to 252 MPa for Zn-1Mg, while the elongation decreased from 11.7% to 2%. The alloy extruded at 200 ℃ exhibited higher TYS and elongation than the corresponding alloy extruded at 300 ℃. The combination of grain refinement and second phase Mg2Zn(11) contributed to the improvement in the TYS, and the grain refinement played a major role in strengthening alloy. Zn-0.02Mg and Zn-0.05Mg alloys extruded at 200 ℃ show a mixture of cleavage and ductile fracture corresponding to higher elongation, while the other alloys show cleavage fracture. 展开更多
关键词 Zn-Mg binary alloy indirect extrusion MICROSTRUCTURE Mechanical property Fracture behavior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部