Ti-1100 alloys were melted in a controlled atmospheric induction furnace equipped with a Ca O crucible. The microstructure, chemical composition, microhardness and metal-crucible interfacial reactions were systematica...Ti-1100 alloys were melted in a controlled atmospheric induction furnace equipped with a Ca O crucible. The microstructure, chemical composition, microhardness and metal-crucible interfacial reactions were systematically investigated. The results demonstrate that the primary solidification microstructure in the as-cast alloys was the typical Widmansttten structure. The interactions between crucible and molten alloys are attributed to slight chemical dissolution and weak physical erosion. According to the line scanning analysis, the interfacial layer(α-case) thicknesses of Ti-1100 samples in the bottom and side wall are about 18 and 17 μm, respectively, which are slightly lower than those presented from microhardness tests(25 and 20 μm). The formation of α-case was caused by interstitial oxygen atoms. The standard Gibbs energy of reaction Ca O(s)=Ca+O for Ti-1100 alloy was also determined. The equilibrium constant and the interaction parameter between calcium and oxygen were obtained as lg K=-3.14 and eCa O =-3.54.展开更多
The interfacial reactions of chalcopyrite in ammonia–ammonium chloride solution were investigated.The chalcopyrite surface was examined by scanning electron microscopy and X-ray photoelectron spectroscopy(XPS)techniq...The interfacial reactions of chalcopyrite in ammonia–ammonium chloride solution were investigated.The chalcopyrite surface was examined by scanning electron microscopy and X-ray photoelectron spectroscopy(XPS)techniques.It was found that interfacial passivation layers of chalcopyrite were formed from an iron oxide layer on top of a copper sulfide layer overlaying the bulk chalcopyrite,whereas CuFe1-xS2 or copper sulfides were formed via the preferential dissolution of Fe.The copper sulfide layer formed a new passivation layer,whereas the iron oxide layer peeled off spontaneously and partially from the chalcopyrite surface.The state of the copper sulfide layer was discussed after being deduced from the appearance of S2-,S22-,Sn2-,S0 and SO42-.A mechanism for the oxidation and passivation of chalcopyrite under different pH values and redox potentials was proposed.Accordingly,a model of the interfacial reaction on the chalcopyrite surface was constructed using a three-step reaction pathway,which demonstrated the formation and transformation of passivation layers under the present experimental conditions.展开更多
A novel Sn-2.5Ag-2.0Ni alloy was used for soldering SiCp/Al composites substrate deposited with electroless Ni(5%P) (mass fraction)and Ni(10%P)(mass fraction)layers.It is observed that variation of P contents in the e...A novel Sn-2.5Ag-2.0Ni alloy was used for soldering SiCp/Al composites substrate deposited with electroless Ni(5%P) (mass fraction)and Ni(10%P)(mass fraction)layers.It is observed that variation of P contents in the electroless Ni(P)layer results in different types of microstructures of SnAgNi/Ni(P)solder joint.The morphology of Ni3Sn4 intermetallic compounds(IMCs)formed between the solder and Ni(10%P)layer is observed to be needle-like and this shape provides high speed diffusion channels for Ni to diffuse into solder that culminates in high growth rate of Ni3Sn4.The diffusion of Ni into solder furthermore results in the formation of Kirkendall voids at the interface of Ni(P)layer and SiCp/Al composites substrate.It is observed that solder reliability is degraded by the formation of Ni2SnP,P rich Ni layer and Kirkendall voids.The compact Ni3Sn4 IMC layer in Ni(5%P)solder joint prevents Ni element from diffusing into solder,resulting in a low growth rate of Ni3Sn4 layer.Meanwhile,the formation of Ni2SnP that significantly affects the reliability of solder joints is suppressed by the low P content Ni(5%P)layer.Thus,shear strength of Ni(5%P) solder joint is concluded to be higher than that of Ni(10%P)solder joint.Growth of Ni3Sn4 IMC layer and formation of crack are accounted to be the major sources of the failure of Ni(5%P)solder joint.展开更多
For aqueous interfacial reactions involving H+and OH-, the interfacial pH varies dynamically during the reaction process, which is a key factor determining the reaction performance. Herein, the kinetic relevance betwe...For aqueous interfacial reactions involving H+and OH-, the interfacial pH varies dynamically during the reaction process, which is a key factor determining the reaction performance. Herein, the kinetic relevance between the interfacial pH and reaction rate is deciphered owing to the success in establishing the transport equations of H+/OH- in unbuffered solutions, and is charted as a current(j)–pH diagram in the form of an electrochemical response. The as-described j–pH interplay is experimentally verified by the oxygen reduction and hydrogen evolution reactions. This diagram serves to form a panoramic graphic view of pH function working on the interfacial reactions in conjunction with the Pourbaix’s potential–pH diagram, and particularly enables a kinetic understanding of the transport effect of H+and OH-on the reaction rate and valuable instruction toward associated pH control and buffering manipulation.展开更多
The wettability and interfacial reactions of four kinds of PdNi-based brazing fillers on C-C composite were studied with the sessile drop method.The results showed that the wettability of these brazing fillers was imp...The wettability and interfacial reactions of four kinds of PdNi-based brazing fillers on C-C composite were studied with the sessile drop method.The results showed that the wettability of these brazing fillers was improved with the increase of Cr content. Cr distributed at the interface of brazing filler/C-C composite and the formation of Cr23C6 phase was speculated.In the interface between Ni-33Cr-24Pd-4Si brazing filler and C-C composite,element Cr reacted with C-C to form Cr-C reaction layer.Pd together with Si participated in the interfacial reactions and formed Pd2Si and Pd3Si phases.Furthermore,in this reaction zone,the residual brazing alloy became Ni-rich and Pd-depleted.展开更多
The wetting property of (Sn-9Zn)-2Cu (wt pct) on Ni substrate and the evolution of interracial microstructure in (Sn-9Zn)-2Cu/Ni joints during soldering as well as isothermal aging were studied. The wetting abil...The wetting property of (Sn-9Zn)-2Cu (wt pct) on Ni substrate and the evolution of interracial microstructure in (Sn-9Zn)-2Cu/Ni joints during soldering as well as isothermal aging were studied. The wetting ability of eutectic Sn-gZn solder on Ni substrate was markedly improved by adding 2 wt pct Cu into this solder alloy. Plate-like Cu5Zn8 intermetallic compounds (IMCs) were detected in (Sn-9Zn)-2Cu solder matrix. A continuous NisZn21 IMC layer was formed at (Sn-9Zn)-2Cu/Ni interface after soldering. This IMC layer kept its type and integrality even after aging at 170℃ for up to 1000 h. At the early aging stage (before 500 h), the IMC layer grew fast and its thickness followed a linear relationship with the square root of aging time. Thereafter, however, the thickness increased very slowly with longer aging time. When the joints were aged for 1000 h, a new IMC phase, (Cu,Ni)5Zn8, was found in the matrix near the interface. The formation of (Cu,Ni)5Zns phase can be attributed to the diffusion of Ni atoms into the solder matrix from the substrate.展开更多
The interfacial reaction between Ti-6Al-4V alloy and ZrO2 ceramic mold with zirconia sol binder was investigated by keeping the 12 g alloy melt in a vacuum induction furnace for 15 s.The microstructures,element distri...The interfacial reaction between Ti-6Al-4V alloy and ZrO2 ceramic mold with zirconia sol binder was investigated by keeping the 12 g alloy melt in a vacuum induction furnace for 15 s.The microstructures,element distribution and phase constitution of the interface were identified by optical microscopy(OM),scanning electron microscopy(SEM)equipped with energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The results show that the whole interface reaction layer can be divided into three regions:metal penetration layer,transition layer,and hardened layer according to the structure morphology,which has the characteristics of severe metal penetration,finer lamellar,and coarse oxygen-richαphase,respectively.The erosion of the alloy melt on the ceramic mold promotes the decomposition of zirconia,which leads to the increase of local Zr concentration,greatly increasing the activity coefficient of Ti,aggravating the occurrence of interfacial reaction.Thus,the interfacial reaction shows the characteristics of chain reaction.When the oxygen released by the dissolution of zirconia exceeds the local solid solubility,it precipitates in the form of bubbles,resulting in blowholes at the interface.The result also indicates that the zirconia mold with zirconia sol binder is not suitable for pouring heavy titanium alloy castings.展开更多
Diffusion couple experiments were performed to study the thermodynamic and kinetic mechanisms of interfacial reactions between the 316L stainless steel and the composite MnO-SiO_(2) oxide during isothermal heating at ...Diffusion couple experiments were performed to study the thermodynamic and kinetic mechanisms of interfacial reactions between the 316L stainless steel and the composite MnO-SiO_(2) oxide during isothermal heating at 1473 K(1200℃)for 1,3,5,and 10 h and at 1173,1273,1373,1473,and 1573 K(900,1000,1100,1200,and 1300℃)for 3 h.Compositional variations in the 316L stainless steel and the composite MnO-SiO_(2) oxide in the vicinity of the steel-oxide interface in each diffusion couple specimen were determined.Before and after isothermal heating,thermodynamic equilibria between the oxide and steel at the interface were estimated in accordance with the calculation of the Gibbs free energy change in the interfacial steel-oxide reactions.The diffusion coefficients of Mn,Cr,and Si in 316L stainless steel under different experimental conditions were quantitatively acquired.The results showed that solid-state interfacial reactions occurred between the Cr in the 316L stainless steel and composite MnO-SiO_(2) oxide during isothermal heating,which resulted in the depletion of Cr and accumulation of Si and Mn in the steel in the vicinity of the steel-oxide interface.The widths of the Crdepleted zone,Mn-accumulated zone and Si-accumulated zone all showed increasing trends with increasing isothermal heating temperature and time.The average values of the diffusion coefficients of Mn,Cr,and Si in the steel at 1473 K(1200℃)were 1.21×10^(^(-14))±2.96×10^(-15),1.69×10^(-14)±2.54×10^(-15),and 1.00×10^(-14)±1.96×10^(-15) m^(2)s^(-1),respectively,and they continued to increase with increasing isothermal heating temperature.展开更多
The interfacial reaction behavior of Al and Ti_(3)AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the a...The interfacial reaction behavior of Al and Ti_(3)AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_(3)AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_(3)AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_(3)AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_(3)AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.展开更多
The method to combine thermoelectric(TE)and magnetocaloric(MC)cooling techniques lies in developing a new material that simultaneously possesses a large TE and good MC cooling performance.In this work,using n-type Bi_...The method to combine thermoelectric(TE)and magnetocaloric(MC)cooling techniques lies in developing a new material that simultaneously possesses a large TE and good MC cooling performance.In this work,using n-type Bi_(2)Te_(2.7)Se_(0.3)(BTS)as the TE base material and Gd as the second-phase MC material,Gd/BTS composites were prepared by the spark plasma sintering method.In the composites,interfacial reaction between Gd and BTS was identified,resulting in the formation of Gd Te,which has a large impact on the electron concentration through the adjustment of defect concentration.The MC/TE composite containing 2.5 wt%Gd exhibited a ZT value of 0.6 at 300 K,essentially retaining the original TE performance,while all the composites largely maintained the excellent MC performance of Gd.This work provides a potential pathway to achieving high performance in MC/TE composites.展开更多
Thermo-electro-magnetic materials with simultaneously large magnetocaloric(MC)and thermoelectric(TE)effects are the core part for designing TE/MC all-solid-state cooling devices.Compositing MC phase with TE material i...Thermo-electro-magnetic materials with simultaneously large magnetocaloric(MC)and thermoelectric(TE)effects are the core part for designing TE/MC all-solid-state cooling devices.Compositing MC phase with TE material is an effective approach.However,the elemental diffusion and chemical reaction occurring at the two-phase interfaces could significantly impair the cooling performance.Herein,Gd/Bi_(0.5)Sb_(1.5)Te_(3)(Gd/BST)composites were prepared by a low-temperature high-pressure spark plasma sintering method with an aim to control the extent of interfacial reaction.The reaction of Gd with the diffusive Te and the formation of GdTe nanocrystals were identified at the Gd/BST interfaces by the atomic-resolution microscope.The formed Bi’_(Te)antisite defects and enhanced{000 l}preferential orientation in BST are responsible for the increased carrier concentration and mobility,which leads to optimized electrical properties.The heterogeneous interface phases,along with antisite defects,favor the phonon scattering enhancement and lattice thermal conductivity suppression.The optimized composite sintered at 693 K exhibited a maximum ZT of 1.27 at 300 K.Furthermore,the well-controlled interfacial reaction has a slight impact on the magnetic properties of Gd and a high magnetic entropy change is retained in the composites.This work provides a universal approach to fabricating thermo-electro-magnetic materials with excellent MC and TE properties.展开更多
The internal flow,free surface shape,and level fluctuation of liquid metal exposed to linear electromagnetic stirring were measured and analyzed against the background of an actual metallurgical equipment with linear ...The internal flow,free surface shape,and level fluctuation of liquid metal exposed to linear electromagnetic stirring were measured and analyzed against the background of an actual metallurgical equipment with linear electromagnetic stirring system.The desulphurization process,with or without imposition of linear electromagnetic stirring,was also studied experimentally.The changes in sulfur content of hot metal with respect to time were obtained,and the volumetric mass transfer coefficients corresponding to different stirring currents were determined.The results showed that linear electromagnetic stirring can effectively promote internal flow,effectively increase the level fluctuation,and significantly improve the kinetic condition of liquid metal.The internal flow and level fluctuation of liquid metal increase in line with the increase in electromagnetic stirring intensity.The desulphurization experiments show that linear electromagnetic stirring can significantly promote the desulphurization process of hot metal,and that the technology has wide application potential in promoting various slag-metal reactions.展开更多
Twin-roll casting has been recently revealed to be an effi cient technique to produce rejuvenated metallic glass(MG)strips.Due to the high melting point and high hardness,pure Mo is considered as a good roller materia...Twin-roll casting has been recently revealed to be an effi cient technique to produce rejuvenated metallic glass(MG)strips.Due to the high melting point and high hardness,pure Mo is considered as a good roller material as pure Cu.However,the wettability and interfacial reactions between MG melts and Cu or Mo remain largely unknown.In this work,a series of sessile droplet wetting experiments are designed to investigate the wettability and reactions between Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5)(Vit.1)or(Zr 0.401 Ti_(0.133)Cu_(0.118)Ni_(0.101)Be_(0.247))_(99)Nb_(1)(Nb1)MG melts and Cu/Mo substrates at temperatures of 1073,1123 and 1173 K.It is found that the wettability and interfacial reactions of the Vit.1 and Nb1 MG melts on the Cu substrates are very similar.The equilibrium contact angles are~30°at 1073 K and~25°-27°at 1123 K.The MG melts completely spread out on the Cu substrates at 1173 K.Cu substrates are slightly dissolved in the MG melts event at 1073 K,and a transitional reaction layer exists between the droplet and the Cu substrate.In comparison,the Vit.1 MG melt exhibits a much improved wettability on the Mo substrate.The equilibrium contact angle of the Vit.1/Mo is only 6°at 1073 K and 5°at 1123 K.No signifi cant diff usion of Mo into the droplet occurs even at 1173 K with a holding time of~30 min.The interfaces of the Vit.1/Mo samples are sharp,and no interfacial reaction layers form.These fi ndings indicate that pure Mo can be a good roller material for twin-roll casting at high temperatures,and the Mo-made rollers are expected of capability to produce MG strips with good quality.展开更多
Silicon(Si)has been studied as a promising alloying type anode for lithium-ion batteries due to its high specific capacity,low operating potential and abundant resources.Nevertheless,huge volume expansion during alloy...Silicon(Si)has been studied as a promising alloying type anode for lithium-ion batteries due to its high specific capacity,low operating potential and abundant resources.Nevertheless,huge volume expansion during alloying/dealloying processes and low electronic conductivity of Si anodes restrict their electrochemical performance.Thus,carbon(C)materials with special physical and chemical properties are applied in Si anodes to effectively solve these problems.This review focuses on current status in the exploration of Si/C anodes,including the lithiation mechanism and solid electrolyte interface formation,various carbon sources in Si/C anodes,such as traditional carbon sources(graphite,pitch,biomass),and novel carbon sources(MXene,graphene,MOFs-derived carbon,graphdiyne,etc.),as well as interfacial bonding modes of Si and C in the Si/C anodes.Finally,we summarize and prospect the selection of carbonaceous materials,structural design and interface control of Si/C anodes,and application of Si/C anodes in all-solid-state lithium-ion batteries and sodium-ion batteries et al.This review will help researchers in the design of novel Si/C anodes for rechargeable batteries.展开更多
All-solid-state Li metal batteries(ASSLBs)using inorganic solid electrolyte(SE)are considered promising alternatives to conventional Li-ion batteries,offering improved safety and boosted energy density.While significa...All-solid-state Li metal batteries(ASSLBs)using inorganic solid electrolyte(SE)are considered promising alternatives to conventional Li-ion batteries,offering improved safety and boosted energy density.While significant progress has been made on improving the ionic conductivity of SEs,the degradation and instability of Li metal/inorganic SE interfaces have become the critical challenges that limit the coulombic efficiency,power performance,and cycling stability of ASSLBs.Understanding the mechanisms of complex/dynamic interfacial phenomena is of great importance in addressing these issues.Herein,recent studies on identifying,understanding,and solving interfacial issues on anode side in ASSLBs are comprehensively reviewed.Typical issues at Li metal/SE interface include Li dendrite growth/propagation,SE cracking,physical contact loss,and electrochemical reactions,which lead to high interfacial resistance and cell failure.The causes of these issues relating to the chemical,physical,and mechanical properties of Li metal and SEs are systematically discussed.Furthermore,effective mitigating strategies are summarized and their effects on suppressing interfacial reactions,improving interfacial Li-ion transport,maintaining interfacial contact,and stabilizing Li plating/stripping are highlighted.The in-depth mechanistic understanding of interfacial issues and complete investigations on current solutions provide foundations and guidance for future research and development to realize practical application of high-performance ASSLB.展开更多
Active soldering of 5A06 Al alloy was performed at 300 ℃ by using Sn-1Ti and Sn-1Ti-0.3Ga active solders, respectively. Theeffects of soldering time on the microstructure and mechanical properties of the joints were ...Active soldering of 5A06 Al alloy was performed at 300 ℃ by using Sn-1Ti and Sn-1Ti-0.3Ga active solders, respectively. Theeffects of soldering time on the microstructure and mechanical properties of the joints were investigated. The results showed that the Sn-1Tisolder broke the oxide film on the surface of the Al substrate and induced intergranular diffusion in the Al substrate. When Ga was added tothe solder, severe dissolution pits appeared in the Al substrate due to the action of Sn-1Ti-0.3Ga solder, and many Al particles were flakedfrom the matrix into the solder seam. Under thermal stress and the Ti adsorption effect, the oxide film cracked. With increasing solderingtime, the shear strength of 5A06 Al alloy joints soldered with Sn-1Ti and Sn-1Ti-0.3Ga active solders increased. When soldered for 90 min,the joint soldered with Sn-1Ti-0.3Ga solder had a higher shear strength of 22.12 MPa when compared to Sn-1Ti solder.展开更多
Continuous SiC fiber reinforced copper matrix (SiC~/Cu) composites were prepared by fiber coating method, and Ti6A14V interlayer was introduced as an interfacial modification coating to improve the interfacial bondi...Continuous SiC fiber reinforced copper matrix (SiC~/Cu) composites were prepared by fiber coating method, and Ti6A14V interlayer was introduced as an interfacial modification coating to improve the interfacial bonding strength. The interfacial reaction characteristics were investigated by transmission electron microscopy (TEM). The results show that nearly all the titanium atoms reacted with the carbon coating of SiC fibers to form two layers of TiC. Also, a thin copper layer that is sandwiched between these two layers was detected. No Ti-Cu interfacial reaction product was observed. The formation process of the interfacial reaction along with its mechanism was discussed.展开更多
Comparative voltammetry and differential double-layer capacitance studies were performed to evaluate interfacial interactions between cnalcopyrite(CuFeS2) and n-isopropyl xanthate(X) in the presence of ammonium bi...Comparative voltammetry and differential double-layer capacitance studies were performed to evaluate interfacial interactions between cnalcopyrite(CuFeS2) and n-isopropyl xanthate(X) in the presence of ammonium bisulfite/39wt%SO2 and caustic starch at different pH values.Raman spectroscopy,Fourier transform infrared(FTIR) spectroscopy,contact angle measurements,and microflotation tests were used to establish the type and extent of xanthate adsorption as well as the species involved under different mineral surface conditions in this study.The results demonstrate that the species that favor a greater hydrophobicity of chalcopyrite are primarily CuX and S^0,whereas oxides and hydroxides of Cu and Fe as well as an excess of starch decrease the hydrophobicity.A conditioning of the mineral surface with ammonium bisulfite/39wt%SO2 at pH 6 promotes the activation of surface and enhances the xanthate adsorption.However,this effect is diminished at pH ≥ 8,when an excess of starch is added during the preconditioning step.展开更多
For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical...For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical reactors.To overcome this issue,various in-situ characterization methods have been recently developed to analyze the interactions between the composition,microstructure,and solid-liquid interface of high-temperature electrochemical electrodes and molten salts.In this review,recent progress of in-situ hightemperature characterization techniques is discussed to summarize the advances in understanding the processes in metallurgical engineering.In-situ high-temperature technologies and analytical methods mainly include synchrotron X-ray diffraction(s-XRD),laser scanning confocal microscopy,and X-ray computed microtomography(X-rayμ-CT),which are important platforms for analyzing the structure and morphology of the electrodes to reveal the complexity and variability of their interfaces.In addition,laser-induced breakdown spectroscopy,high-temperature Raman spectroscopy,and ultraviolet-visible absorption spectroscopy provide microscale characterizations of the composition and structure of molten salts.More importantly,the combination of X-rayμ-CT and s-XRD techniques enables the investigation of the chemical reaction mechanisms at the two-phase interface.Therefore,these in-situ methods are essential for analyzing the chemical/electrochemical kinetics of high-temperature reaction processes and establishing the theoretical principles for the efficient and stable operation of chemical/electrochemical metallurgical processes.展开更多
A high-zinc composite,12vol%SiC/Al-13.3 Zn-3.27 Mg-1.07Cu(wt%),with an ultra-high-strength of 781 MPa was success-fully fabricated through a powder metallurgy method,followed by an extrusion process.The effects of sol...A high-zinc composite,12vol%SiC/Al-13.3 Zn-3.27 Mg-1.07Cu(wt%),with an ultra-high-strength of 781 MPa was success-fully fabricated through a powder metallurgy method,followed by an extrusion process.The effects of solid-solution and aging heat treat-ments on the microstructure and mechanical properties of the composite were extensively investigated.Compared with a single-stage sol-id-solution treatment,a two-stage solid-solution treatment(470℃/1 h+480℃/1 h)exhibited a more effective solid-solution strengthen-ing owing to the higher degree of solid-solution and a more uniform microstructure.According to the aging hardness curves of the com-posite,the optimized aging parameter(100℃/22 h)was determined.Reducing the aging temperature and time resulted in finer and more uniform nanoscale precipitates but only yielded a marginal increase in tensile strength.The fractography analysis revealed that intergranu-lar cracking and interface debonding were the main fracture mechanisms in the ultra-high-strength SiC/Al-Zn-Mg-Cu composites.Weak regions,such as the SiC/Al interface containing numerous compounds and the precipitate-free zones at the high-angle grain boundaries,were identified as significant factors limiting the strength enhancement of the composite.Interfacial compounds,including MgO,MgZn2,and Cu5Zn8,reduced the interfacial bonding strength,leading to interfacial debonding.展开更多
基金Projects(51001041,51171054)supported by the National Natural Science Foundation of China
文摘Ti-1100 alloys were melted in a controlled atmospheric induction furnace equipped with a Ca O crucible. The microstructure, chemical composition, microhardness and metal-crucible interfacial reactions were systematically investigated. The results demonstrate that the primary solidification microstructure in the as-cast alloys was the typical Widmansttten structure. The interactions between crucible and molten alloys are attributed to slight chemical dissolution and weak physical erosion. According to the line scanning analysis, the interfacial layer(α-case) thicknesses of Ti-1100 samples in the bottom and side wall are about 18 and 17 μm, respectively, which are slightly lower than those presented from microhardness tests(25 and 20 μm). The formation of α-case was caused by interstitial oxygen atoms. The standard Gibbs energy of reaction Ca O(s)=Ca+O for Ti-1100 alloy was also determined. The equilibrium constant and the interaction parameter between calcium and oxygen were obtained as lg K=-3.14 and eCa O =-3.54.
基金Project(2014CB643405)supported by the National Basic Research Program of China
文摘The interfacial reactions of chalcopyrite in ammonia–ammonium chloride solution were investigated.The chalcopyrite surface was examined by scanning electron microscopy and X-ray photoelectron spectroscopy(XPS)techniques.It was found that interfacial passivation layers of chalcopyrite were formed from an iron oxide layer on top of a copper sulfide layer overlaying the bulk chalcopyrite,whereas CuFe1-xS2 or copper sulfides were formed via the preferential dissolution of Fe.The copper sulfide layer formed a new passivation layer,whereas the iron oxide layer peeled off spontaneously and partially from the chalcopyrite surface.The state of the copper sulfide layer was discussed after being deduced from the appearance of S2-,S22-,Sn2-,S0 and SO42-.A mechanism for the oxidation and passivation of chalcopyrite under different pH values and redox potentials was proposed.Accordingly,a model of the interfacial reaction on the chalcopyrite surface was constructed using a three-step reaction pathway,which demonstrated the formation and transformation of passivation layers under the present experimental conditions.
基金Projects(50274014, 50774005) supported by the National Natural Science Foundation of ChinaProject(2006CB605207) supported by the National Basic Research Program of China+1 种基金Project(2006AA03Z557) supported by the National High-tech Research and Development of ChinaProject(I2P407) supported by MOE Program for Changjiang Scholars
文摘A novel Sn-2.5Ag-2.0Ni alloy was used for soldering SiCp/Al composites substrate deposited with electroless Ni(5%P) (mass fraction)and Ni(10%P)(mass fraction)layers.It is observed that variation of P contents in the electroless Ni(P)layer results in different types of microstructures of SnAgNi/Ni(P)solder joint.The morphology of Ni3Sn4 intermetallic compounds(IMCs)formed between the solder and Ni(10%P)layer is observed to be needle-like and this shape provides high speed diffusion channels for Ni to diffuse into solder that culminates in high growth rate of Ni3Sn4.The diffusion of Ni into solder furthermore results in the formation of Kirkendall voids at the interface of Ni(P)layer and SiCp/Al composites substrate.It is observed that solder reliability is degraded by the formation of Ni2SnP,P rich Ni layer and Kirkendall voids.The compact Ni3Sn4 IMC layer in Ni(5%P)solder joint prevents Ni element from diffusing into solder,resulting in a low growth rate of Ni3Sn4 layer.Meanwhile,the formation of Ni2SnP that significantly affects the reliability of solder joints is suppressed by the low P content Ni(5%P)layer.Thus,shear strength of Ni(5%P) solder joint is concluded to be higher than that of Ni(10%P)solder joint.Growth of Ni3Sn4 IMC layer and formation of crack are accounted to be the major sources of the failure of Ni(5%P)solder joint.
基金the National Natural Science Foundation of China(51525805,51727812,51808526)。
文摘For aqueous interfacial reactions involving H+and OH-, the interfacial pH varies dynamically during the reaction process, which is a key factor determining the reaction performance. Herein, the kinetic relevance between the interfacial pH and reaction rate is deciphered owing to the success in establishing the transport equations of H+/OH- in unbuffered solutions, and is charted as a current(j)–pH diagram in the form of an electrochemical response. The as-described j–pH interplay is experimentally verified by the oxygen reduction and hydrogen evolution reactions. This diagram serves to form a panoramic graphic view of pH function working on the interfacial reactions in conjunction with the Pourbaix’s potential–pH diagram, and particularly enables a kinetic understanding of the transport effect of H+and OH-on the reaction rate and valuable instruction toward associated pH control and buffering manipulation.
基金Projects(59905022,50475160)supported by the National Natural Science Foundation of China
文摘The wettability and interfacial reactions of four kinds of PdNi-based brazing fillers on C-C composite were studied with the sessile drop method.The results showed that the wettability of these brazing fillers was improved with the increase of Cr content. Cr distributed at the interface of brazing filler/C-C composite and the formation of Cr23C6 phase was speculated.In the interface between Ni-33Cr-24Pd-4Si brazing filler and C-C composite,element Cr reacted with C-C to form Cr-C reaction layer.Pd together with Si participated in the interfacial reactions and formed Pd2Si and Pd3Si phases.Furthermore,in this reaction zone,the residual brazing alloy became Ni-rich and Pd-depleted.
基金supported by the National Key Project of ScientificTechnical Supporting Programs during the 11th Five-year Plan (No. 2006BAE03B02-2)NSFC Key Program (No. U0734006)
文摘The wetting property of (Sn-9Zn)-2Cu (wt pct) on Ni substrate and the evolution of interracial microstructure in (Sn-9Zn)-2Cu/Ni joints during soldering as well as isothermal aging were studied. The wetting ability of eutectic Sn-gZn solder on Ni substrate was markedly improved by adding 2 wt pct Cu into this solder alloy. Plate-like Cu5Zn8 intermetallic compounds (IMCs) were detected in (Sn-9Zn)-2Cu solder matrix. A continuous NisZn21 IMC layer was formed at (Sn-9Zn)-2Cu/Ni interface after soldering. This IMC layer kept its type and integrality even after aging at 170℃ for up to 1000 h. At the early aging stage (before 500 h), the IMC layer grew fast and its thickness followed a linear relationship with the square root of aging time. Thereafter, however, the thickness increased very slowly with longer aging time. When the joints were aged for 1000 h, a new IMC phase, (Cu,Ni)5Zn8, was found in the matrix near the interface. The formation of (Cu,Ni)5Zns phase can be attributed to the diffusion of Ni atoms into the solder matrix from the substrate.
基金the National Natural Science Foundation of China(Grant No.51871184)the Natural Science Foundation of Shandong Province(Grant No.ZR2017MEE038)China Postdoctoral Science Foundation(No.2018M642683)。
文摘The interfacial reaction between Ti-6Al-4V alloy and ZrO2 ceramic mold with zirconia sol binder was investigated by keeping the 12 g alloy melt in a vacuum induction furnace for 15 s.The microstructures,element distribution and phase constitution of the interface were identified by optical microscopy(OM),scanning electron microscopy(SEM)equipped with energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The results show that the whole interface reaction layer can be divided into three regions:metal penetration layer,transition layer,and hardened layer according to the structure morphology,which has the characteristics of severe metal penetration,finer lamellar,and coarse oxygen-richαphase,respectively.The erosion of the alloy melt on the ceramic mold promotes the decomposition of zirconia,which leads to the increase of local Zr concentration,greatly increasing the activity coefficient of Ti,aggravating the occurrence of interfacial reaction.Thus,the interfacial reaction shows the characteristics of chain reaction.When the oxygen released by the dissolution of zirconia exceeds the local solid solubility,it precipitates in the form of bubbles,resulting in blowholes at the interface.The result also indicates that the zirconia mold with zirconia sol binder is not suitable for pouring heavy titanium alloy castings.
基金supported by the National Natural Science Foundation of China(Grant Nos.U21A20113 and 52074198)also supported by the Project for Technology Talents ServinggEnterprises of Hubei Province(Grant No.KJRQ2023000073).
文摘Diffusion couple experiments were performed to study the thermodynamic and kinetic mechanisms of interfacial reactions between the 316L stainless steel and the composite MnO-SiO_(2) oxide during isothermal heating at 1473 K(1200℃)for 1,3,5,and 10 h and at 1173,1273,1373,1473,and 1573 K(900,1000,1100,1200,and 1300℃)for 3 h.Compositional variations in the 316L stainless steel and the composite MnO-SiO_(2) oxide in the vicinity of the steel-oxide interface in each diffusion couple specimen were determined.Before and after isothermal heating,thermodynamic equilibria between the oxide and steel at the interface were estimated in accordance with the calculation of the Gibbs free energy change in the interfacial steel-oxide reactions.The diffusion coefficients of Mn,Cr,and Si in 316L stainless steel under different experimental conditions were quantitatively acquired.The results showed that solid-state interfacial reactions occurred between the Cr in the 316L stainless steel and composite MnO-SiO_(2) oxide during isothermal heating,which resulted in the depletion of Cr and accumulation of Si and Mn in the steel in the vicinity of the steel-oxide interface.The widths of the Crdepleted zone,Mn-accumulated zone and Si-accumulated zone all showed increasing trends with increasing isothermal heating temperature and time.The average values of the diffusion coefficients of Mn,Cr,and Si in the steel at 1473 K(1200℃)were 1.21×10^(^(-14))±2.96×10^(-15),1.69×10^(-14)±2.54×10^(-15),and 1.00×10^(-14)±1.96×10^(-15) m^(2)s^(-1),respectively,and they continued to increase with increasing isothermal heating temperature.
基金financially supported by the National Natural Science Foundation of China(No.51965040)Science and Technology Project of Jiangxi Provincial Department of Transportation,China(No.2022H0048)。
文摘The interfacial reaction behavior of Al and Ti_(3)AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_(3)AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_(3)AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_(3)AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_(3)AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2019YFA0704900 and 2023YFB3809400)the National Natural Science Foundation of China (Grant Nos.52130203 and 52172232)the Basic and Applied Basic Research Foundation of Guangdong Province (Grant No.2022B1515120005)。
文摘The method to combine thermoelectric(TE)and magnetocaloric(MC)cooling techniques lies in developing a new material that simultaneously possesses a large TE and good MC cooling performance.In this work,using n-type Bi_(2)Te_(2.7)Se_(0.3)(BTS)as the TE base material and Gd as the second-phase MC material,Gd/BTS composites were prepared by the spark plasma sintering method.In the composites,interfacial reaction between Gd and BTS was identified,resulting in the formation of Gd Te,which has a large impact on the electron concentration through the adjustment of defect concentration.The MC/TE composite containing 2.5 wt%Gd exhibited a ZT value of 0.6 at 300 K,essentially retaining the original TE performance,while all the composites largely maintained the excellent MC performance of Gd.This work provides a potential pathway to achieving high performance in MC/TE composites.
基金supported by the National Key Research and Development Program of China(2019YFA0704903)National Natural Science Foundation of China(11834012,52130203,92163122,91963207,91963122)
文摘Thermo-electro-magnetic materials with simultaneously large magnetocaloric(MC)and thermoelectric(TE)effects are the core part for designing TE/MC all-solid-state cooling devices.Compositing MC phase with TE material is an effective approach.However,the elemental diffusion and chemical reaction occurring at the two-phase interfaces could significantly impair the cooling performance.Herein,Gd/Bi_(0.5)Sb_(1.5)Te_(3)(Gd/BST)composites were prepared by a low-temperature high-pressure spark plasma sintering method with an aim to control the extent of interfacial reaction.The reaction of Gd with the diffusive Te and the formation of GdTe nanocrystals were identified at the Gd/BST interfaces by the atomic-resolution microscope.The formed Bi’_(Te)antisite defects and enhanced{000 l}preferential orientation in BST are responsible for the increased carrier concentration and mobility,which leads to optimized electrical properties.The heterogeneous interface phases,along with antisite defects,favor the phonon scattering enhancement and lattice thermal conductivity suppression.The optimized composite sintered at 693 K exhibited a maximum ZT of 1.27 at 300 K.Furthermore,the well-controlled interfacial reaction has a slight impact on the magnetic properties of Gd and a high magnetic entropy change is retained in the composites.This work provides a universal approach to fabricating thermo-electro-magnetic materials with excellent MC and TE properties.
基金Item Sponsored by National Natural Science Foundation of China(50302004,50674021)
文摘The internal flow,free surface shape,and level fluctuation of liquid metal exposed to linear electromagnetic stirring were measured and analyzed against the background of an actual metallurgical equipment with linear electromagnetic stirring system.The desulphurization process,with or without imposition of linear electromagnetic stirring,was also studied experimentally.The changes in sulfur content of hot metal with respect to time were obtained,and the volumetric mass transfer coefficients corresponding to different stirring currents were determined.The results showed that linear electromagnetic stirring can effectively promote internal flow,effectively increase the level fluctuation,and significantly improve the kinetic condition of liquid metal.The internal flow and level fluctuation of liquid metal increase in line with the increase in electromagnetic stirring intensity.The desulphurization experiments show that linear electromagnetic stirring can significantly promote the desulphurization process of hot metal,and that the technology has wide application potential in promoting various slag-metal reactions.
基金financially supported by the National Natural Science Foundation of China(Nos.51790484 and 52171164)the National Key Research and Development Program of China(No.2018YFB0703402)+3 种基金the Science and Technology on Transient Impact Laboratory(6142606192208)Liaoning Revitalization Talents Program(Nos.XLYC1802078 and XLYC1807062)the Chinese Academy of Sciences(No.ZDBS-LY-JSC023)the Youth Innovation Promotion Association CAS(No.2021188)。
文摘Twin-roll casting has been recently revealed to be an effi cient technique to produce rejuvenated metallic glass(MG)strips.Due to the high melting point and high hardness,pure Mo is considered as a good roller material as pure Cu.However,the wettability and interfacial reactions between MG melts and Cu or Mo remain largely unknown.In this work,a series of sessile droplet wetting experiments are designed to investigate the wettability and reactions between Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5)(Vit.1)or(Zr 0.401 Ti_(0.133)Cu_(0.118)Ni_(0.101)Be_(0.247))_(99)Nb_(1)(Nb1)MG melts and Cu/Mo substrates at temperatures of 1073,1123 and 1173 K.It is found that the wettability and interfacial reactions of the Vit.1 and Nb1 MG melts on the Cu substrates are very similar.The equilibrium contact angles are~30°at 1073 K and~25°-27°at 1123 K.The MG melts completely spread out on the Cu substrates at 1173 K.Cu substrates are slightly dissolved in the MG melts event at 1073 K,and a transitional reaction layer exists between the droplet and the Cu substrate.In comparison,the Vit.1 MG melt exhibits a much improved wettability on the Mo substrate.The equilibrium contact angle of the Vit.1/Mo is only 6°at 1073 K and 5°at 1123 K.No signifi cant diff usion of Mo into the droplet occurs even at 1173 K with a holding time of~30 min.The interfaces of the Vit.1/Mo samples are sharp,and no interfacial reaction layers form.These fi ndings indicate that pure Mo can be a good roller material for twin-roll casting at high temperatures,and the Mo-made rollers are expected of capability to produce MG strips with good quality.
基金supported by the National Natural Science Foundation of China(5197219862133007)the Taishan Scholars Program of Shandong Province(tsqn201812002,ts20190908)+1 种基金the Shenzhen Fundamental Research Program(JCYJ20190807093405503)The Natural Science Foundation of Shandong Province(No.ZR2020JQ19)。
文摘Silicon(Si)has been studied as a promising alloying type anode for lithium-ion batteries due to its high specific capacity,low operating potential and abundant resources.Nevertheless,huge volume expansion during alloying/dealloying processes and low electronic conductivity of Si anodes restrict their electrochemical performance.Thus,carbon(C)materials with special physical and chemical properties are applied in Si anodes to effectively solve these problems.This review focuses on current status in the exploration of Si/C anodes,including the lithiation mechanism and solid electrolyte interface formation,various carbon sources in Si/C anodes,such as traditional carbon sources(graphite,pitch,biomass),and novel carbon sources(MXene,graphene,MOFs-derived carbon,graphdiyne,etc.),as well as interfacial bonding modes of Si and C in the Si/C anodes.Finally,we summarize and prospect the selection of carbonaceous materials,structural design and interface control of Si/C anodes,and application of Si/C anodes in all-solid-state lithium-ion batteries and sodium-ion batteries et al.This review will help researchers in the design of novel Si/C anodes for rechargeable batteries.
基金supported by the Outstanding Youth Fund Project by the Department of Science and Technology of Jiangsu Province(Grant No.BK20220045)the Key R&D Project funded by the Department of Science and Technology of Jiangsu Province(Grant No.BE2020003)+6 种基金Key Program-Automobile Joint Fund of National Natural Science Foundation of China(Grant No.U1964205)General Program of National Natural Science Foundation of China(Grant No.51972334)General Program of National Natural Science Foundation of Beijing(Grant No.2202058)Cultivation project of leading innovative experts in Changzhou City(CQ20210003)National Overseas High-level Expert recruitment Program(Grant No.E1JF021E11)Talent Program of Chinese Academy of Sciences,“Scientist Studio Program Funding”from Yangtze River Delta Physics Research Center,and Tianmu Lake Institute of Advanced Energy Storage Technologies(Grant No.TIESSS0001)Science and Technology Research Institute of China Three Gorges Corporation(Grant No.202103402)
文摘All-solid-state Li metal batteries(ASSLBs)using inorganic solid electrolyte(SE)are considered promising alternatives to conventional Li-ion batteries,offering improved safety and boosted energy density.While significant progress has been made on improving the ionic conductivity of SEs,the degradation and instability of Li metal/inorganic SE interfaces have become the critical challenges that limit the coulombic efficiency,power performance,and cycling stability of ASSLBs.Understanding the mechanisms of complex/dynamic interfacial phenomena is of great importance in addressing these issues.Herein,recent studies on identifying,understanding,and solving interfacial issues on anode side in ASSLBs are comprehensively reviewed.Typical issues at Li metal/SE interface include Li dendrite growth/propagation,SE cracking,physical contact loss,and electrochemical reactions,which lead to high interfacial resistance and cell failure.The causes of these issues relating to the chemical,physical,and mechanical properties of Li metal and SEs are systematically discussed.Furthermore,effective mitigating strategies are summarized and their effects on suppressing interfacial reactions,improving interfacial Li-ion transport,maintaining interfacial contact,and stabilizing Li plating/stripping are highlighted.The in-depth mechanistic understanding of interfacial issues and complete investigations on current solutions provide foundations and guidance for future research and development to realize practical application of high-performance ASSLB.
基金the National Natural Science Foundation of China(No.52171045).
文摘Active soldering of 5A06 Al alloy was performed at 300 ℃ by using Sn-1Ti and Sn-1Ti-0.3Ga active solders, respectively. Theeffects of soldering time on the microstructure and mechanical properties of the joints were investigated. The results showed that the Sn-1Tisolder broke the oxide film on the surface of the Al substrate and induced intergranular diffusion in the Al substrate. When Ga was added tothe solder, severe dissolution pits appeared in the Al substrate due to the action of Sn-1Ti-0.3Ga solder, and many Al particles were flakedfrom the matrix into the solder seam. Under thermal stress and the Ti adsorption effect, the oxide film cracked. With increasing solderingtime, the shear strength of 5A06 Al alloy joints soldered with Sn-1Ti and Sn-1Ti-0.3Ga active solders increased. When soldered for 90 min,the joint soldered with Sn-1Ti-0.3Ga solder had a higher shear strength of 22.12 MPa when compared to Sn-1Ti solder.
基金supported by authors thank the Postdoctoral Science Foundation of China (No. 20090451393)the Aviation Science Foundation of China (No. 2009ZF53062)
文摘Continuous SiC fiber reinforced copper matrix (SiC~/Cu) composites were prepared by fiber coating method, and Ti6A14V interlayer was introduced as an interfacial modification coating to improve the interfacial bonding strength. The interfacial reaction characteristics were investigated by transmission electron microscopy (TEM). The results show that nearly all the titanium atoms reacted with the carbon coating of SiC fibers to form two layers of TiC. Also, a thin copper layer that is sandwiched between these two layers was detected. No Ti-Cu interfacial reaction product was observed. The formation process of the interfacial reaction along with its mechanism was discussed.
基金supported by Universidad Autónoma de San Luis Potosí(No.PROMEP/UASLP/12/CA15)
文摘Comparative voltammetry and differential double-layer capacitance studies were performed to evaluate interfacial interactions between cnalcopyrite(CuFeS2) and n-isopropyl xanthate(X) in the presence of ammonium bisulfite/39wt%SO2 and caustic starch at different pH values.Raman spectroscopy,Fourier transform infrared(FTIR) spectroscopy,contact angle measurements,and microflotation tests were used to establish the type and extent of xanthate adsorption as well as the species involved under different mineral surface conditions in this study.The results demonstrate that the species that favor a greater hydrophobicity of chalcopyrite are primarily CuX and S^0,whereas oxides and hydroxides of Cu and Fe as well as an excess of starch decrease the hydrophobicity.A conditioning of the mineral surface with ammonium bisulfite/39wt%SO2 at pH 6 promotes the activation of surface and enhances the xanthate adsorption.However,this effect is diminished at pH ≥ 8,when an excess of starch is added during the preconditioning step.
基金financially supported by the National Key R&D Program of China(No.2022YFC2906100).
文摘For the rational manipulation of the production quality of high-temperature metallurgical engineering,there are many challenges in understanding the processes involved because of the black box chemical/electrochemical reactors.To overcome this issue,various in-situ characterization methods have been recently developed to analyze the interactions between the composition,microstructure,and solid-liquid interface of high-temperature electrochemical electrodes and molten salts.In this review,recent progress of in-situ hightemperature characterization techniques is discussed to summarize the advances in understanding the processes in metallurgical engineering.In-situ high-temperature technologies and analytical methods mainly include synchrotron X-ray diffraction(s-XRD),laser scanning confocal microscopy,and X-ray computed microtomography(X-rayμ-CT),which are important platforms for analyzing the structure and morphology of the electrodes to reveal the complexity and variability of their interfaces.In addition,laser-induced breakdown spectroscopy,high-temperature Raman spectroscopy,and ultraviolet-visible absorption spectroscopy provide microscale characterizations of the composition and structure of molten salts.More importantly,the combination of X-rayμ-CT and s-XRD techniques enables the investigation of the chemical reaction mechanisms at the two-phase interface.Therefore,these in-situ methods are essential for analyzing the chemical/electrochemical kinetics of high-temperature reaction processes and establishing the theoretical principles for the efficient and stable operation of chemical/electrochemical metallurgical processes.
基金supported by the National Key Research and Development Program of China(No.2022YFB3707405)the Guangdong Basic and Applied Basic Research Foundation,China(No.2021A1515110525)+1 种基金the National Natural Science Foundation of China(Nos.U22A20114 and 52301200)the Liaoning Revitalization Talents Program,China(No.XLYC2007009)。
文摘A high-zinc composite,12vol%SiC/Al-13.3 Zn-3.27 Mg-1.07Cu(wt%),with an ultra-high-strength of 781 MPa was success-fully fabricated through a powder metallurgy method,followed by an extrusion process.The effects of solid-solution and aging heat treat-ments on the microstructure and mechanical properties of the composite were extensively investigated.Compared with a single-stage sol-id-solution treatment,a two-stage solid-solution treatment(470℃/1 h+480℃/1 h)exhibited a more effective solid-solution strengthen-ing owing to the higher degree of solid-solution and a more uniform microstructure.According to the aging hardness curves of the com-posite,the optimized aging parameter(100℃/22 h)was determined.Reducing the aging temperature and time resulted in finer and more uniform nanoscale precipitates but only yielded a marginal increase in tensile strength.The fractography analysis revealed that intergranu-lar cracking and interface debonding were the main fracture mechanisms in the ultra-high-strength SiC/Al-Zn-Mg-Cu composites.Weak regions,such as the SiC/Al interface containing numerous compounds and the precipitate-free zones at the high-angle grain boundaries,were identified as significant factors limiting the strength enhancement of the composite.Interfacial compounds,including MgO,MgZn2,and Cu5Zn8,reduced the interfacial bonding strength,leading to interfacial debonding.