期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
How to enhance the ability of mesenchymal stem cells to alleviate intervertebral disc degeneration
1
作者 Qing-Xiang Zhang Min Cui 《World Journal of Stem Cells》 SCIE 2023年第11期989-998,共10页
Intervertebral disc(ID)degeneration(IDD)is one of the main causes of chronic low back pain,and degenerative lesions are usually caused by an imbalance between catabolic and anabolic processes in the ID.The environment... Intervertebral disc(ID)degeneration(IDD)is one of the main causes of chronic low back pain,and degenerative lesions are usually caused by an imbalance between catabolic and anabolic processes in the ID.The environment in which the ID is located is harsh,with almost no vascular distribution within the disc,and the nutrient supply relies mainly on the diffusion of oxygen and nutrients from the blood vessels located under the endplate.The stability of its internal environment also plays an important role in preventing IDD.The main feature of disc degeneration is a decrease in the number of cells.Mesenchymal stem cells have been used in the treatment of disc lesions due to their ability to differentiate into nucleus pulposus cells in a nonspecific anti-inflammatory manner.The main purpose is to promote their regeneration.The current aim of stem cell therapy is to replace the aged and metamorphosed cells in the ID and to increase the content of the extracellular matrix.The treatment of disc degeneration with stem cells has achieved good efficacy,and the current challenge is how to improve this efficacy.Here,we reviewed current treatments for disc degeneration and summarize studies on stem cell vesicles,enhancement of therapeutic effects when stem cells are mixed with related substances,and improvements in the efficacy of stem cell therapy by adjuvants under adverse conditions.We reviewed the new approaches and ideas for stem cell treatment of disc degeneration in order to contribute to the development of new therapeutic approaches to meet current challenges. 展开更多
关键词 Mesenchymal stem cells intervertebral disc degeneration Extracellular vesicles Nucleus pulposus cells Tissue regeneration
下载PDF
Karacoline,identified by network pharmacology, reduces degradation of the extracellular matrix in intervertebral disc degeneration via the NF-κB signaling pathway 被引量:3
2
作者 Xiaoli Zhou Yingying Hong Yulin Zhan 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2020年第1期13-22,共10页
Karacoline is a compound found in the plant Aconitum kusnezoffii Reichb.Although Aconitum kusnezoffii Reichb is widely used for the treatment of pain,very few studies have been carried out on the use of karacoline due... Karacoline is a compound found in the plant Aconitum kusnezoffii Reichb.Although Aconitum kusnezoffii Reichb is widely used for the treatment of pain,very few studies have been carried out on the use of karacoline due to its potential toxicity.In this study,we selected key matrix metalloproteinases(MMPs),collagen II,and aggrecan as targets due to their association with intervertebral disc degeneration(IDD).Using these targets,we then used network pharmacology to predict a series of molecules that might exert therapeutic effects on IDD.Of these molecules,karacoline was predicted to have the best effect.Tumor necrosis factor(TNF)-a is known to promote the degeneration of the extracellular matrix in IDD.We therefore applied different concentrations of karacoline(0,1.25,or 12.88 mM)along with 100 ng/mL TNF-a to rat nucleus pulposus cells and found that karacoline reduced the expression of MMP-14 in IDD by inhibiting the nuclear factor(NF)-κB pathway,while collagen II and aggrecan expression was increased.This suggested that extracellular matrix degradation was inhibited by karacoline(P<0.05).Our data therefore reveal a new clinical application of karacoline and provide support for the use of network pharmacology in predicting novel drugs. 展开更多
关键词 Karacoline Network pharmacology intervertebral disc degeneration Extracellular matrix Matrix metalloproteinases
下载PDF
Exosomes derived from stem cells as an emerging therapeutic strategy for intervertebral disc degeneration 被引量:3
3
作者 Zhi-Lei Hu Hai-Yin Li +6 位作者 Xian Chang Yue-Yang Li Chen-Hao Liu Xiao-Xin Gao Yu Zhai Yu-Xuan Chen Chang-Qing Li 《World Journal of Stem Cells》 SCIE CAS 2020年第8期803-813,共11页
Intervertebral disc(IVD)degenerative diseases are a common problem in the world,and they cause substantial social and economic burdens for people.The current methods for treating IVD degenerative diseases mainly inclu... Intervertebral disc(IVD)degenerative diseases are a common problem in the world,and they cause substantial social and economic burdens for people.The current methods for treating IVD degenerative diseases mainly include surgery and conservative treatment,which cannot fundamentally restore the normal structure of the disc.With continuous research on the mechanism of degeneration and the development of regenerative medicine,rapid progress has been made in the field of regenerative medicine regarding the use of stem cell-derived exosomes,which are active biological substances used in intercellular communication,because they show a strong effect in promoting tissue regeneration.The study of exosomes in the field of IVD degeneration has just begun,and many surprising achievements have been made.This paper mainly reviews the biological characteristics of exosomes and highlights the current status of exosomes in the field of IVD degeneration,as well as future developments regarding exosomes. 展开更多
关键词 EXOSOMES intervertebral disc degeneration Stem cells MICRORNA Regenerative medicine Biological characteristic
下载PDF
Analysis of Gene Expression Pattern of Lumbar Intervertebral Disc Degeneration in Human 被引量:4
4
作者 HU Ming MA Yuan-zheng FENG Hui-cheng CHEN Xing CHAI Xiao-jun PENG Wei LI Hong-wei 《中国康复理论与实践》 CSCD 2006年第5期420-422,共3页
ObjectiveTo investigate the gene expression changes in normal and degeneration lumbar intervertebral disc in humans, providing information for clinical. MethodsThe PCR products of 4096 human genes were spotted onto a ... ObjectiveTo investigate the gene expression changes in normal and degeneration lumbar intervertebral disc in humans, providing information for clinical. MethodsThe PCR products of 4096 human genes were spotted onto a kind of chemical-material-coated-glass slides. The total RNAs were isolated from the tissues. Both the mRNAs from the degeneration and normal lumbar intervertebral disc in humans were reversely transcribed to the cDNAs, which used as the hybridization probes with the incorporations of fluorescent dUTP. The mixed probes were then hybridized to the cDNA microarray. After high-stringent washing, the cDNA microarray was scanned for the fluorescent signals and analyzed with computer image analysis. ResultsAmong the 4096 targets, there were 706 genes whose expression levels differed between the degeneration and normal lumbar intervertebral disc in all cases, comprising 298 up-regulated and 358 down-regulated ones. ConclusionDNA microarray technology is an effective technique in screening for differently expressed genes between the degeneration and normal lumbar intervertebral disc. Cell apoptosis plays an important role in the process of lumbar intervertebral disc degeneration. 展开更多
关键词 intervertebral disc degeneration DNA microarray gene expression pattern
下载PDF
Transcription regulators differentiate mesenchymal stem cells into chondroprogenitors,and their in vivo implantation regenerated the intervertebral disc degeneration 被引量:2
5
作者 Shumaila Khalid Sobia Ekram +2 位作者 Asmat Salim G.Rasul Chaudhry Irfan Khan 《World Journal of Stem Cells》 SCIE 2022年第2期163-182,共20页
BACKGROUND Intervertebral disc degeneration(IVDD)is the leading cause of lower back pain.Disc degeneration is characterized by reduced cellularity and decreased production of extracellular matrix(ECM).Mesenchymal stem... BACKGROUND Intervertebral disc degeneration(IVDD)is the leading cause of lower back pain.Disc degeneration is characterized by reduced cellularity and decreased production of extracellular matrix(ECM).Mesenchymal stem cells(MSCs)have been envisioned as a promising treatment for degenerative illnesses.Cell-based therapy using ECM-producing chondrogenic derivatives of MSCs has the potential to restore the functionality of the intervertebral disc(IVD).AIM To investigate the potential of chondrogenic transcription factors to promote differentiation of human umbilical cord MSCs into chondrocytes,and to assess their therapeutic potential in IVD regeneration.METHODS MSCs were isolated and characterized morphologically and immunologically by the expression of specific markers.MSCs were then transfected with Sox-9 and Six-1 transcription factors to direct differentiation and were assessed for chondrogenic lineage based on the expression of specific markers.These differentiated MSCs were implanted in the rat model of IVDD.The regenerative potential of transplanted cells was investigated using histochemical and molecular analyses of IVDs.RESULTS Isolated cells showed fibroblast-like morphology and expressed CD105,CD90,CD73,CD29,and Vimentin but not CD45 antigens.Overexpression of Sox-9 and Six-1 greatly enhanced the gene expression of transforming growth factor beta-1 gene,BMP,Sox-9,Six-1,and Aggrecan,and protein expression of Sox-9 and Six-1.The implanted cells integrated,survived,and homed in the degenerated intervertebral disc.Histological grading showed that the transfected MSCs regenerated the IVD and restored normal architecture.CONCLUSION Genetically modified MSCs accelerate cartilage regeneration,providing a unique opportunity and impetus for stem cell-based therapeutic approach for degenerative disc diseases. 展开更多
关键词 intervertebral disc degeneration Human umbilical cord Transcription factors Mesenchymal stem cells Gene expression REGENERATION
下载PDF
Cervical intervertebral disc degeneration and dizziness 被引量:2
6
作者 Tang-Hua Liu Yan-Qing Liu Bao-Gan Peng 《World Journal of Clinical Cases》 SCIE 2021年第9期2146-2152,共7页
Clinical studies have found that patients withcervical degenerative disease are usually accompanied by dizziness.Anterior cervical surgery can eliminate not only chronic neck pain,cervical radiculopathy or myelopathy,... Clinical studies have found that patients withcervical degenerative disease are usually accompanied by dizziness.Anterior cervical surgery can eliminate not only chronic neck pain,cervical radiculopathy or myelopathy,but also dizziness.Immunohistochemical studies show that a large number of mechanoreceptors,especially Ruffini corpuscles,are present in degenerated cervical discs.The available evidence suggests a key role of Ruffini corpuscles in the pathogenesis of dizziness caused by cervical degenerative disease(i.e.cervical discogenic dizziness).Disc degeneration is characterized by an elevation of inflammatory cytokines,which stimulates the mechanoreceptors in degenerated discs and results in peripheral sensitization.Abnormal cervical proprioceptive inputs from the mechanoreceptors are transmitted to the central nervous system,resulting in sensory mismatches with vestibular and visual information and leads to dizziness.In addition,neck pain caused by cervical disc degeneration can play a key role in cervical discogenic dizziness by increasing the sensitivity of muscle spindles.Like cervical discogenic pain,the diagnosis of cervical discogenic dizziness can be challenging and can be made only after other potential causes of dizziness have been ruled out.Conservative treatment is effective for the majority of patients.Existing basic and clinical studies have shown that cervical intervertebral disc degeneration can lead to dizziness. 展开更多
关键词 Cervical intervertebral disc degeneration Cervicogenic dizziness Cervical discogenic dizziness Cervical spondylosis Neck pain MECHANORECEPTORS
下载PDF
Crosstalk between Autophagy and Apoptosis in Intervertebral Disc Degeneration 被引量:1
7
作者 Bruno Saciloto Natália Fontana Nicoletti +1 位作者 Manuela Peletti-Figueiró Asdrubal Falavigna 《Journal of Biosciences and Medicines》 2021年第12期15-29,共15页
<strong>Objective:</strong> To describe the relationship between autophagy and apoptosis and the possible signaling pathways involved in degenerative lumbar intervertebral disc. <strong>Summary of Ba... <strong>Objective:</strong> To describe the relationship between autophagy and apoptosis and the possible signaling pathways involved in degenerative lumbar intervertebral disc. <strong>Summary of Background Data:</strong> Autophagy and apoptosis are regulatory cellular mechanisms that determine many pathologies, including degenerative intervertebral disc disease. The interactions between these events in the damage or protection of intervertebral disc cells and in cellular homeostasis remain controversial. <strong>Methods:</strong> The sample size was twenty patients who underwent lumbar spine surgery for symptomatic disc herniation or spondylolisthesis. Intervertebral discs were classified by magnetic resonance as Pfirrmann grade IV and grade V. Six patients were operated on two levels, resulting in twenty-six intervertebral discs that were submitted to immunohistochemistry to verify the protein expression of autophagy and apoptosis markers. <strong>Results: </strong>The autophagic markers had greater protein expression in the human intervertebral disc (Pfirrmann Grades IV and V). Under these conditions, autophagy and apoptosis showed a negative correlation. Regarding apoptosis, caspase 8 presented the highest protein expression, which allows inferring the preference for the extrinsic pathway in cell death. <strong>Conclusions: </strong>Autophagy had the greatest protein expression negative profile compared to apoptosis. Caspase 8 had the highest protein expression in apoptosis. 展开更多
关键词 intervertebral disc degeneration AUTOPHAGY APOPTOSIS CROSSTALK
下载PDF
Application of molybdenum target X-ray photography in imaging analysis of caudal intervertebral disc degeneration in rats
8
作者 Qi-Hang Su Yan Zhang +2 位作者 Bin Shen Yong-Chao Li Jun Tan 《World Journal of Clinical Cases》 SCIE 2020年第16期3431-3439,共9页
BACKGROUND Conventional plain X-ray images of rats,the most common animals used as degeneration models,exhibit unclear vertebral structure and blurry intervertebral disc spaces due to their small size,slender vertebra... BACKGROUND Conventional plain X-ray images of rats,the most common animals used as degeneration models,exhibit unclear vertebral structure and blurry intervertebral disc spaces due to their small size,slender vertebral bodies.AIM To apply molybdenum target X-ray photography in the evaluation of caudal intervertebral disc(IVD)degeneration in rat models.METHODS Two types of rat caudal IVD degeneration models(needle-punctured model and endplate-destructed model)were established,and their effectiveness was verified using nuclear magnetic resonance imaging.Molybdenum target inspection and routine plain X-ray were then performed on these models.Additionally,four observers were assigned to measure the intervertebral height of degenerated segments on molybdenum target plain X-ray images and routine plain X-ray images,respectively.The degeneration was evaluated and statistical analysis was subsequently conducted.RESULTS Nine rats in the needle-punctured model and 10 rats in the endplate-destructed model were effective.Compared with routine plain X-ray images,molybdenum target plain X-ray images showed higher clarity,stronger contrast,as well as clearer and more accurate structural development.The McNemar test confirmed that the difference was statistically significant(P=0.031).In the two models,the reliability of the intervertebral height measured by the four observers on routine plain X-ray images was poor(ICC<0.4),while the data obtained from the molybdenum target plain X-ray images were more reliable.CONCLUSIONMolybdenum target inspection can obtain clearer images and display fine calcification in the imaging evaluation of caudal IVD degeneration in rats,thus ensuring a more accurate evaluation of degeneration. 展开更多
关键词 Molybdenum target inspection Routine plain X-ray intervertebral disc degeneration model Animal experiment Imaging analysis McNemar test
下载PDF
Genotoxicity Clues to Predict Intervertebral Disc Degeneration: A Systematic Review
9
作者 Charles André Carazzo Bruno Saciloto +2 位作者 Manuela Peletti Figueiró Natalia Fontana Nicoletti Asdrubal Falavigna 《Journal of Biosciences and Medicines》 2020年第12期68-77,共10页
<strong>Objective:</strong> To characterize the association between DNA damage and Intervertebral disc degeneration (IDD). <strong>Summary of</strong> <strong>Background Data:</strong&... <strong>Objective:</strong> To characterize the association between DNA damage and Intervertebral disc degeneration (IDD). <strong>Summary of</strong> <strong>Background Data:</strong> IDD is the main disorder causing low back pain and is the most promising target for intervention. Many factors can contribute to the etiology, such as genetics, environment and lifestyle, but it is not yet fully understood. DNA damage can influence this process and needs to be studied, as well as the agents that can determine these damages. <strong>Methods:</strong> A systematic literature search of PubMed, Web of Science and Scopus was performed to identify studies related to DNA damage to the intervertebral disc. <strong>Results:</strong> After screening 61 records, 7 articles were included according to the selection criteria. All studies showed some relation between DNA damage and IDD. However, DNA damage was always considered a secondary issue to be investigated. <strong>Conclusions:</strong> Many factors can influence DNA damage induced by different genotoxic agents on the degenerative cascade of IVD. However, the correlation between IDD severity and DNA damage, as well as the factual role of DNA damage in disc degeneration could not be defined. 展开更多
关键词 DNA Damage GENOTOXICITY BIOMARKER intervertebral disc degeneration
下载PDF
Classification of Intervertebral Disc Degeneration in Low Back Pain Using Diffusional Kurtosis Imaging
10
作者 Hiromitsu Takano Ikuho Yonezawa +1 位作者 Takatoshi Okuda Kazuo Kaneko 《Open Journal of Radiology》 2020年第2期79-89,共11页
Degenerative disc disease is the most common cause of low back pain. Intervertebral disc abnormalities are commonly evaluated by magnetic resonance imaging (MRI), and Pfirrmann’s system involves the use of T2-weighte... Degenerative disc disease is the most common cause of low back pain. Intervertebral disc abnormalities are commonly evaluated by magnetic resonance imaging (MRI), and Pfirrmann’s system involves the use of T2-weighted images (T2WI) to classify disc degeneration. However, as this classification is based on visual evaluation, it is not possible to quantify degeneration using this method. The present study was performed to establish an MRI-based intervertebral disc classification system using diffusional kurtosis imaging (DKI), to quantify intervertebral disc water content according to the Pfirrmann classification. Sagittal mean diffusional kurtosis (MK) mapping was performed for the L3/4, L4/5, and L5/S1 intervertebral discs in 32 patients (15 female, 17 male;age range, 24 - 82 years;mean age, 57.7 years). The degree of disc degeneration was assessed in the midsagittal section on T2WI according to the Pfirrmann classification (grade I - V). The relationships between MK values, which are correlated with intervertebral disc composition changes, and grade of degeneration determined using the Pfirrmann classification were analyzed. The MK values tended to decrease with increasing grade of degeneration, and differed significantly between grades I and IV, but not between grade IV and V (P < 0.05, Mann-Whitney U test). DKI is an effective means of detecting the early stages of disc degeneration. Therefore, DKI may be a useful diagnostic tool for quantitative assessment of intervertebral disc degeneration. 展开更多
关键词 Diffusional Kurtosis Imaging Pfirrmann Classification Mean Diffusional Kurtosis intervertebral disc degeneration Low Back Pain
下载PDF
Correlation Analysis of Intervertebral Disc Degeneration with HTRA1 and HAPLN1 Gene Polymorphisms
11
作者 Tuanmao Guo Yanli Xing +1 位作者 Zhongning Chen Haiyun Zhu 《Journal of Clinical and Nursing Research》 2020年第5期39-42,共4页
The lumbar spine,an important part of the body’s motor mechanism,is more susceptible to damage as it bears most of the body’s load.Age can cause clinical manifestations such as neurological impairment,back and leg p... The lumbar spine,an important part of the body’s motor mechanism,is more susceptible to damage as it bears most of the body’s load.Age can cause clinical manifestations such as neurological impairment,back and leg pain in the lumbar spine.External forces result in nucleus pulposus out,destruction of the intervertebral disc fibrous ring,and gradual aging and damage.Lumbar degenerative change is a common middle-aged and old-aged disease,and its clinical symptoms on the initial stage are not obvious,but it becomes more and more serious as they get older.Patients with severe lumbar degenerative changes will appear symptoms such as urinary and fecal incontinence,lower extremity numbness,back pain,and sexual dysfunction.The main reason for back pain and leg pain is the degenerative changes in the lumbar intervertebral discs,at the same time which also leads to patients’lumbar instability.This study focuses on the correlation analysis of intervertebral disc degeneration with HTRA1 and HAPLN1 gene polymorphisms. 展开更多
关键词 HTRA1 HAPLN1 intervertebral disc degeneration
下载PDF
Engineered high-strength biohydrogel as a multifunctional platform to deliver nucleic acid for ameliorating intervertebral disc degeneration 被引量:1
12
作者 Tao Chen Qiuping Qian +11 位作者 Pooyan Makvandi Ehsan Nazarzadeh Zare Qizhu Chen Linjie Chen Zhiguang Zhang Hao Zhou Wenxian Zhou Hui Wang Xiangyang Wang Yu Chen Yunlong Zhou Aimin Wu 《Bioactive Materials》 SCIE CSCD 2023年第7期107-121,共15页
Intervertebral disc degeneration(IVDD)is a leading cause of low back pain.The strategy of using functional materials to deliver nucleic acids provides a powerful tool for ameliorating IVDD.However,the immunogenicity o... Intervertebral disc degeneration(IVDD)is a leading cause of low back pain.The strategy of using functional materials to deliver nucleic acids provides a powerful tool for ameliorating IVDD.However,the immunogenicity of nucleic acid vectors and the poor mechanical properties of functional materials greatly limit their effects.Herein,antagomir-204-3p(AM)shows low immunogenicity and effectively inhibits the apoptosis of nucleus pulposus cells.Moreover,a high-strength biohydrogel based on zinc-oxidized sodium alginate-gelatin(ZOG)is designed as a multifunctional nucleic acid delivery platform.ZOG loaded with AM(ZOGA)exhibits great hygroscopicity,antibacterial activity,biocompatibility,and biodegradability.Moreover,ZOGA can be cross-linked with nucleus pulposus tissue to form a high-strength collagen network that improves the mechanical properties of the intervertebral disc(IVD).In addition,ZOGA provides an advantageous microenvironment for genetic expression in which AM can play an efficient role in maintaining the metabolic balance of the extracellular matrix.The results of the radiological and histological analyses demonstrate that ZOGA restores the height of the IVD,retains moisture in the IVD,and maintains the tissue structure.The ZOGA platform shows the sustained release of nucleic acids and has the potential for application to ameliorate IVDD,opening a path for future studies related to IVD. 展开更多
关键词 intervertebral disc degeneration HYDROGEL Nucleic acid MicroRNA Delivery Extracellular matrix
原文传递
Delivery of coenzyme Q10 loaded micelle targets mitochondrial ROS and enhances efficiency of mesenchymal stem cell therapy in intervertebral disc degeneration 被引量:1
13
作者 Junyuan Sun Fei Yang +7 位作者 Lianlei Wang Haichao Yu Zhijie Yang Jingjing Wei Krasimir Vasilev Xuesong Zhang Xinyu Liu Yunpeng Zhao 《Bioactive Materials》 SCIE CSCD 2023年第5期247-260,共14页
Stem cell transplantation has been proved a promising therapeutic instrument in intervertebral disc degeneration(IVDD).However,the elevation of oxidative stress in the degenerated region impairs the efficiency of mese... Stem cell transplantation has been proved a promising therapeutic instrument in intervertebral disc degeneration(IVDD).However,the elevation of oxidative stress in the degenerated region impairs the efficiency of mesenchymal stem cells(BMSCs)transplantation treatment via exaggeration of mitochondrial ROS and promotion of BMSCs apoptosis.Herein,we applied an emulsion-confined assembly method to encapsulate Coenzyme Q10(Co-Q10),a promising hydrophobic antioxidant which targets mitochondria ROS,into the lecithin micelles,which renders the insoluble Co-Q10 dispersible in water as stable colloids.These micelles are injectable,which displayed efficient ability to facilitate Co-Q10 to get into BMSCs in vitro,and exhibited prolonged release of Co-Q10 in intervertebral disc tissue of animal models.Compared to mere use of Co-Q10,the Co-Q10 loaded micelle possessed better bioactivities,which elevated the viability,restored mitochondrial structure as well as function,and enhanced production of ECM components in rat BMSCs.Moreover,it is demonstrated that the injection of this micelle with BMSCs retained disc height and alleviated IVDD in a rat needle puncture model.Therefore,these Co-Q10 loaded micelles play a protective role in cell survival and differentiation through antagonizing mitochondrial ROS,and might be a potential therapeutic agent for IVDD. 展开更多
关键词 intervertebral disc degeneration Coenzyme Q10 Mesenchymal stem cell Reactive oxygen species MICELLE
原文传递
Nimbolide targeting SIRT1 mitigates intervertebral disc degeneration by reprogramming cholesterol metabolism and inhibiting inflammatory signaling
14
作者 Yun Teng Yixue Huang +8 位作者 Hao Yu Cenhao Wu Qi Yan Yingjie Wang Ming Yang Haifeng Xie Tianyi Wu Huilin Yang Jun Zou 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第5期2269-2280,共12页
Inflammation,abnormal cholesterol metabolism,and macrophage infiltration are involved in the destruction of the extracellular matrix of the nucleus pulposus(NP),culminating in intervertebral disc degeneration(IDD).Whe... Inflammation,abnormal cholesterol metabolism,and macrophage infiltration are involved in the destruction of the extracellular matrix of the nucleus pulposus(NP),culminating in intervertebral disc degeneration(IDD).Whether nimbolide(Nim),a natural extract,can alleviate IDD is unclear.In this study,we demonstrated that Nim promotes cholesterol efflux and inhibits the activation of the nuclear factor kappa B(NF-κB)and mitogen-activated protein kinase(MAPK)signaling pathways by activating sirtuin 1(SIRT1)in nucleus pulposus cells(NPCs)during inflammation.Thus,Nim balanced matrix anabolism and catabolism of NPCs.However,the inhibition of SIRT1 significantly attenuated the effects of Nim.We also found that Nim promoted the expression of SIRT1 in RAW 264.7,which enhanced the proportion of M2 macrophages by facilitating cholesterol homeostasis reprogramming and impeded M1-like macrophages polarization by blocking the activation of inflammatory signaling.Based on these results,Nim can improve the microenvironment and facilitate matrix metabolism equilibrium in NPCs.Furthermore,in vivo treatment with Nim delayed IDD progression by boosting SIRT1 expression,modulating macrophage polarization and preserving the extracellular matrix.In conclusion,Nim may represent a novel therapeutic strategy for treating IDD. 展开更多
关键词 Nimbolide SIRT1 intervertebral disc degeneration Nucleus pulposus Macrophage polarization CHOLESTEROL
原文传递
Effect of Tuina along“bladder meridian”alleviating intervertebral disc degeneration by regulating the transforming growth factor-β1/Smad signaling pathway in a rabbit model
15
作者 SU Chengguo ZHAO Xiaoyan +6 位作者 YE Jiangnan ZHANG Xin JIANG Yuqing GUO Junjie ZHANG Xiyuan QI Wenchuan ZHU Jun 《Journal of Traditional Chinese Medicine》 SCIE CSCD 2023年第5期991-1000,共10页
OBJECTIVE:The aim of this study was to investigate the protective effects of Tuina(a traditional Chinese massage therapy)on intervertebral disc(IVD)degeneration and the regulatory mechanisms of the transforming growth... OBJECTIVE:The aim of this study was to investigate the protective effects of Tuina(a traditional Chinese massage therapy)on intervertebral disc(IVD)degeneration and the regulatory mechanisms of the transforming growth factor-β1(TGF-β1)/small mothers against decapentaplegic(Smad)signaling pathway.METHODS:Thirty New Zealand white rabbits were randomized into five groups:the control group,model group,model+Tuina group(Tuina group),model+TGF-β1 group(TGF-β1 group),and model+TGF-β1 inhibitor SB431542 group(SB431542 group).The model was established by posterolateral annulus fibrosus puncturing(AFP).Recombinant TGF-β1 and inhibitor SB431542 was injected into the TGF-β1 group and SB431542 group with a microsyringe,respectively.The rabbits in the Tuina group received Tuina treatment along the bladder meridian for 4 weeks.Magnetic resonance imaging(MRI)was performed on rabbits before AFP and after 4 weeks of intervention.Lumbar IVDs(L2-L3 to L4-L5)were harvested after intervention.Histopathological changes in the IVDs were measured by hematoxylin and eosin(HE)staining.Type I collagen was analyzed by immunohistochemistry detection.The expression level of matrix metalloproteinase-3(MMP3)was determined by enzyme-linked immunosorbent assay.Cell apoptosis was evaluated by terminal deoxynucleotidyl transferasemediated nick end labeling and Western blotting.Realtime polymerase chain reaction and Western blotting were used to analyze the expression of TGF-β1 and Smad2/3/4 and a disintegrin and metalloproteinase with thrombospondin motifs 5.RESULTS:Posterolateral AFP induced IVD degeneration in rabbits with histopathological damage and noticeable changes in MRI images.Tuina alleviated histopathological changes and reversed the expression of extracellular matrix degeneration-related molecules and apoptosis-related proteins.Furthermore,AFP induced the activation of TGF-β1 and Smad2/3/4,whereas Tuina therapy markedly reduced the protein expression of Smad2/3 and the gene expression of TGF-β1 and Smad2/3/4.Additionally,the TGF-β1/Smad signaling pathway was activated in the TGF-β1 group,while the TGF-β1/Smad signaling pathway was inhibited in the SB431542 group.CONCLUSION:Posterolateral AFP induced disc degeneration as determined by MRI assessment and histological analysis.Tuina alleviated disc degeneration,possibly by inhibiting the fibrotic response mediated by the TGF-β1/Smad pathway,thus alleviating extracellular matrix degeneration and reducing cell apoptosis. 展开更多
关键词 intervertebral disc degeneration transforming growth factor beta1 Smad proteins TUINA APOPTOSIS extracellular matrix degradation
原文传递
Multiple nano-drug delivery systems for intervertebral disc degeneration: Current status and future perspectives
16
作者 Wenzhao Liu Zhanjun Ma +1 位作者 Yonggang Wang Jingjing Yang 《Bioactive Materials》 SCIE CSCD 2023年第5期274-299,共26页
Low back pain(LBP)is a common disease that imposes a huge social and economic burden on people.Intervertebral disc(IVD)degeneration(IVDD)is often considered to be the leading cause of LBP and further aggravate and cau... Low back pain(LBP)is a common disease that imposes a huge social and economic burden on people.Intervertebral disc(IVD)degeneration(IVDD)is often considered to be the leading cause of LBP and further aggravate and cause serious spinal problems.The established treatment strategy for IVDD consists of physiotherapy,pain medication by drug therapy,and,if necessary,surgery,but none of them can be treated from the etiology;that is,it cannot fundamentally reverse IVD and reconstruct the mechanical function of the spine.With the development of nanotechnology and regenerative medicine,nano-drug delivery systems(NDDSs)have improved treatment results because of their good biodegradability,biocompatibility,precise targeted specific drug delivery,prolonged drug release time,and enhanced drug efficacy,and various new NDDSs for drugs,proteins,cells,and genes have brought light and hope for the treatment of IVDD.This review summarizes the research progress of NDDSs in the treatment of IVDD and provides prospects for using NDDSs to address the challenges of IVDD.We hope that the ideas generated in this review will provide insight into the precise treatment of IVDD. 展开更多
关键词 intervertebral disc degeneration NANOTECHNOLOGY Drug delivery system NANOCARRIERS NANOPARTICLES
原文传递
An esterase-responsive ibuprofen nano-micelle pre-modified embryo derived nucleus pulposus progenitor cells promote the regeneration of intervertebral disc degeneration
17
作者 Kai-shun Xia Dong-dong Li +13 位作者 Cheng-gui Wang Li-wei Ying Jing-kai Wang Biao Yang Jia-wei Shu Xian-peng Huang Yu-ang Zhang Chao Yu Xiao-peng Zhou Fang-cai Li Nigel K.H.Slater Jian-bin Tang Qi-xin Chen Cheng-zhen Liang 《Bioactive Materials》 SCIE CSCD 2023年第3期69-85,共17页
Stem cell-based transplantation is a promising therapeutic approach for intervertebral disc degeneration(IDD).Current limitations of stem cells include with their insufficient cell source,poor proliferation capacity,l... Stem cell-based transplantation is a promising therapeutic approach for intervertebral disc degeneration(IDD).Current limitations of stem cells include with their insufficient cell source,poor proliferation capacity,low nucleus pulposus(NP)-specific differentiation potential,and inability to avoid pyroptosis caused by the acidic IDD microenvironment after transplantation.To address these challenges,embryo-derived long-term expandable nucleus pulposus progenitor cells(NPPCs)and esterase-responsive ibuprofen nano-micelles(PEG-PIB)were prepared for synergistic transplantation.In this study,we propose a biomaterial pre-modification cell strategy;the PEG-PIB were endocytosed to pre-modify the NPPCs with adaptability in harsh IDD microenvironment through inhibiting pyroptosis.The results indicated that the PEG-PIB pre-modified NPPCs exhibited inhibition of pyroptosis in vitro;their further synergistic transplantation yielded effective functional recovery,histological regeneration,and inhibition of pyroptosis during IDD regeneration.Herein,we offer a novel biomaterial pre-modification cell strategy for synergistic transplantation with promising therapeutic effects in IDD regeneration. 展开更多
关键词 intervertebral disc degeneration Nucleus pulposus progenitor cells Esterase-responsive nano micell Biomaterial pre-modification Synergistic transplantation therapy
原文传递
Genetic factors in intervertebral disc degeneration 被引量:10
18
作者 Yi Feng Brian Egan Jinxi Wang 《Genes & Diseases》 SCIE 2016年第3期178-185,共8页
Low back pain(LBP)is a major cause of disability and imposes huge economic burdens on human society worldwide.Among many factors responsible for LBP,intervertebral disc degeneration(IDD)is the most common disorder and... Low back pain(LBP)is a major cause of disability and imposes huge economic burdens on human society worldwide.Among many factors responsible for LBP,intervertebral disc degeneration(IDD)is the most common disorder and is a target for intervention.The etiology of IDD is complex and its mechanism is still not completely understood.Many factors such as aging,spine deformities and diseases,spine injuries,and genetic factors are involved in the pathogenesis of IDD.In this review,we will focus on the recent advances in studies on the most promising and extensively examined genetic factors associated with IDD in humans.A number of genetic defects have been correlated with structural and functional changes within the intervertebral disc(IVD),which may compromise the disc’s mechanical properties and metabolic activities.These genetic and proteomic studies have begun to shed light on the molecular basis of IDD,suggesting that genetic factors are important contributors to the onset and progression of IDD.By continuing to improve our understanding of the molecular mechanisms of IDD,specific early diagnosis and more effective treatments for this disabling disease will be possible in the future. 展开更多
关键词 Genetic factor intervertebral disc intervertebral disc degeneration Low back pain POLYMORPHISM
原文传递
Reabsorption of intervertebral disc prolapse after conservative treatment with traditional Chinese medicine:A case report
19
作者 Cong-An Wang Hong-Fei Zhao +9 位作者 Jing Ju Li Kong Cheng-Jiao Sun Yue-Kun Zheng Feng Zhang Guang-Jian Hou Chen-Chen Guo Sheng-Nan Cao Dan-Dan Wang Bin Shi 《World Journal of Clinical Cases》 SCIE 2023年第10期2308-2314,共7页
BACKGROUND Conservative treatments have been reported to diminish or resolve clinical symptoms of lumbar intervertebral disc herniation(LIDH)within a few weeks.CASE SUMMARY Computed tomography and magnetic resonance i... BACKGROUND Conservative treatments have been reported to diminish or resolve clinical symptoms of lumbar intervertebral disc herniation(LIDH)within a few weeks.CASE SUMMARY Computed tomography and magnetic resonance imaging(MRI)of the lumbar region of a 25-yearold male diagnosed with LIDH showed prolapse of the L5/S2 disc.The disc extended 1.0 cm beyond the vertebral edge and hung along the posterior vertebral edge.The patient elected a conservative treatment regimen that included traditional Chinese medicine(TCM),acupuncture,and massage.During a follow-up period of more than 12 mo,good improvement in pain was reported without complications.MRI of the lumbar region after 12 mo showed obvious reabsorption of the herniation.CONCLUSION A conservative treatment regimen of TCM,acupuncture,and massage promoted reabsorption of a prolapsed disc. 展开更多
关键词 intervertebral disc degeneration Traditional Chinese medicine REABSORPTION Acupuncture MASSAGE Case report
下载PDF
Injectable kartogenin and apocynin loaded micelle enhances the alleviation of intervertebral disc degeneration by adipose-derived stem cell 被引量:3
20
作者 Chao Yu Dongdong Li +13 位作者 Chenggui Wang Kaishun Xia Jingkai Wang Xiaopeng Zhou Liwei Ying Jiawei Shu Xianpeng Huang Haibin Xu Bin Han Qixin Chen Fangcai Li Jianbin Tang Chengzhen Liang Nigel Slater 《Bioactive Materials》 SCIE 2021年第10期3568-3579,共12页
Cell transplantation has been proved the promising therapeutic effects on intervertebral disc degeneration(IVDD).However,the increased levels of reactive oxygen species(ROS)in the degenerated region will impede the ef... Cell transplantation has been proved the promising therapeutic effects on intervertebral disc degeneration(IVDD).However,the increased levels of reactive oxygen species(ROS)in the degenerated region will impede the efficiency of human adipose-derived stem cells(human ADSCs)transplantation therapy.It inhibits human ADSCs proliferation,and increases human ADSCs apoptosis.Herein,we firstly devised a novel amphiphilic copolymer PEG-PAPO,which could self-assemble into a nanosized micelle and load lipophilic kartogenin(KGN),as a single complex(PAKM).It was an injectable esterase-responsive micelle,and showed controlled release ability of KGN and apocynin(APO).Oxidative stimulation promoted the esterase activity in human ADSCs,which accelerate degradation of esterase-responsive micelle.Compared its monomer,the PAKM micelle possessed better bioactivities,which were attributed to their synergistic effect.It enhanced the viability,autophagic activation(P62,LC3 II),ECM-related transcription factor(SOX9),and ECM(Collagen II,Aggrecan)maintenance in human ADSCs.Furthermore,it is demonstrated that the injection of PAKM with human ADSCs yielded higher disc height and water content in rats.Therefore,PAKM micelles perform promoting cell survival and differentiation effects,and may be a potential therapeutic agent for IVDD. 展开更多
关键词 intervertebral disc degeneration Polymer-drug conjugates Mesenchymal stem cell Reactive oxygen species Stem cell therapy
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部