The design objectives of modern aircraft engines include high load capacity,efficiency,and stability.With increasing loads,the phenomenon of corner separation in compressors intensifies,affecting engine performance an...The design objectives of modern aircraft engines include high load capacity,efficiency,and stability.With increasing loads,the phenomenon of corner separation in compressors intensifies,affecting engine performance and stability.Therefore,the adoption of appropriate flow control technology holds significant academic and engineering significance.This study employs the Reynolds-averaged Navier-Stokes(RANS)method to investigate the effects and mechanisms of active/passive Co-flow Jet(CFJ)control,implemented by introducing full-height and partial height jet slots between the suction surface and end wall of a compressor cascade.The results indicate that passive CFJ control significantly reduces the impact of corner separation at small incidence,with partial-height control further enhancing the effectiveness.The introduction of active CFJ enables separation control at large incidence,improving blade performance under different operating conditions.Active control achieves this by reducing the scale of corner separation vortices,effectively reducing the size of the separation region and enhancing blade performance.展开更多
As an active flow control technology and with the advantages of no moving components, the Sweeping jet actuator has become a hotspot in the field of flow control. However, the linear relationship between oscillation f...As an active flow control technology and with the advantages of no moving components, the Sweeping jet actuator has become a hotspot in the field of flow control. However, the linear relationship between oscillation frequency and momentum coefficient in a sweeping jet actuator makes it difficult to determine the dominant factors that affect control effectiveness. Decoupling the oscillation frequency and momentum coefficient, as well as determining the control mechanism, is the focus of studying the sweeping jet actuator. In this study, a novel sweeping jet actuator is designed using synthetic jets instead of feedback channels and applied to the flow separation control of NACA0018 airfoil. This article studies the control effect under three oscillation frequencies of F<sup>+</sup> = f × c/U<sub>∞</sub> = 1, 10, 100 and three momentum coefficients of C<sub>μ</sub> = 0.45%, 0.625%, 0.9%. The numerical results indicate that all three oscillation frequencies have good control effects on flow separation, and the control effect is best when F<sup>+</sup> = 1, with the maximum lift coefficient increasing by approximately 14% compared to the other two cases. And the sweeping jet actuator has a better ability to control flow separation as the momentum coefficient increases. By decoupling the characteristics of the sweeping jet actuator and conducting numerical analysis of the flow control effect, it will promote its better engineering application in the field of flow control. .展开更多
The efficiency and mechanism of an active control device "'Spark Jet" and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction ...The efficiency and mechanism of an active control device "'Spark Jet" and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction of an oblique shock-wave generated by 8° wedge and a spatially-developing Ma = 2.3 turbulent boundary layer. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20000. The detailed numerical approaches were presented. The inflow turbulence was generated using the digital filter method to avoid artificial temporal or streamwise periodicity. The , merical results including velocity profile, Reynolds stress profile, skin friction, and wall pressure were sys- tematically validated against the available wind tunnel particle image velocimetry (PIV) measure- ments of the same flow condition. Further study on the control of flow separation due to the strong shock-viscous interaction using an active control actuator "'Spark Jet'" was conducted. The single-pulsed characteristic of the device was obtained and compared with the experiment. Both instantaneous and time-averaged flow fields have shown that the jet flow issuing from the actuator cavity enhances the flow mixing inside the boundary layer, making the boundary layer more resis- tant to flow separation. Skin friction coefficient distribution shows that the separation bubble length is reduced by about 35% with control exerted.展开更多
To improve the inlet performance of a ramjet working under variable conditions,a design is proposed by controlling the inlet with jet controlling,which combines the method of reducing the sealing Mach number of the ex...To improve the inlet performance of a ramjet working under variable conditions,a design is proposed by controlling the inlet with jet controlling,which combines the method of reducing the sealing Mach number of the external waves and the technique of controlling inlet by jet controlling.Three inlets were designed to analyze the feasibility and a numerical simulation method was used to simulate the three inlet flow fields.The adjustment mechanism of the design was studied through analysis of the simulation results.The design was verified by comparing the performances of the three inlets.The study showed that the method of reducing the sealing Mach number of the external wave system can improve the flow coefficient when the inlet works at low Mach numbers.The technique of controlling inlet by jet controlling can homogenize inlet flow fields at high Mach numbers,reduce effective throat area and increase the total pressure recovery(TPR).Adjustable inlets controlled by jet controlling demonstrate good performance at certain working ranges.展开更多
A primary air jet vectoring control system with a novel synthetic jet actuator (SJA) is presented and simulated numerically. The results show that, in comparison with an existing traditional synthetic jet actuator, ...A primary air jet vectoring control system with a novel synthetic jet actuator (SJA) is presented and simulated numerically. The results show that, in comparison with an existing traditional synthetic jet actuator, which is able to perform the duty of either "push" or "pull", one novel synthetic jet actuator can fulfill both "push" and "pull" functions to vector the primary jet by shifting a slide block inside it. Therefore, because the new actuator possesses greater efficiency, it has potentiality to replace the existing one in various appli- cations, such as thrust vectoring and the reduction of thermal signature. Moreover, as the novel actuator can fulfill those functions that the existing one can not, it may well be expected to popularize it into more flow control systems.展开更多
Numerical simulations are performed to investigate the effects of synthetic jet control on separation and stall over rotor airfoils. The preconditioned and unsteady Reynolds-averaged Navier–Stokes equations coupled w...Numerical simulations are performed to investigate the effects of synthetic jet control on separation and stall over rotor airfoils. The preconditioned and unsteady Reynolds-averaged Navier–Stokes equations coupled with a k x shear stream transport turbulence model are employed to accomplish the flowfield simulation of rotor airfoils under jet control. Additionally,a velocity boundary condition modeled by a sinusoidal function is developed to fulfill the perturbation effect of periodic jets. The validity of the present CFD procedure is evaluated by the simulated results of an isolated synthetic jet and the jet control case for airfoil NACA0015. Then, parametric analyses are conducted specifically for an OA213 rotor airfoil to investigate the effects of jet parameters(forcing frequency, jet location and momentum coefficient, jet direction, and distribution of jet arrays) on the control effect of the aerodynamic characteristics of a rotor airfoil. Preliminary results indicate that the efficiency of jet control can be improved with specific frequencies(the best lift-drag ratio at F+= 2.0) and jet angles(40 or 75) when the jets are located near the separation point of the rotor airfoil. Furthermore, as a result of a suitable combination of jet arrays, the lift coefficient of the airfoil can be improved by nearly 100%, and the corresponding drag coefficient decreased by26.5% in comparison with the single point control case.展开更多
An experimental investigation conducted in a high-speed plane cascade wind tunnel demonstrates that unsteady flow control by using synthetic (zero mass flux) vortex generator jets can effectively improve the aerodyn...An experimental investigation conducted in a high-speed plane cascade wind tunnel demonstrates that unsteady flow control by using synthetic (zero mass flux) vortex generator jets can effectively improve the aerodynamic performances and reduce (or eliminate) flow separation in axial compressor cascade. The Mach number of the incoming flow is up to 0.7 and most tested cases are at Ma = 0.3. The incidence is 10° at which the boundary layer is separated from 70% of the chord length. The roles of excitation frequency, amplitude, location and pitch angle are investigated. Preliminary results show that the excitation amplitude plays a very important role, the optimal excitation location is just upstream of the separation point, and the optimal pitch angle is 35°. The maximum relative reduction of loss coefficient is 22.8%.展开更多
Zero mass flux jets, synthesized by acoustic actuators, have been used for the purpose of jet mixing enhancement and jet vectoring. Zero mass flux jets composed of entirely entrained fluid allow momentum transfer into...Zero mass flux jets, synthesized by acoustic actuators, have been used for the purpose of jet mixing enhancement and jet vectoring. Zero mass flux jets composed of entirely entrained fluid allow momentum transfer into the embedding flow. In the present experiments, miniature scale high aspect ratio actuator jets are placed along the long sides and near the exit plane of a primary two dimensional jet. In different modes, the primary jet can be vectored either towards or away from the actuator jets and the jet mixing is enhanced. The disturbance of the excitation frequency is developed while the unstable frequency of the primary jet is completely suppressed.展开更多
A primary jet vectoring using synthetic jet actuators with different exit configurations was investigated, and the main physical factors influencing jet vectoring were analyzed and summarized. The physical factors of ...A primary jet vectoring using synthetic jet actuators with different exit configurations was investigated, and the main physical factors influencing jet vectoring were analyzed and summarized. The physical factors of the pressure difference, the location and area of the lower pressure region, the component of the synthetic jet momentum and the entrainment ratio of the synthetic jet flow to primary jet flow directly control the vectoring force and the vectoring angle. Three characteristic parameters of the synthetic jet contribute to the pressure difference and the area of the lower pressure region Both the extension step and slope angle of the actuator exit have functions of regulating the location of the lower pressure region, the area of the lower pressure region, and the entrainment ratio of the synthetic jet flow to primary jet flow. The slope angle of the actuator exit has additional functions of regulating the component of the synthetic jet momentum. Based upon analyzing the physical factors of jet vectoring control with synthetic jets, the source variables of the physical factors were established. A preparatory control model of jet vectoring using synthetic jet actuator was presented, and it has the benefit of explaining the efficiency of jet vectoring using synthetic jet actuator with source variables at different values, and it indicates the optimal actuator is taking full advantage of the regulating function.展开更多
Active control of wall his is important in both application and basic researches. In order to establish a solid background for the expected application,it is necessary to perform detailed studies on the base nows,on t...Active control of wall his is important in both application and basic researches. In order to establish a solid background for the expected application,it is necessary to perform detailed studies on the base nows,on their stability characteristics and on the identification technique of coherent structures. This paper is a summarizing article rather than a detailed technical report, Its main purpose is just to introduce the recent progress in the related area.展开更多
To solve the control allocation problem of dual aero/jet vane control missile, dynamics e- quations in longitudinal plane are derived, and the structure of compound control loop is designed based on attitude autopilot...To solve the control allocation problem of dual aero/jet vane control missile, dynamics e- quations in longitudinal plane are derived, and the structure of compound control loop is designed based on attitude autopilot. Four brief compound control allocation strategies are researched and an- alyzed. Furthermore, a new strategy called chain combination variable proportional coefficient strat- egy based on rudder effect is presented. By simulation of initial climb trajectory, the characteristics of all the strategies are researched, and the results illustrate that the new strategy can meet the re- quirement well.展开更多
The formation control problem for underactuated unmanned surface vehicles(USVs) is addressed by a distributed strategy based on virtual leader strategy. The control system takes account of disturbance induced by exter...The formation control problem for underactuated unmanned surface vehicles(USVs) is addressed by a distributed strategy based on virtual leader strategy. The control system takes account of disturbance induced by external environment. With the coordinate transformation, the advantage of the proposed scheme is that the control point can be any point of the ship instead of the center of gravity. By introducing bio-inspired model, the formation control problem is addressed with backstepping method. This avoids complicated computation, simplifies the control law,and smoothes the input signals. The system uniform ultimate boundness is proven by Lyapunov stability theory with Young inequality. Simulation results are presented to verify the effectiveness and robust of the proposed controller.展开更多
The dynamics of flapping motion of a rectangular jet under acoustic excitation is studied experimentally by means of hot-wire measurement and flow visualization with smoke method. The excitation sufficiently enables“...The dynamics of flapping motion of a rectangular jet under acoustic excitation is studied experimentally by means of hot-wire measurement and flow visualization with smoke method. The excitation sufficiently enables“phase-lock”, which permitted us to extract the organized wave motion from a background field of finite turbulent fluctuations. The mean and fluctuation velocity are investigated and focused on the excitation frequency and the Reynolds number. As the excitation frequency decreases, it was found that the jet flapping and the jet spread were enhanced. The excitation with sub-harmonic frequency has significant effects on the rectangular jet behavior. The maximum value of the periodic velocity fluctuation strongly depends on the excitation frequency.展开更多
This research deals with the oscillation mechanism of a flip-flop jet nozzle with a connecting tube, based on the measurements of pressures and velocities in the connecting tube and inside the nozzle. The measurements...This research deals with the oscillation mechanism of a flip-flop jet nozzle with a connecting tube, based on the measurements of pressures and velocities in the connecting tube and inside the nozzle. The measurements are carried out varying: 1) the inside diameter d of the connecting tube;2) the length L of the connecting tube and 3) the jet velocity VPN from a primary-nozzle exit. We assume that the jet switches when a time integral reaches a certain value. At first, as the time integral, we introduce the accumulated flow work of pressure, namely, the time integral of mass flux through a connecting tube into the jet-reattaching wall from the opposite jet-un-reattaching wall. Under the assumption, the trace of pressure difference between both the ends of the connecting tube is simply modeled on the basis of measurements, and the flow velocity in the connecting tube is computed as incompressible flow. Second, in order to discuss the physics of the accumulated flow work further, we conduct another experiment in single-port control where the inflow from the control port on the jet-reattaching wall is forcibly controlled and the other control port on the opposite jet-un-reattaching wall is sealed, instead of the experiment in regular jet’s oscillation using the ordinary nozzle with two control ports in connection. As a result, it is found that the accumulated flow work is adequate to determine the dominant jet- oscillation frequency. In the experiment in single-port control, the accumulated flow work of the inflow until the jet’s switching well agrees with that in regular jet’s oscillation using the ordinary nozzle.展开更多
Flow separation is typically an undesirable phenomenon, and boundary layer control is an important technique for the separation problems on airfoils. The synthetic jet actuator is considered as a promising candidate f...Flow separation is typically an undesirable phenomenon, and boundary layer control is an important technique for the separation problems on airfoils. The synthetic jet actuator is considered as a promising candidate for flow control applications because of its compact nature and ability to generate momentum without the need for fluidic plumbing. In the present study, an active separation control system using synthetic jets is proposed and practically applied to the stall control of the NACA0012 airfoil in a wind tunnel test. In our proposed system, the flow conditions (stalled or unstalled) can be judged by calculating from two static pressure holes on the airfoil upper surface alone. The experimental results indicate that the maximum lift coefficient increases by 11% and the stall angle rises by 4°in contrast to the case under no control. It is confirmed that our proposed system can suppress the stall on the NACA0012 airfoil and that the aerodynamic performance of the airfoil can be enhanced. The proposed system can also be operated prior to the onset of stall. Therefore, separation control is always attained with no stall for all flow fields produced by changing the angle of attack that were examined.展开更多
短路分断是断路器的核心功能,提高断路器的短路分断能力是市场的持续需求。针对有效提升塑壳断路器(Moulded Case Circuit Breaker,MCCB)短路分断能力的方法开展了研究。利用栅片电压测量分析法可以检测灭弧栅片在短路分断时切割电弧的...短路分断是断路器的核心功能,提高断路器的短路分断能力是市场的持续需求。针对有效提升塑壳断路器(Moulded Case Circuit Breaker,MCCB)短路分断能力的方法开展了研究。利用栅片电压测量分析法可以检测灭弧栅片在短路分断时切割电弧的情况,评估各灭弧栅片切割电弧的性能以及电弧在灭弧室内的动态特性,为电弧优化提供参考数据。利用有限元仿真的方法进行电磁力计算,有利于快速验证优化设计方案而免去实际的试验验证,节约产品的研发成本,缩短产品的研发周期。蒸汽喷射控制(Vapour Jet Control,VJC)产气材料的运用也能够进一步提高产品的短路分断能力。综合运用以上设计方法,能够在不会大幅增加研发成本的基础上,快速提升MCCB的短路分断能力,工程应用价值较好。展开更多
基金National Science&Technology Major Project(Grant No.2017-II-0004-0016)National Nature Science Foundation of China(Grant No.52176044)。
文摘The design objectives of modern aircraft engines include high load capacity,efficiency,and stability.With increasing loads,the phenomenon of corner separation in compressors intensifies,affecting engine performance and stability.Therefore,the adoption of appropriate flow control technology holds significant academic and engineering significance.This study employs the Reynolds-averaged Navier-Stokes(RANS)method to investigate the effects and mechanisms of active/passive Co-flow Jet(CFJ)control,implemented by introducing full-height and partial height jet slots between the suction surface and end wall of a compressor cascade.The results indicate that passive CFJ control significantly reduces the impact of corner separation at small incidence,with partial-height control further enhancing the effectiveness.The introduction of active CFJ enables separation control at large incidence,improving blade performance under different operating conditions.Active control achieves this by reducing the scale of corner separation vortices,effectively reducing the size of the separation region and enhancing blade performance.
文摘As an active flow control technology and with the advantages of no moving components, the Sweeping jet actuator has become a hotspot in the field of flow control. However, the linear relationship between oscillation frequency and momentum coefficient in a sweeping jet actuator makes it difficult to determine the dominant factors that affect control effectiveness. Decoupling the oscillation frequency and momentum coefficient, as well as determining the control mechanism, is the focus of studying the sweeping jet actuator. In this study, a novel sweeping jet actuator is designed using synthetic jets instead of feedback channels and applied to the flow separation control of NACA0018 airfoil. This article studies the control effect under three oscillation frequencies of F<sup>+</sup> = f × c/U<sub>∞</sub> = 1, 10, 100 and three momentum coefficients of C<sub>μ</sub> = 0.45%, 0.625%, 0.9%. The numerical results indicate that all three oscillation frequencies have good control effects on flow separation, and the control effect is best when F<sup>+</sup> = 1, with the maximum lift coefficient increasing by approximately 14% compared to the other two cases. And the sweeping jet actuator has a better ability to control flow separation as the momentum coefficient increases. By decoupling the characteristics of the sweeping jet actuator and conducting numerical analysis of the flow control effect, it will promote its better engineering application in the field of flow control. .
基金supported by the National Natural Science Foundation of China(Nos.11302012,51420105008,51476004,11572025 and 51136003)the National Basic Research Program of China(No.2012CB720205)The computational time for the present study was provided by the UK Turbulence Consortium(EPSRC grant EP/L000261/1)
文摘The efficiency and mechanism of an active control device "'Spark Jet" and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction of an oblique shock-wave generated by 8° wedge and a spatially-developing Ma = 2.3 turbulent boundary layer. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20000. The detailed numerical approaches were presented. The inflow turbulence was generated using the digital filter method to avoid artificial temporal or streamwise periodicity. The , merical results including velocity profile, Reynolds stress profile, skin friction, and wall pressure were sys- tematically validated against the available wind tunnel particle image velocimetry (PIV) measure- ments of the same flow condition. Further study on the control of flow separation due to the strong shock-viscous interaction using an active control actuator "'Spark Jet'" was conducted. The single-pulsed characteristic of the device was obtained and compared with the experiment. Both instantaneous and time-averaged flow fields have shown that the jet flow issuing from the actuator cavity enhances the flow mixing inside the boundary layer, making the boundary layer more resis- tant to flow separation. Skin friction coefficient distribution shows that the separation bubble length is reduced by about 35% with control exerted.
文摘To improve the inlet performance of a ramjet working under variable conditions,a design is proposed by controlling the inlet with jet controlling,which combines the method of reducing the sealing Mach number of the external waves and the technique of controlling inlet by jet controlling.Three inlets were designed to analyze the feasibility and a numerical simulation method was used to simulate the three inlet flow fields.The adjustment mechanism of the design was studied through analysis of the simulation results.The design was verified by comparing the performances of the three inlets.The study showed that the method of reducing the sealing Mach number of the external wave system can improve the flow coefficient when the inlet works at low Mach numbers.The technique of controlling inlet by jet controlling can homogenize inlet flow fields at high Mach numbers,reduce effective throat area and increase the total pressure recovery(TPR).Adjustable inlets controlled by jet controlling demonstrate good performance at certain working ranges.
基金National Natural Science Foundation of China (90205016, 50176055)
文摘A primary air jet vectoring control system with a novel synthetic jet actuator (SJA) is presented and simulated numerically. The results show that, in comparison with an existing traditional synthetic jet actuator, which is able to perform the duty of either "push" or "pull", one novel synthetic jet actuator can fulfill both "push" and "pull" functions to vector the primary jet by shifting a slide block inside it. Therefore, because the new actuator possesses greater efficiency, it has potentiality to replace the existing one in various appli- cations, such as thrust vectoring and the reduction of thermal signature. Moreover, as the novel actuator can fulfill those functions that the existing one can not, it may well be expected to popularize it into more flow control systems.
基金supported by the National Natural Science Foundation of China (No. 11272150)
文摘Numerical simulations are performed to investigate the effects of synthetic jet control on separation and stall over rotor airfoils. The preconditioned and unsteady Reynolds-averaged Navier–Stokes equations coupled with a k x shear stream transport turbulence model are employed to accomplish the flowfield simulation of rotor airfoils under jet control. Additionally,a velocity boundary condition modeled by a sinusoidal function is developed to fulfill the perturbation effect of periodic jets. The validity of the present CFD procedure is evaluated by the simulated results of an isolated synthetic jet and the jet control case for airfoil NACA0015. Then, parametric analyses are conducted specifically for an OA213 rotor airfoil to investigate the effects of jet parameters(forcing frequency, jet location and momentum coefficient, jet direction, and distribution of jet arrays) on the control effect of the aerodynamic characteristics of a rotor airfoil. Preliminary results indicate that the efficiency of jet control can be improved with specific frequencies(the best lift-drag ratio at F+= 2.0) and jet angles(40 or 75) when the jets are located near the separation point of the rotor airfoil. Furthermore, as a result of a suitable combination of jet arrays, the lift coefficient of the airfoil can be improved by nearly 100%, and the corresponding drag coefficient decreased by26.5% in comparison with the single point control case.
基金The project supported by the National Natural Science Foundation of China (10477002 and 50476003)the Ph.D. Innovative Foundation of Beihang University
文摘An experimental investigation conducted in a high-speed plane cascade wind tunnel demonstrates that unsteady flow control by using synthetic (zero mass flux) vortex generator jets can effectively improve the aerodynamic performances and reduce (or eliminate) flow separation in axial compressor cascade. The Mach number of the incoming flow is up to 0.7 and most tested cases are at Ma = 0.3. The incidence is 10° at which the boundary layer is separated from 70% of the chord length. The roles of excitation frequency, amplitude, location and pitch angle are investigated. Preliminary results show that the excitation amplitude plays a very important role, the optimal excitation location is just upstream of the separation point, and the optimal pitch angle is 35°. The maximum relative reduction of loss coefficient is 22.8%.
文摘Zero mass flux jets, synthesized by acoustic actuators, have been used for the purpose of jet mixing enhancement and jet vectoring. Zero mass flux jets composed of entirely entrained fluid allow momentum transfer into the embedding flow. In the present experiments, miniature scale high aspect ratio actuator jets are placed along the long sides and near the exit plane of a primary two dimensional jet. In different modes, the primary jet can be vectored either towards or away from the actuator jets and the jet mixing is enhanced. The disturbance of the excitation frequency is developed while the unstable frequency of the primary jet is completely suppressed.
基金Project supported by the National Natural Science Foundation of China(Nos.90205016 and 50176055)
文摘A primary jet vectoring using synthetic jet actuators with different exit configurations was investigated, and the main physical factors influencing jet vectoring were analyzed and summarized. The physical factors of the pressure difference, the location and area of the lower pressure region, the component of the synthetic jet momentum and the entrainment ratio of the synthetic jet flow to primary jet flow directly control the vectoring force and the vectoring angle. Three characteristic parameters of the synthetic jet contribute to the pressure difference and the area of the lower pressure region Both the extension step and slope angle of the actuator exit have functions of regulating the location of the lower pressure region, the area of the lower pressure region, and the entrainment ratio of the synthetic jet flow to primary jet flow. The slope angle of the actuator exit has additional functions of regulating the component of the synthetic jet momentum. Based upon analyzing the physical factors of jet vectoring control with synthetic jets, the source variables of the physical factors were established. A preparatory control model of jet vectoring using synthetic jet actuator was presented, and it has the benefit of explaining the efficiency of jet vectoring using synthetic jet actuator with source variables at different values, and it indicates the optimal actuator is taking full advantage of the regulating function.
文摘Active control of wall his is important in both application and basic researches. In order to establish a solid background for the expected application,it is necessary to perform detailed studies on the base nows,on their stability characteristics and on the identification technique of coherent structures. This paper is a summarizing article rather than a detailed technical report, Its main purpose is just to introduce the recent progress in the related area.
文摘To solve the control allocation problem of dual aero/jet vane control missile, dynamics e- quations in longitudinal plane are derived, and the structure of compound control loop is designed based on attitude autopilot. Four brief compound control allocation strategies are researched and an- alyzed. Furthermore, a new strategy called chain combination variable proportional coefficient strat- egy based on rudder effect is presented. By simulation of initial climb trajectory, the characteristics of all the strategies are researched, and the results illustrate that the new strategy can meet the re- quirement well.
基金partially supported by the National Nature Science Foundation of China(Grant No.51309062)
文摘The formation control problem for underactuated unmanned surface vehicles(USVs) is addressed by a distributed strategy based on virtual leader strategy. The control system takes account of disturbance induced by external environment. With the coordinate transformation, the advantage of the proposed scheme is that the control point can be any point of the ship instead of the center of gravity. By introducing bio-inspired model, the formation control problem is addressed with backstepping method. This avoids complicated computation, simplifies the control law,and smoothes the input signals. The system uniform ultimate boundness is proven by Lyapunov stability theory with Young inequality. Simulation results are presented to verify the effectiveness and robust of the proposed controller.
文摘The dynamics of flapping motion of a rectangular jet under acoustic excitation is studied experimentally by means of hot-wire measurement and flow visualization with smoke method. The excitation sufficiently enables“phase-lock”, which permitted us to extract the organized wave motion from a background field of finite turbulent fluctuations. The mean and fluctuation velocity are investigated and focused on the excitation frequency and the Reynolds number. As the excitation frequency decreases, it was found that the jet flapping and the jet spread were enhanced. The excitation with sub-harmonic frequency has significant effects on the rectangular jet behavior. The maximum value of the periodic velocity fluctuation strongly depends on the excitation frequency.
文摘This research deals with the oscillation mechanism of a flip-flop jet nozzle with a connecting tube, based on the measurements of pressures and velocities in the connecting tube and inside the nozzle. The measurements are carried out varying: 1) the inside diameter d of the connecting tube;2) the length L of the connecting tube and 3) the jet velocity VPN from a primary-nozzle exit. We assume that the jet switches when a time integral reaches a certain value. At first, as the time integral, we introduce the accumulated flow work of pressure, namely, the time integral of mass flux through a connecting tube into the jet-reattaching wall from the opposite jet-un-reattaching wall. Under the assumption, the trace of pressure difference between both the ends of the connecting tube is simply modeled on the basis of measurements, and the flow velocity in the connecting tube is computed as incompressible flow. Second, in order to discuss the physics of the accumulated flow work further, we conduct another experiment in single-port control where the inflow from the control port on the jet-reattaching wall is forcibly controlled and the other control port on the opposite jet-un-reattaching wall is sealed, instead of the experiment in regular jet’s oscillation using the ordinary nozzle with two control ports in connection. As a result, it is found that the accumulated flow work is adequate to determine the dominant jet- oscillation frequency. In the experiment in single-port control, the accumulated flow work of the inflow until the jet’s switching well agrees with that in regular jet’s oscillation using the ordinary nozzle.
文摘Flow separation is typically an undesirable phenomenon, and boundary layer control is an important technique for the separation problems on airfoils. The synthetic jet actuator is considered as a promising candidate for flow control applications because of its compact nature and ability to generate momentum without the need for fluidic plumbing. In the present study, an active separation control system using synthetic jets is proposed and practically applied to the stall control of the NACA0012 airfoil in a wind tunnel test. In our proposed system, the flow conditions (stalled or unstalled) can be judged by calculating from two static pressure holes on the airfoil upper surface alone. The experimental results indicate that the maximum lift coefficient increases by 11% and the stall angle rises by 4°in contrast to the case under no control. It is confirmed that our proposed system can suppress the stall on the NACA0012 airfoil and that the aerodynamic performance of the airfoil can be enhanced. The proposed system can also be operated prior to the onset of stall. Therefore, separation control is always attained with no stall for all flow fields produced by changing the angle of attack that were examined.