In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver u...In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver uses interference cancellation.Unfortunately,uncoordinated radio resource allocation can reduce system throughput and lead to user inequity,for this reason,in this paper,channel allocation and power allocation problems are formulated to maximize the system sum rate and minimum user achievable rate.Since the construction model is non-convex and the response variables are high-dimensional,a distributed Deep Reinforcement Learning(DRL)framework called distributed Proximal Policy Optimization(PPO)is proposed to allocate or assign resources.Specifically,several simulated agents are trained in a heterogeneous environment to find robust behaviors that perform well in channel assignment and power allocation.Moreover,agents in the collection stage slow down,which hinders the learning of other agents.Therefore,a preemption strategy is further proposed in this paper to optimize the distributed PPO,form DP-PPO and successfully mitigate the straggler problem.The experimental results show that our mechanism named DP-PPO improves the performance over other DRL methods.展开更多
A channel assignment algorithm with awareness of link traffic is proposed in multi-radio multi-channel wireless mesh networks. First, the physical interference model based on the signal-to-interference-plus-noise rati...A channel assignment algorithm with awareness of link traffic is proposed in multi-radio multi-channel wireless mesh networks. First, the physical interference model based on the signal-to-interference-plus-noise ratio and successful transmission condition is described. The model is more suitable for a wireless communication environment than other existing models. Secondly, a pure integer quadratic programming (PIQP) model is used to solve the channel assignment problem and improve the capacity of wireless mesh networks. Consequently, a traffic- aware static channel assignment algorithm(TASC) is designed. The algorithm adopts some network parameters, including the network connectivity, the limitation of the number of radios and the successful transmission conditions in wireless communications. The TASC algorithm can diminish network interference and increase the efficiency of channel assignment while keeping the connectivity of the network. Finally, the feasibility and effectivity of the channel assignment solution are illustrated by the simulation results. Compared witb similar algorithms, the proposed algorithm can increase the capacity of WMNs.展开更多
The major challenge faced by wireless mesh networks is the capacity reduction caused by interference,and interference can be reduced or even eliminated through appropriate channel assignment.This article presents a co...The major challenge faced by wireless mesh networks is the capacity reduction caused by interference,and interference can be reduced or even eliminated through appropriate channel assignment.This article presents a comprehensive survey of channel assignment schemes for multicast in multi-radio multi-channel wireless mesh networks.We analyze the state-of-the-art channel assignment schemes for multicast and provide comprehensive taxonomy of the latest work.In general,we classify the channel assignment schemes for multicast into two types,that is,sequential multicast routing and channel assignment(SMRCA)and joint multicast routing and channel assignment(JMRCA).Detailed review of channel assignment schemes in each category is provided.Possible future research directions and corresponding solutions are also explored to motivate research interests in the field of channel assignment for multicast in wireless mesh networks.展开更多
Wireless sensor networks are suffering from serious frequency interference.In this paper,we propose a channel assignment algorithm based on graph theory in wireless sensor networks.We first model the conflict infectio...Wireless sensor networks are suffering from serious frequency interference.In this paper,we propose a channel assignment algorithm based on graph theory in wireless sensor networks.We first model the conflict infection graph for channel assignment with the goal of global optimization minimizing the total interferences in wireless sensor networks.The channel assignment problem is equivalent to the generalized graph-coloring problem which is a NP-complete problem.We further present a meta-heuristic Wireless Sensor Network Parallel Tabu Search(WSN-PTS) algorithm,which can optimize global networks with small numbers of iterations.The results from a simulation experiment reveal that the novel algorithm can effectively solve the channel assignment problem.展开更多
To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer ro...To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer routing (JCACR), is presented. Firstly, this paper introduces a new concept called channel utilization percentage (CUP), which is for measuring the contention level of different channels in a node’s neighborhood, and deduces its optimal value for determining whether a channel is overloaded or not. Then, a metric parameter named channel selection metric (CSM) is designed, which actually reffects not only the channel status but also corresponding node’s capacity to seize it. JCACR evaluates channel assignment by CSM, performs a local optimization by assigning each node a channel with the smaller CSM value, and changes the working channel dynamically when the channel is overloaded. Therefore, the network load balancing can be achieved. In addition, simulation shows that, when compared with the protocol of weighted cumulative expected transfer time (WCETT), the new protocol can improve the network throughput and reduce the end-to-end average delay with fewer overheads.展开更多
Capacity reduction is a major problem faced by wireless mesh networks. An efficient way to alleviate this problem is proper channel assignment. Current end-toend channel assignment schemes usually focus on the case wh...Capacity reduction is a major problem faced by wireless mesh networks. An efficient way to alleviate this problem is proper channel assignment. Current end-toend channel assignment schemes usually focus on the case where channels in distinct frequency bands are assigned to mesh access and backbone, but actually backbone network and access network can use the same IEEE 802.11 technology. Besides, these channel assignment schemes only utilize orthogonal channels to perform channel assignment, and the resulting network interference dramatically degrades network performance. Moreover, Internet-oriented traffic is considered only, and peerto-peer traffic is omitted, or vice versa. The traffic type does not match the practical network. In this paper, we explore how to exploit partially overlapped channels to perform endto-end channel assignment in order to achieve effective end-to-end flow transmissions. The proposed flow-based end-to-end channel assignment schemes can conquer the limitations aforementioned. Simulations reveal that loadaware channel assignment can be applied to networks with stable traffic load, and it can achieve near-optimal performance; Traffic-irrelevant channel assignment is suitable for networks with frequent change of traffic load,and it can achieve good balance between performance and overhead. Also, partially overlapped channels' capability of improving network performance is situation-dependent, they should be used carefully.展开更多
Employing multiple channels in wireless multihop networks is regarded as an effective approach to increas-ing network capacity. This paper presents a centralized quasi-static channel assignment for multi-radio multi-c...Employing multiple channels in wireless multihop networks is regarded as an effective approach to increas-ing network capacity. This paper presents a centralized quasi-static channel assignment for multi-radio multi-channel Wireless Mesh Networks (WMNs). The proposed channel assignment can efficiently utilize multiple channels with only 2 radios equipped on each mesh router. In the scheme, the network end-to-end traffics are first modeled by probing data at wireless access points, and then the traffic load between each pair of neighboring routers is further estimated using an interference-aware estimation algorithm. Having knowledge of the expected link load, the scheme assigns channels to each radio with the objective of mini-mizing network interference, which as a result greatly improves network capacity. The performance evalua-tion shows that the proposed scheme is highly responsive to varying traffic conditions, and the network per-formance under the channel assignment significantly outperforms the single-radio IEEE 802.11 network as well as the 2-radio WMN with static 2 channels.展开更多
Opportunistic Routing (OR) involves multiple forwarding candidates to relay packets by taking advantage of the broadcast nature and multi-user diversity of a wireless medium. Compared with Traditional Routing (TR), OR...Opportunistic Routing (OR) involves multiple forwarding candidates to relay packets by taking advantage of the broadcast nature and multi-user diversity of a wireless medium. Compared with Traditional Routing (TR), OR is more suitable in the case of an unreliable wireless link and can evidently improve the end-to-end throughput of Wireless Mesh Networks (WMNs). In this paper, we focus on OR in Multi-Radio Multi-Channel WMNs (MRMC-WMNs). This problem has not been well examined and is considerably more challenging than the OR in single-radio wireless networks considered in the existing literature. First, we validate the advantage of OR in MRMC-WMNs. Second, we propose Low-complexity Channel Assignment for Opportunistic Routing (LcCAOR), which assigns channels to flows according to the interference state of every node. Third, we implement the LcCOAR in a fully distributed manner. The simulation result shows that compared with OR in Single-Radio Single-Channel WMNs (SRSC-WMNs), the proposed OR can significantly enhance the throughput to 87.11% and 100.3% in grid and tree WMNs, respectively.展开更多
Dynamic channel assignment(DCA)is significant for extending vehicular ad hoc network(VANET)capacity and mitigating congestion.However,the un-known global state information and the lack of centralized control make chan...Dynamic channel assignment(DCA)is significant for extending vehicular ad hoc network(VANET)capacity and mitigating congestion.However,the un-known global state information and the lack of centralized control make channel assignment performances a challenging task in a distributed vehicular direct communication scenario.In our preliminary field test for communication under V2X scenario,we find that the existing DCA technology cannot fully meet the communication performance requirements of VANET.In order to improve the communication performance,we firstly demonstrate the feasibility and potential of reinforcement learning(RL)method in joint channel selection decision and access fallback adaptation design in this paper.Besides,a dual reinforcement learning(DRL)-based cooperative DCA(DRL-CDCA)mechanism is proposed.Specifically,DRL-CDCA jointly optimizes the decision-making behaviors of both the channel selection and back-off adaptation based on a multi-agent dual reinforcement learning framework.Besides,nodes locally share and incorporate their individual rewards after each communication to achieve regional consistency optimization.Simulation results show that the proposed DRL-CDCA can better reduce the one-hop packet delay,improve the packet delivery ratio on average when compared with two other existing mechanisms.展开更多
Cognitive Wireless Mesh Networks(CWMN) is a novel wireless network which combines the advantage of Cognitive Radio(CR) and wireless mesh networks.CWMN can realize seamless in-tegration of heterogeneous wireless networ...Cognitive Wireless Mesh Networks(CWMN) is a novel wireless network which combines the advantage of Cognitive Radio(CR) and wireless mesh networks.CWMN can realize seamless in-tegration of heterogeneous wireless networks and achieve better radio resource utilization.However,it is particularly vulnerable due to its features of open medium,dynamic spectrum,dynamic topology,and multi-top routing,etc..Being a dynamic positive security strategy,intrusion detection can provide powerful safeguard to CWMN.In this paper,we introduce trust mechanism into CWMN with intrusion detection and present a trust establishment model based on intrusion detection.Node trust degree and the trust degree of data transmission channels between nodes are defined and an algorithm of calcu-lating trust degree is given based on distributed detection of attack to networks.A channel assignment and routing scheme is proposed,in which selects the trusted nodes and allocates data channel with high trust degree for the transmission between neighbor nodes to establish a trusted route.Simulation re-sults indicate that the scheme can vary channel allocation and routing dynamically according to network security state so as to avoid suspect nodes and unsafe channels,and improve the packet safe delivery fraction effectively.展开更多
This paper investigates a wireless system with multi-Unmanned Aerial Vehicles(UAVs)for improving the overall throughput.In contrast to previous studies that optimize the locations of UAVs and channel assignment separa...This paper investigates a wireless system with multi-Unmanned Aerial Vehicles(UAVs)for improving the overall throughput.In contrast to previous studies that optimize the locations of UAVs and channel assignment separately,this paper considers the two issues jointly by exploiting Partially Overlapped Channels(POCs).The optimization problem of maximizing network throughput is formulated as a non-convex and non-linear problem.In order to find a practical solution,the problem is decomposed into two subproblems,which are iteratively optimized.First,the optimal locations of UAVs are determined under a fixed channel assignment scheme by solving the mixed-integer second-order cone problem.Second,an efficient POC allocation scheme is determined via the proposed channel assignment algorithm.Simulation results show that the proposed approach not only significantly improves system throughput and service reliability compared with the cases in which only orthogonal channels and stationary UAVs are considered,but also achieves similar performance using the exhaustive search algorithm with lower time complexity.展开更多
Discusses how to assign a set of noninterference radio channels to a symmetric network of transmitter location over a large planar area, the minimum of the span and the assignment of the channels with the changing of ...Discusses how to assign a set of noninterference radio channels to a symmetric network of transmitter location over a large planar area, the minimum of the span and the assignment of the channels with the changing of minimum distance among the same channels and the changing of the minimum difference among the adjacent channels. The minimum interval in the frequency spectrum of 9 interger channels is proved and obtained by using the graphic theory and the reduction to absurdity on condition that interference from nearby transmitters is avoided in the whole given grid and the grid spreading arbitrarily far in all directions.展开更多
A globally optimal solution to vector quantization (VQ) index assignment on noisy channel, the evolutionary algorithm based index assignment algorithm (EAIAA), is presented. The algorithm yields a significant reductio...A globally optimal solution to vector quantization (VQ) index assignment on noisy channel, the evolutionary algorithm based index assignment algorithm (EAIAA), is presented. The algorithm yields a significant reduction in average distortion due to channel errors, over conventional arbitrary index assignment, as confirmed by experimental results over the memoryless binary symmetric channel (BSC) for any bit error.展开更多
Channel assignment is a challenge for distributed cognitive networks due to spectrum mobility and lack of centralized entity.We present a dynamic and efficient algorithm via conflict shifting,referred as Shifting-base...Channel assignment is a challenge for distributed cognitive networks due to spectrum mobility and lack of centralized entity.We present a dynamic and efficient algorithm via conflict shifting,referred as Shifting-based Channel Assignment(SCA).In this algorithm,the system was modeled with a conflict graph,and users cannot assign the channels that primary users(legacy users) and neighbors already occupied.In order to eliminate the conflicts between neighbors efficiently,secondary users(unlicensed users) try to transfer them through a straight path to the boundary,where conflicts are easier to solve as there are less neighbors for boundary users.Actions in one shift are executed in slots,and users act in a synchronous and separated manner.As a result,some of the conflicting channels are avoid from directly abandoned,and for this,utility of the entire network can be improved.Simulation results show that the proposed algorithm can provide similar utility performance while obviously reducing the communication cost than bargaining-base algorithms.In small scale networks with low user mobility(under 20%),it reduces 50% of the communication overhead than the later.展开更多
IEEE 802.11 based wireless mesh networks with directional antennas are expected to be a new promising technology and an economic approach for providing wireless broadband services in rural areas.In this paper,we discu...IEEE 802.11 based wireless mesh networks with directional antennas are expected to be a new promising technology and an economic approach for providing wireless broadband services in rural areas.In this paper,we discuss interference models and address how they can affect the design of channel assignment in rural mesh networks.We present a new channel assignment framework based on graph coloring for rural wireless mesh networks.The goal of the framework is to allow synchronously transmitting or receiving data from multiple neighbor links at the same time,and continuously doing full-duplex data transfer on every link,creating an efficient rural mesh network without interference.Channel assignment is shown to be NP-hard.We frame this channel allocation problem in terms of Adjacent Vertex Distinguishing Edge Coloring(AVDEC).Detailed assignment results on grid topology are presented and discussed.Furthermore,we design an algorithm.Finally,we evaluate the performance of the proposed algorithm through extensive simulations and show the algorithm is effective to the regular grid topologies,and the number of colors used by the algorithm is upper bounded by+1.Hence the algorithm guarantees that the number of channels available in standards such as IEEE802.11a is sufficient to have a valid AVDEC for many grid topologies.We also evaluate the proposed algorithm for arbitrary graphs.The algorithm provides a lower upper bound on the minimum number of channels to the AVDEC index channel assignment problem.展开更多
Nowadays,wireless local area network(WLAN)has become prevalent Internet access due to its low-cost gadgets,flexible coverage and hasslefree simple wireless installation.WLAN facilitates wireless Internet services to u...Nowadays,wireless local area network(WLAN)has become prevalent Internet access due to its low-cost gadgets,flexible coverage and hasslefree simple wireless installation.WLAN facilitates wireless Internet services to users with mobile devices like smart phones,tablets,and laptops through deployment of multiple access points(APs)in a network field.Every AP operates on a frequency band called channel.Popular wireless standard such as IEEE 802.11n has a limited number of channels where frequency spectrum of adjacent channels overlaps partially with each other.In a crowded environment,users may experience poor Internet services due to channel collision i.e.,interference from surrounding APs that affects the performance of the WLAN system.Therefore,it becomes a challenge to maintain expected performance in a crowded environment.A mathematical model of throughput considering interferences from surrounding APs can play an important role to set up a WLAN system properly.While set up,assignment of channels considering interference can maximize network performance.In this paper,we investigate the signal propagation of APs under interference of partially overlapping channels for both bonded and non-bonded channels.Then,a throughput estimation model is proposed using difference of operating channels and received signal strength indicator(RSSI).Then,a channel assignment algorithm is introduced using proposed throughput estimation model.Finally,the efficiency of the proposal is verified by numerical experiments using simulator.The results show that the proposal selects the best channel combination of bonded and non-bonded channels that maximize the performance.展开更多
Multiple channels are available for use in IEEE 802.11.Multiple channels can increase the available network's capacity,and how to efficiently assign these available channels to optimize the network performance is ...Multiple channels are available for use in IEEE 802.11.Multiple channels can increase the available network's capacity,and how to efficiently assign these available channels to optimize the network performance is a challenge.We survey current techniques to solve the problem,and category the techniques single-radio,multi-radio,cross-layer multi-channel assignment.This paper also discusses some interesting issues at last.展开更多
An L(2, 1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that |f(x) - f(y)| 〉 2 if d(x, y) = 1 and |f(x)-f(y)| ≥ 1 ifd(x, y) = 2. The ...An L(2, 1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that |f(x) - f(y)| 〉 2 if d(x, y) = 1 and |f(x)-f(y)| ≥ 1 ifd(x, y) = 2. The L(2, 1)-labeling number λ(G) of G is the smallest number k such that G has an L(2, 1)-labeling with max{f(v) : v ∈ V(G)} = k. We study the L(3, 2, 1)-labeling which is a generalization of the L(2, 1)-labeling on the graph formed by the (Cartesian) product and composition of 3 graphs and derive the upper bounds of λ3(G) of the graph.展开更多
基金supported by the Key Research and Development Program of China(No.2022YFC3005401)Key Research and Development Program of China,Yunnan Province(No.202203AA080009,202202AF080003)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_0482).
文摘In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver uses interference cancellation.Unfortunately,uncoordinated radio resource allocation can reduce system throughput and lead to user inequity,for this reason,in this paper,channel allocation and power allocation problems are formulated to maximize the system sum rate and minimum user achievable rate.Since the construction model is non-convex and the response variables are high-dimensional,a distributed Deep Reinforcement Learning(DRL)framework called distributed Proximal Policy Optimization(PPO)is proposed to allocate or assign resources.Specifically,several simulated agents are trained in a heterogeneous environment to find robust behaviors that perform well in channel assignment and power allocation.Moreover,agents in the collection stage slow down,which hinders the learning of other agents.Therefore,a preemption strategy is further proposed in this paper to optimize the distributed PPO,form DP-PPO and successfully mitigate the straggler problem.The experimental results show that our mechanism named DP-PPO improves the performance over other DRL methods.
基金The National Basic Research Program of China(973Program)(No.2009CB320501)the Natural Science Foundation of Jiangsu Province(No.BK2010414)+1 种基金China Postdoctoral Science Foundation(No.20100480071)Specialized Research Fund for the Doctoral Program of Higher Education(No.20090092120029)
文摘A channel assignment algorithm with awareness of link traffic is proposed in multi-radio multi-channel wireless mesh networks. First, the physical interference model based on the signal-to-interference-plus-noise ratio and successful transmission condition is described. The model is more suitable for a wireless communication environment than other existing models. Secondly, a pure integer quadratic programming (PIQP) model is used to solve the channel assignment problem and improve the capacity of wireless mesh networks. Consequently, a traffic- aware static channel assignment algorithm(TASC) is designed. The algorithm adopts some network parameters, including the network connectivity, the limitation of the number of radios and the successful transmission conditions in wireless communications. The TASC algorithm can diminish network interference and increase the efficiency of channel assignment while keeping the connectivity of the network. Finally, the feasibility and effectivity of the channel assignment solution are illustrated by the simulation results. Compared witb similar algorithms, the proposed algorithm can increase the capacity of WMNs.
基金supported by the National Natural Science Foundation of China under Grants No.61373124
文摘The major challenge faced by wireless mesh networks is the capacity reduction caused by interference,and interference can be reduced or even eliminated through appropriate channel assignment.This article presents a comprehensive survey of channel assignment schemes for multicast in multi-radio multi-channel wireless mesh networks.We analyze the state-of-the-art channel assignment schemes for multicast and provide comprehensive taxonomy of the latest work.In general,we classify the channel assignment schemes for multicast into two types,that is,sequential multicast routing and channel assignment(SMRCA)and joint multicast routing and channel assignment(JMRCA).Detailed review of channel assignment schemes in each category is provided.Possible future research directions and corresponding solutions are also explored to motivate research interests in the field of channel assignment for multicast in wireless mesh networks.
基金supported by National Key Basic Research Program of China(973 program) under Grant No. 2007CB307101National Natural Science Foundation of China under Grant No.60833002,No.60802016,No.60972010+1 种基金Next Generation Internet of China under Grant No.CNGI-0903-05the Fundamental Research Funds for the Central Universities under Grant No.2009YJS011
文摘Wireless sensor networks are suffering from serious frequency interference.In this paper,we propose a channel assignment algorithm based on graph theory in wireless sensor networks.We first model the conflict infection graph for channel assignment with the goal of global optimization minimizing the total interferences in wireless sensor networks.The channel assignment problem is equivalent to the generalized graph-coloring problem which is a NP-complete problem.We further present a meta-heuristic Wireless Sensor Network Parallel Tabu Search(WSN-PTS) algorithm,which can optimize global networks with small numbers of iterations.The results from a simulation experiment reveal that the novel algorithm can effectively solve the channel assignment problem.
基金supported by the National Natural Science Foundationof China (60873195 61070220)+3 种基金the Natural Science Foundation of Anhui Province (070412049)the Outstanding Young Teacher Foundation of Anhui Higher Education Institutions of China (2009SQRZ167)the Natural Science Foundation of Anhui Higher Education Institutions of China (KJ2009B114)the Open Project Program of Engineering Research Center of Safety Critical Industry Measure and Control Technology (SCIMCT0802)
文摘To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer routing (JCACR), is presented. Firstly, this paper introduces a new concept called channel utilization percentage (CUP), which is for measuring the contention level of different channels in a node’s neighborhood, and deduces its optimal value for determining whether a channel is overloaded or not. Then, a metric parameter named channel selection metric (CSM) is designed, which actually reffects not only the channel status but also corresponding node’s capacity to seize it. JCACR evaluates channel assignment by CSM, performs a local optimization by assigning each node a channel with the smaller CSM value, and changes the working channel dynamically when the channel is overloaded. Therefore, the network load balancing can be achieved. In addition, simulation shows that, when compared with the protocol of weighted cumulative expected transfer time (WCETT), the new protocol can improve the network throughput and reduce the end-to-end average delay with fewer overheads.
基金supported by the National Natural Science Foundation of China under Grants No.61373124
文摘Capacity reduction is a major problem faced by wireless mesh networks. An efficient way to alleviate this problem is proper channel assignment. Current end-toend channel assignment schemes usually focus on the case where channels in distinct frequency bands are assigned to mesh access and backbone, but actually backbone network and access network can use the same IEEE 802.11 technology. Besides, these channel assignment schemes only utilize orthogonal channels to perform channel assignment, and the resulting network interference dramatically degrades network performance. Moreover, Internet-oriented traffic is considered only, and peerto-peer traffic is omitted, or vice versa. The traffic type does not match the practical network. In this paper, we explore how to exploit partially overlapped channels to perform endto-end channel assignment in order to achieve effective end-to-end flow transmissions. The proposed flow-based end-to-end channel assignment schemes can conquer the limitations aforementioned. Simulations reveal that loadaware channel assignment can be applied to networks with stable traffic load, and it can achieve near-optimal performance; Traffic-irrelevant channel assignment is suitable for networks with frequent change of traffic load,and it can achieve good balance between performance and overhead. Also, partially overlapped channels' capability of improving network performance is situation-dependent, they should be used carefully.
文摘Employing multiple channels in wireless multihop networks is regarded as an effective approach to increas-ing network capacity. This paper presents a centralized quasi-static channel assignment for multi-radio multi-channel Wireless Mesh Networks (WMNs). The proposed channel assignment can efficiently utilize multiple channels with only 2 radios equipped on each mesh router. In the scheme, the network end-to-end traffics are first modeled by probing data at wireless access points, and then the traffic load between each pair of neighboring routers is further estimated using an interference-aware estimation algorithm. Having knowledge of the expected link load, the scheme assigns channels to each radio with the objective of mini-mizing network interference, which as a result greatly improves network capacity. The performance evalua-tion shows that the proposed scheme is highly responsive to varying traffic conditions, and the network per-formance under the channel assignment significantly outperforms the single-radio IEEE 802.11 network as well as the 2-radio WMN with static 2 channels.
基金supported by the National Basic Research Program of China (973) under Grant No.2012CB315801 the National Natural Science Foundation of China under Grants No.61003305,No.61173167,No.61173168,No.61070194 the Information Security Industrialization Fund from the National Development&Reform Commission of China (NDRC) under Grant No.NDRC[2009]1886
文摘Opportunistic Routing (OR) involves multiple forwarding candidates to relay packets by taking advantage of the broadcast nature and multi-user diversity of a wireless medium. Compared with Traditional Routing (TR), OR is more suitable in the case of an unreliable wireless link and can evidently improve the end-to-end throughput of Wireless Mesh Networks (WMNs). In this paper, we focus on OR in Multi-Radio Multi-Channel WMNs (MRMC-WMNs). This problem has not been well examined and is considerably more challenging than the OR in single-radio wireless networks considered in the existing literature. First, we validate the advantage of OR in MRMC-WMNs. Second, we propose Low-complexity Channel Assignment for Opportunistic Routing (LcCAOR), which assigns channels to flows according to the interference state of every node. Third, we implement the LcCOAR in a fully distributed manner. The simulation result shows that compared with OR in Single-Radio Single-Channel WMNs (SRSC-WMNs), the proposed OR can significantly enhance the throughput to 87.11% and 100.3% in grid and tree WMNs, respectively.
基金Beijing Municipal Natural Science Foundation Nos.L191001 and 4181002the National Natural Science Foundation of China under Grant Nos.61672082 and 61822101the Newton Advanced Fellow-ship under Grant No.62061130221.
文摘Dynamic channel assignment(DCA)is significant for extending vehicular ad hoc network(VANET)capacity and mitigating congestion.However,the un-known global state information and the lack of centralized control make channel assignment performances a challenging task in a distributed vehicular direct communication scenario.In our preliminary field test for communication under V2X scenario,we find that the existing DCA technology cannot fully meet the communication performance requirements of VANET.In order to improve the communication performance,we firstly demonstrate the feasibility and potential of reinforcement learning(RL)method in joint channel selection decision and access fallback adaptation design in this paper.Besides,a dual reinforcement learning(DRL)-based cooperative DCA(DRL-CDCA)mechanism is proposed.Specifically,DRL-CDCA jointly optimizes the decision-making behaviors of both the channel selection and back-off adaptation based on a multi-agent dual reinforcement learning framework.Besides,nodes locally share and incorporate their individual rewards after each communication to achieve regional consistency optimization.Simulation results show that the proposed DRL-CDCA can better reduce the one-hop packet delay,improve the packet delivery ratio on average when compared with two other existing mechanisms.
基金Supported by the National High Technology Research and Development Program (No. 2009AA011504)
文摘Cognitive Wireless Mesh Networks(CWMN) is a novel wireless network which combines the advantage of Cognitive Radio(CR) and wireless mesh networks.CWMN can realize seamless in-tegration of heterogeneous wireless networks and achieve better radio resource utilization.However,it is particularly vulnerable due to its features of open medium,dynamic spectrum,dynamic topology,and multi-top routing,etc..Being a dynamic positive security strategy,intrusion detection can provide powerful safeguard to CWMN.In this paper,we introduce trust mechanism into CWMN with intrusion detection and present a trust establishment model based on intrusion detection.Node trust degree and the trust degree of data transmission channels between nodes are defined and an algorithm of calcu-lating trust degree is given based on distributed detection of attack to networks.A channel assignment and routing scheme is proposed,in which selects the trusted nodes and allocates data channel with high trust degree for the transmission between neighbor nodes to establish a trusted route.Simulation re-sults indicate that the scheme can vary channel allocation and routing dynamically according to network security state so as to avoid suspect nodes and unsafe channels,and improve the packet safe delivery fraction effectively.
基金Thanks to the National Natural Science Foundation of China under Grant No.61702387 for the support of the research in this paper.
文摘This paper investigates a wireless system with multi-Unmanned Aerial Vehicles(UAVs)for improving the overall throughput.In contrast to previous studies that optimize the locations of UAVs and channel assignment separately,this paper considers the two issues jointly by exploiting Partially Overlapped Channels(POCs).The optimization problem of maximizing network throughput is formulated as a non-convex and non-linear problem.In order to find a practical solution,the problem is decomposed into two subproblems,which are iteratively optimized.First,the optimal locations of UAVs are determined under a fixed channel assignment scheme by solving the mixed-integer second-order cone problem.Second,an efficient POC allocation scheme is determined via the proposed channel assignment algorithm.Simulation results show that the proposed approach not only significantly improves system throughput and service reliability compared with the cases in which only orthogonal channels and stationary UAVs are considered,but also achieves similar performance using the exhaustive search algorithm with lower time complexity.
文摘Discusses how to assign a set of noninterference radio channels to a symmetric network of transmitter location over a large planar area, the minimum of the span and the assignment of the channels with the changing of minimum distance among the same channels and the changing of the minimum difference among the adjacent channels. The minimum interval in the frequency spectrum of 9 interger channels is proved and obtained by using the graphic theory and the reduction to absurdity on condition that interference from nearby transmitters is avoided in the whole given grid and the grid spreading arbitrarily far in all directions.
文摘A globally optimal solution to vector quantization (VQ) index assignment on noisy channel, the evolutionary algorithm based index assignment algorithm (EAIAA), is presented. The algorithm yields a significant reduction in average distortion due to channel errors, over conventional arbitrary index assignment, as confirmed by experimental results over the memoryless binary symmetric channel (BSC) for any bit error.
基金Supported by the National Natural Science Foundation of China (No. 60832007)the National Hi-Tech Research and Development Plan of China (No. 2009AA011801)
文摘Channel assignment is a challenge for distributed cognitive networks due to spectrum mobility and lack of centralized entity.We present a dynamic and efficient algorithm via conflict shifting,referred as Shifting-based Channel Assignment(SCA).In this algorithm,the system was modeled with a conflict graph,and users cannot assign the channels that primary users(legacy users) and neighbors already occupied.In order to eliminate the conflicts between neighbors efficiently,secondary users(unlicensed users) try to transfer them through a straight path to the boundary,where conflicts are easier to solve as there are less neighbors for boundary users.Actions in one shift are executed in slots,and users act in a synchronous and separated manner.As a result,some of the conflicting channels are avoid from directly abandoned,and for this,utility of the entire network can be improved.Simulation results show that the proposed algorithm can provide similar utility performance while obviously reducing the communication cost than bargaining-base algorithms.In small scale networks with low user mobility(under 20%),it reduces 50% of the communication overhead than the later.
基金Supported by the National Natural Science Foundation of China(No.71231004 and No.61004086)
文摘IEEE 802.11 based wireless mesh networks with directional antennas are expected to be a new promising technology and an economic approach for providing wireless broadband services in rural areas.In this paper,we discuss interference models and address how they can affect the design of channel assignment in rural mesh networks.We present a new channel assignment framework based on graph coloring for rural wireless mesh networks.The goal of the framework is to allow synchronously transmitting or receiving data from multiple neighbor links at the same time,and continuously doing full-duplex data transfer on every link,creating an efficient rural mesh network without interference.Channel assignment is shown to be NP-hard.We frame this channel allocation problem in terms of Adjacent Vertex Distinguishing Edge Coloring(AVDEC).Detailed assignment results on grid topology are presented and discussed.Furthermore,we design an algorithm.Finally,we evaluate the performance of the proposed algorithm through extensive simulations and show the algorithm is effective to the regular grid topologies,and the number of colors used by the algorithm is upper bounded by+1.Hence the algorithm guarantees that the number of channels available in standards such as IEEE802.11a is sufficient to have a valid AVDEC for many grid topologies.We also evaluate the proposed algorithm for arbitrary graphs.The algorithm provides a lower upper bound on the minimum number of channels to the AVDEC index channel assignment problem.
文摘Nowadays,wireless local area network(WLAN)has become prevalent Internet access due to its low-cost gadgets,flexible coverage and hasslefree simple wireless installation.WLAN facilitates wireless Internet services to users with mobile devices like smart phones,tablets,and laptops through deployment of multiple access points(APs)in a network field.Every AP operates on a frequency band called channel.Popular wireless standard such as IEEE 802.11n has a limited number of channels where frequency spectrum of adjacent channels overlaps partially with each other.In a crowded environment,users may experience poor Internet services due to channel collision i.e.,interference from surrounding APs that affects the performance of the WLAN system.Therefore,it becomes a challenge to maintain expected performance in a crowded environment.A mathematical model of throughput considering interferences from surrounding APs can play an important role to set up a WLAN system properly.While set up,assignment of channels considering interference can maximize network performance.In this paper,we investigate the signal propagation of APs under interference of partially overlapping channels for both bonded and non-bonded channels.Then,a throughput estimation model is proposed using difference of operating channels and received signal strength indicator(RSSI).Then,a channel assignment algorithm is introduced using proposed throughput estimation model.Finally,the efficiency of the proposal is verified by numerical experiments using simulator.The results show that the proposal selects the best channel combination of bonded and non-bonded channels that maximize the performance.
基金spported by the National Natural Science Foundation of China ( No. 60973139, 60773041 )Postdoctoral Foundation (No. 0801019C,20090451240, 20090451241)+2 种基金Science&Technology Innovation Fund for Higher Education Institutions of Jiangsu Province( No.CX09B_153Z,CX08B-086Z )Six Projects Sponsoring Talent Summits of Jiangsu Province(No. 2008118)the project of NJUPT(No.NY207135)
文摘Multiple channels are available for use in IEEE 802.11.Multiple channels can increase the available network's capacity,and how to efficiently assign these available channels to optimize the network performance is a challenge.We survey current techniques to solve the problem,and category the techniques single-radio,multi-radio,cross-layer multi-channel assignment.This paper also discusses some interesting issues at last.
文摘An L(2, 1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that |f(x) - f(y)| 〉 2 if d(x, y) = 1 and |f(x)-f(y)| ≥ 1 ifd(x, y) = 2. The L(2, 1)-labeling number λ(G) of G is the smallest number k such that G has an L(2, 1)-labeling with max{f(v) : v ∈ V(G)} = k. We study the L(3, 2, 1)-labeling which is a generalization of the L(2, 1)-labeling on the graph formed by the (Cartesian) product and composition of 3 graphs and derive the upper bounds of λ3(G) of the graph.